当前位置:文档之家› 变风量空调系统风机总风量控制方法_戴斌文

变风量空调系统风机总风量控制方法_戴斌文

变风量空调系统风机总风量控制方法_戴斌文
变风量空调系统风机总风量控制方法_戴斌文

专题研讨

 变风量空调系统

风机总风量控制方法

清华大学 戴斌文☆ 狄洪发 江 亿

提要 通过对压力无关型变风量末端的分析得出了设定风量作为控制变量,进而提出了变风量系统总风量控制方法,使用空调系统模拟软件HVACSIM+对其与定静压、变静压控制方法作了对比模拟研究,并在实际系统中进行了实验验证。

关键词 变风量 总风量控制 定静压控制 变静压控制 空调系统模拟软件

Fan control method by total air volume in VAV systems

B y Da iB i nwe n★,DiHo n g f aa n dJ i a n gYi

Abs t r ac t B as e d on an anal ys is of t he pr essu r e i ndepe ndent t e rmi nals,f inds t he s e t air f l owr at e t o be a su i t abl e c ont r ol parame t er,and put s f orwar d a t ot al volume me t hod f o r c ont r ol of t he VAV s ys t ems.S imu lat i on of t his and c ons t ant pr ess ur e and pr es su re r es et c o nt rol met hods w it h t he HVACS IM+s of t war e s hows t hat t he f o rme r is of hi ghe r re l iabi l i t y and t he oper at ion in a pro je c t pr oves i t s s at is f y ing pe rf ormanc e.

Keywords v ar iable air vo lume,t o t al air vo lume co nt ro l,c ons t ant pr ess ur e

c ont r ol,pre ssu r e res e t c ont ro l,ai r c ondit ioni ng s imul at i on s of t war e

★Tsinghu a Un iversity

1 概述

文献[1]中,对定静压和变静压的控制方法进行了模拟及实验研究,结果虽然表明这两种控制方法基本上都能完成系统的控制要求,但也有很多不能令人满意的地方:定静压方法控制简单,但风机能耗较高,末端阀位多处于偏小状态,相应地带来了噪声问题;变静压方法虽然能最大限度地节省风机能耗,但控制算法复杂,实现较为困难,尤其是控制公司的产品基本上都不提供变静压的控制算法,需要控制人员现场编程、调试,工作量太大。此外,这两种方法因为使用压力控制,在根本上还有一个系统稳定性的问题。鉴于这些问题的存在对我国变风量技术的推广应用是一个极大的障碍,有必要提出一种新的简单易行的控制方法,以适应我国目前的实际状况。

2 总风量控制方法的提出

传统的变风量系统控制方法一直视静压为调节风机转速的唯一参数。很多文献所提出的控制方法的进一步改进,都是围绕静压点的位置,甚至于安装几个静压点,然后经过一个选择开关确定使用哪个静压值来控制风机。事实上,只要静压控制

☆戴斌文,男,1973年10月生,硕士

100084北京2659信箱

(010)62789363-20

收稿日期:1998-06-23

稿件修回日期:1998-09-09

环节存在,系统就必然有不稳定的因素[1]。能不能找到一种方法完全摆脱掉静压控制呢?为实现这一目的,首先有必要对变风量系统控制中的各个环节进行仔细的分析。

在变风量系统控制中,排除机组的控制环节后,风系统控制中只有房间温度控制环节和风机转速控制环节。风机转速控制如果不使用静压控制,则必须寻找新的控制手段。可能的办法就是考虑对风机实行某种前馈控制,而不使用反馈控制量进行风机调节。于是想到,既然系统可以集中控制,为什么不充分利用计算机的强有力的计算功能,算出风机合适的转速用来直接控制风机呢?循着这个思路,首先对压力无关型的变风量末端控制环节进行了分析,以求发现可用来计算的控制变量。2.1 末端控制环路分析

以一个典型的变风量控制系统为例,末端控制环节的控制线路如图1所示

图1 压力无关型变风量末端控制线路图

图1中:

T senso r 反映了各房间温度状况,是控制系统最终所要实现的目的。

T set 表示各房间的温度要求,由用户给出或系统管理人员根据实际情况分别设定。实际使用中往往是给定一个范围,如19~20℃。

G senso r 为末端所测的流量,将动压经过内置的对照表及修正系数转换而来。

G set 系由温度PID 控制器根据房间温度偏差设定的一个合理的房间要求风量。其实现是先由设计人员给出该房间最大、最小设计风量,并存入控制系统数据库中,以Teletrol System Inc .的控制系统为例,数据库中Item228(C Dm pOccMa x ),Item238(CDmpOccMin )即分别对应于最大、最小风量。G s e t 可用下式确定:

G set =C Dm pOccMa x -C Dm pOccMin 100

×

PCTCLGSC +C DmpOccMin

其中PCTCLGS C 是直接由房间温度偏差经过PID 控制器的输出信号,在数据库中是Item5,其范围是(0~100)。

从图1中可以看出,末端控制实际上使用了一个串级控制。使用这种串级控制的基本原因是末端流量控制和房间温度控制两个环节的时间常数差别太大(具体分析见后文)。整个串级控制环路中共有两个是测量量,即温度、流量测量信号;直接设定参数一个,即设定温度T set ;中间变量一个,即设定风量G set ;及输出给末端的阀位控制信号C 。由于实测量存在测量误差、噪声等,是不可能直接

用来计算控制信号的。设定温度T set 是用户提出

的要求,虽然也能部分地反映出对风机的某种控制需求,但却不能体现出实际运行中负荷的变化状况。而设定风量G se t 却是经过PID 控制器后综合体现了空调区域的实际冷、热状况的一个控制参数,将它用于计算是完全有可能的。2.2 总风量控制方法基本原理

通过对末端控制环路的仔细分析,发现了各个末端的设定风量G set 是一个很有价值的量,它反映了该末端所带房间目前要求的送风量,那么所有末端设定风量之和则显然是系统当前要求的总风量,并且体现了系统希望达到的流量状态。根据风机相似律,在空调系统阻力系数不发生变化时,总风量和风机转速是一个正比的关系[2]:

G 1

G 2=λN 1N 2(1) 模拟中通过固定所有末端阀位全开,改变风机

转速,得到一系列系统总风量与转速的对应关系,见图2。从图中也可以清楚地看出两者之间的正比关系。

图2 模拟系统中风量与风机转速的正比关系

根据这一正比关系,可以想到在设计工况下有一个设计风量和设计

风机转速,那么在运行过

程中有一要求的运行风量自然可以对应一要求的风机转速。虽然设计工况和实际运行工况下系统阻力有所变化,但可将其近似表示为:

G 运行N 运行=G 设计

N 设计(2) 如果说所有末端带的区域要求的风量都是按

同一比例变化的,显然这一关系式就足以用来控制风机转速了。但事实上在运行时几乎是不可能出现这种情况的。考虑到各末端风量要求的不均衡性,适当地增加一个安全系数就可简单地实现风机的变频控制。这个安全系数应该能反映出末端风量要求的不均衡性。这样我们先给每个末端定义一个相对设定风量R i 的概念:

R i =G s ,i

G d ,i

(3)

式中G s ,i 为第i 个末端的设定风量,由房间温度PID 控制器输出的控制信号设定;G d ,i 为第i 个末端的设计风量。

显然由于各个末端要求风量的差异而使各末端的相对设定风量R i不一致,这种不一致的程度,可以用误差理论中的均方差概念来反映。首先计算出各个末端的相对设定风量R i的平均值R:

R=∑n

i=1

R i

n(4)

式中n为变风量系统中末端的总个数。则均方差σ可以表示为:

σ=∑n

i=1

(R i-R)2

n(n-1)

(5)

有了上述基本概念之后,我们可以给出下面的风机转速控制关系式:

N s=∑n

i=1

G s,i

∑n

i=1

G d,i

N d(1+σK)(6)

式中N s为运行工况下风机设定转速;N d为设计工况下的设计转速;G s,i为运行工况下的第i个末端的设定风量;G d,i为设计工况下的第i个末端的设计风量;σ为所有末端相对设定风量的均方差; K为自适应的整定参数,缺省值为1.0;n为末端个数。

参数K是一个保留数,可在系统初调时确定,也可以通过优化某一项性能指标,如最大阀位偏差进行自适应整定,目的是使各个末端在达到设定流量的情况下,彼此的阀位偏差最小。

有了这个转速关系式以后,就可实时地根据末端设定风量的变化对风机进行转速调节。

3 总风量控制方法的模拟分析

为了对总风量控制方法进行模拟研究,并比较总风量控制方法与定静压及变静压控制方法的区别,将文献[1]中图1所示模拟系统加入房间模型和控制系统后,建立了如图3所示的模拟系统。该系统中风机采用的是RDZ550型,总共有5个末端,各末端大小依次为8#、10#、8#、6#、8#,每个末端负责相应支路上的房间。其中C1为温度控制器、C2是流量控制器、C3为压力控制器,使用的均是PID控制器,测压点选在第3个末端的入口处。其中C3压力控制环节仅在定静压控制和变静压控制中才使用,总风量控制时没有该环节。系统设计状态下,风机转速为25r/s,总风量4.3 kg/s(约13000m3/h)。各房间设计风量依次为0.83,1.3,0

.83,0.5,0.83kg/s。各控制器参数均

采用文献[1]中整定好的参数值。

图3 模拟系统简图

3.1 总风量基本调节过程模拟

首先在仅考虑水力工况,即不考虑房间热过程的情况下,给定各末端的要求设定风量依次为0.6, 0.75,0.4,0.25,0.6kg/s,模拟了总风量控制方法的基本调节过程。由前述控制原理可知,转速控制器根据设定风量立即计算出要求的风机转速,使风机从启动直接调节到计算值。然后各末端根据设定流量再单独调节。其运行状态基本等同于定风机转速运行。模拟结果的风机转速、风道压力、流量曲线、阀位曲线分别见图4,5,6,7。

图4 风机总风量控制时的转速调节曲线

图5 总风量控制法的控制点压力曲线

图6 总风量控制法的各末端流量调节曲线

图7 总风量控制法的各末端阀位调节曲线

图4是总风量控制时的风机转速调节曲线。由于设定风量预先给定,风机转速可以根据公式

(6)立刻计算出来,于是风机启动后直接到达设定

转速。

图5是静压控制时控制点压力在总风量控制时的压力波动曲线。从图中可以看出其压力波动过程相对于文献[1]定静压控制时快速、稳定得多,而且几乎没有超调。因此图6中各末端流量调节曲线也较为平稳。

更突出的是从图7中阀位曲线可以看出,有两个末端阀位基本上处于全开状态,这表明风机总是在尽可能低的转速下运行。因此单从固定设定流量工况来看,总风量控制方法具有极为显著的优势。3.2 三种风机控制方式过渡过程模拟比较

在考虑房间模型后,模拟边界条件如下:各房间初始温度25℃,设定温度20℃;室内负荷依次为2,4,4,2,4kW ;风机初始转速为20r /s ;各末端阀位开始均处于半开状态。

基于上述条件,进行了总风量控制、定静压控制、变静压控制3种不同的控制方式下各自的过渡过程模拟。结果见图8,9,10,11

图8 

不同风机控制方式下的转速调节曲线

图9 

不同风机控制方式下的控制点压力调节曲线

图10 不同风机控制方式下的末端流量调节曲线

图8是3种不同风机控制方式下的转速调节曲线,从图中可以看出,变静压控制过渡时间最长,但其稳定后转速最小;总风量控制和定静压控制的过渡过程比较一致,只是总风量控制时稳定后的风机转速要低一些。

图9是3种不同风机控制方式下的控制点压

力调节曲线,它们和风机调节曲线基本保持相同的

图11 不同风机控制方式下的末端阀位调节曲线

趋势,值得指出的是3种控制方式中,总风量控制方法的压力最为平稳,而定静压控制则有微小的高频波动,变静压控制下的压力则有低频小幅波动。

图10是阀位较大的一个末端在不同风机控制方式下的流量调节过程。可以看出,虽然控制方式不同,但流量的调节却基本一致,只是总风量控制时流量波动幅度稍微大些。总的来说不管使用哪一种风机调节方式,它们都能快速地满足房间负荷对流量提出的要求。

图11是对应图10所示末端的阀位调节过程。可见,变静压控制时在流量稳定以后,由于入口静压的不断降低,阀位还是会逐渐开到较大的位置,而定静压和总风量控制则跟着压力的调节同步稳定下来。

从上述4图可以归纳出以下几个基本结论:①总风量控制方法和静压控制方法一样能很好地完成变风量系统中的风机变频调节;②系统运行稳定后,总风量控制下的系统压力最为稳定,表明总风量控制时出现系统振荡的可能性最小;③从风机转速和风道静压曲线可以清楚地看出,总风量控制在耗能上介于定静压和变静压控制之间。3.3 三种风机控制方式动态模拟比较

为研究总风量控制方法在负荷变化的动态过程中的调节作用,将图3所示模拟系统中第1个房间的负荷在系统运行稳定后,突然从2kW 升为4.5kW ,进一步比较了3种不同的风机控制方式下各自的调节过程。模拟结果如图12到图16。

图12 房间负荷变化时的转速调节曲线

图12是负荷突变后3种风机控制方式的转速调节曲线。从图中可以看出总风量控制下风机转速调节最为迅速,而且最为平稳;而变静压控制下的风机转速则接近一种阶梯式的调节方式,逐步逼近稳定转速,超调很小;定静压控制时转速曲线显

图13 

房间负荷变化时的压力调节曲线

图14 

房间负荷变化时末端流量调节曲线

图15 

房间负荷变化时末端阀位调节曲线

图16 房间负荷变化时房间温度调节曲线

然是一种典型的PID 阶跃响应曲线。稳定以后,

和过渡过程曲线一致,总风量控制转速居中,变静压控制下转速最低。

图13是控制点压力调节曲线,因为房间负荷的加大,该末端阀位迅速开大,引起风道压力突然降低,这从图中定静压和变静压控制下的压力曲线可以看出。但总风量控制方式下,压力不仅没有降低,反而突然升高,这主要是因为总风量控制带有某种程度上的前馈控制含义,而不像静压控制中风机的调节是反馈控制。风机的预先调节自然使风道压力变化方向不同于反馈控制时的变化。因此在总风量控制方式下压力调节波动幅度也比静压控制时大一些。

图14是末端流量调节曲线,因为转速调节和阀位调节几乎是同步进行的,即转速增加和阀位开大一起进行,所以负荷变化房间的流量在总风量控制时变化最快,但超调也相对大一些。

图15是负荷变化房间的末端阀位调节曲线。图中较为突出的是变静压控制时阀位很长时间内

都处于全开状态,末端流量一段时间内不能满足房

间要求。直到末端入口压力增加到足够程度,设定静压稳定下来以后,阀位才逐渐稳定下来。

图16是负荷变化房间的温度曲线。除了总风量控制时房间温度调节幅度较大外,3种风机控制方式下在房间温度的调节方面差异不大。

从3种风机控制方式下的动态模拟各曲线可以得到如下结论:①总风量控制方式调节迅速,对房间负荷扰动反应快,同时短时间内温度偏差也相对较大;②变静压控制在调节过程中时间长,且有压力波动,结合上机组的控制后容易出现系统振荡;③稳定后,各个控制法下的系统压力、风机转速和过渡过程曲线一致,即变静压控制下转速、压力均最小,其次是总风量控制,最不利于节能的显然是定静压控制。

4 总风量控制方法的工程应用

为确保总风量控制方法在实际工程应用中能取得良好的控制效果,首先在中央电视台的一个变风量系统上进行了试运行实验。该变风量系统详见文献[1]。

该系统风机控制使用的是定静压控制,实验是在定静压控制运行稳定后,将转速锁定,风机控制切换为总风量控制后进行的。实验首先记录了风机转速和静压控制时的控制点压力运行数据,然后将某个末端的设定风量突然锁定在一个较小的数值上,得到了风机的调节曲线及相应的压力波动曲线,分别见图17,18。

图17 实验系统上总风量控制时的风机转速曲线

图18 实验系统上总风量控制时的压力调节曲线

图17是系统运行过程中及人为改变设定风量后的风机转速调节曲线。从图中可以看出,系统运行中由于房间设定风量的微小波动,风机也偶尔做出小幅度的调节,当末端设定风量有较大变化时,风机转速立刻根据新的设定风量调节到计算值,并不再变化。

图18是先前定静压控制时静压测量点在总风量控制时的压力波动曲线。从图中可以看出,在系统稳定时,测点压力约稳定在220Pa左右,曲线中很多小毛刺显然是压力传感器的测量误差所致,误差范围大约是±10Pa。在风机转速突然调节后,压力也迅速降低,并稳定下来。

在中央电视台变风量系统上获得了对总风量控制的实际运行特性后,在解放军总医院新南楼的变风量系统的控制系统上大胆采用了总风量控制方式,并已经开始了系统的试运行。从整个控制系统的初调来看,的确比定静压变风量控制系统易于调节,试运行结果非常理想。

5 结论

5.1 总风量控制方式在控制系统形式上具有比静压控制简单得多的结构。它可以避免使用压力测量装置,减少了一个风机的闭环控制环节;此外,也不需要变静压控制时的末端阀位信号。这种控制系统形式上的简化,同时也带来了控制系统可靠性的提高。

5.2 总风量控制方式在控制特点上是直接根据设定风量计算出要求的风机转速,具有某种程度上的前馈控制含义,而不同于静压控制中典型的反馈控制。但设定风量并不是一个在房间负荷变化后立刻设定到未来能满足该负荷的风量(即稳定风量),而是一个由房间温度偏差积分出的逐渐稳定下来的中间控制量。因此总风量控制方式下风机转速也不是在房间负荷变化后立刻调节到稳定转速就不动了,它可以说是一种间接根据房间温度偏差由PID控制器来控制转速的风机控制方法,这才是总风量控制方法的实质。

5.3 总风量控制在控制性能上具有快速、稳定的特点,不像压力控制下系统压力总是有一些高频小幅振荡。其主要原因是因为总风量控制方式取消了压力控制环节,而传统控制方式下由于压力测量误差的存在,导致风机做出一些无谓的微小调节,使系统总不可避免地出现小幅波动现象。而且实际系统中压力测量误差更大,控制算法往往要对其进行简单的滤波处理,再用来控制风机,否则系统根本稳定不下来。正因为总风量控制的这个优点,使得控制系统不仅减少了初投资,而且在初调时还可以大大减少工作量,并提高控制系统的可靠性。5.4 总风量控制在风机节能上介于变静压控制和定静压控制之间,并更接近于变静压控制。因为变静压控制算法较为复杂,而且容易引起系统压力振荡,所以总风量控制法从控制和节能角度上综合考虑,不失为一种替代传统静压控制的有效方法。5.5 虽然总风量控制具有如此显著的优点,但从模拟中也可看出总风量控制同样有自己的缺陷。即增加了末端之间的耦合程度,只是这种末端之间的耦合主要是通过风机的调节实现的。在静压控制方式下,各末端的耦合则是通过风道压力来实现的(这种耦合是不可避免的)。这种差别反映在有房间负荷变化后,风机和该房间的末端阀位同时调节,极大地改变了系统阻力特性,尤其是风机的调节使其余房间的流量发生了不可忽视的改变,迫使相应末端尽快做出调节,恢复以前的设定流量。从图14和图15中压力和流量曲线就已经可以看出这种差别了。图19给出的最后一个末端在第一个房间负荷突变后流量调节曲线,图中清楚地反映出总风量控制方式下流量曲线波动最为严重

图19 房间负荷变化时其余房间流量波动曲线

总之,总风量控制方法是基于压力无关型的变风量末端研究出的一种新的变风量系统控制方法,由于它避免了压力控制环节,确实能很好的降低控制系统调试难度,提高控制系统稳定性;而且通过合理选用采样时间,完全可以消除上述各个末端之间的耦合增强现象。因此,不管是从控制系统稳定性,还是从节能角度上来说,总风量控制都具有很大的优势,完全可以成为取代各种静压控制方式的有效的风机调节手段。

6 参考文献

1 戴斌文.变风量空调系统控制方法研究:[硕士学位论文].北京:清华大学,1998.

2 周谟仁.流体力学泵与风机(第3版).北京:中国建筑工业出版社,1994.

变风量空调系统控制方法研究

31 7期 总170期 July.2007 No.7 Total No.170 变风量空调系统控制方法研究 摘 要:简要介绍了变风量空调系统的概念及特点,对变风量末端装置和变风量系统的一些控制方法作了分析,详 细论述了变风量空调系统中的定静压控制方法、变静压控制方法和总风量控制方法的控制机理,并借助MATLAB仿真软件绘制出定静压控制的仿真曲线。 关键词:变风量空调系统;末端装置;定静压控制;变静压控制;总风量控制 中图分类号:TU831.3+5 文献标识码:B 文章编号:1002-3607(2007)07-0031-02 (1.西安建筑科技大学,西安 710055;2.陕西省设备安装工程公司,西安 710068) 李传东1 田应丽1 李 松2 冯 璐2 1 概述 变风量空调系统(VAV)是通过变风量末端装置调节送入房间的风量或新回风混合比来保证房间温度的,同时相应变频调节送、回风机来维持有效、稳定运行,并动态调整新风量保证室内空气品质及有效利用新风能源的一种高效的全空气系统[1]。 变风量空调系统具有以下的特点:①能实现局部区域的灵活控制,可根据负荷的变化或个人的舒适要求自动调节自己的工作环境。不用再加热方式或双风管方式就能适应各种室内舒适要求或工艺设计要求,完全消除再加热方式或双风管方式带来的冷热混合损失。②由于变风量空调系统能够自动调节送入各房间的风量,在考虑同时使用系数的情况下能够节约风机运行能耗和减少风机装机容量。③变风量空调系统属于全空气系统,因此具有全空气系统的特点,可以利用新风消除室内负荷,没有风机盘管凝水问题和霉变问题。 变风量空调系统比定风量空调系统多了末端装置和风量调节功能,也使其有了一整套由若干个控制回路组成的控制系统。至少有这样两个闭合的控制环路:根据室内温度偏差调节风阀以保证合适的支路流量;根据风道内静压偏差调节风机转速或入口导叶阀来保持主风道压力。其中支路流量控制可由变风量末端来实现,而送风机的控制则因为和机组内回风、混风、排风控制的相互影响及风机能耗问题,存在着不同的控制方法。 2 变风量末端装置的控制 变风量末端装置是变风量系统的一个主要设备。室 温控制就是依靠变风量末端装置对风量的控制来得以实现的。根据末端装置类型的不同,控制方式分为压力有关型和压力无关型。 若采用压力有关型末端装置,则只能实行单回路控制,根据室内温度实测值与设定值的偏差直接输出控制信号来调节末端装置的风阀,从而调节送风量,达到对室内温度的控制。 若采用压力无关型末端装置,则可进行温度的串级控制。根据室温测定值和设定值的偏差向风量控制回路给出设定风量,风量控制回路再根据设定风量和测定风量的偏差给出风阀的阀位信号,从而调节送风量,达到对室温的控制。其中温度控制器为主控制器,风量控制器为副控制器,二者构成串级控制环路。当房间温度变化时,室内温度控制器输出偏差信号不再直接调整风阀开度,而是去修正风量设定值,这样就不会产生采用压力有关型变风量末端装置时,由于控制器根据温度偏差直接对风阀进行调整所引起的VAV系统的振荡。 在部分负荷时,系统内变风量末端装置调节的结果使整个管道系统的阻力增加,系统的风量减少了,这时管道内的静压将增加,而导致系统漏风增加,还可能使风机处于不稳定状态工作,变风量末端装置还因阀门关得小而调节失灵,另外过度节流会导致噪声增加。因此在VAV末端装置调节的同时,还应对送风量与送风机进行有效的控制。 3 变风量空调系统的控制方法 3.1 定静压控制法 ·通风空调安装技术·

变风量(VAV)空调系统简介

变风量(V A V)空调系统简介 变风量(Variable Air V olume)空调系统是一种通过改变送风量来调节室内温湿度的空调系统。Dleta控制公司是世界上首家设计、制造出一体化(即集控制器、执行机构和流速传感器于一身)的V A V控制器的BA产品制造商。变风量空调系统60年代起源于美国,自80年代开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统己占据了欧、美、日集中空调系统约30% 的市场份额,并在世界上越来越多的国家得到应用。进入90年代以来,采用V A V 技术的多层建筑与高层建筑已达到95%。变风量空调系统由空气处理机组、新风/排风/送风/回风管道、变风量空调箱、房间温控器等组成,其中变风量空调箱是该系统的最重要部分。 一、变风量空调系统(V A V)的优势变风量空调系统区别于其它空调形式的优势主要在以下几个方面: 1、节能由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可以大幅度减少送风风机的动力耗能。据模拟测算,当风量减少到80% 时,风机耗能将减少到51%;当风量减少到50%时,风机耗能将减少到15%。全年空调负荷率为60% 时,变风量空调系统(变静压控制)可节约风机动力耗能78%。 2、新风作冷源因为变风量空调系统是全空气系统,在过渡季节可大量采用新风作为天然冷源,相对于风机盘管系统,能大幅度减少制冷机的能耗,亦可改善室内空气质量。 3、无冷凝水烦恼变风量空调系统是全空气系统,冷水管路不经过吊顶空间,避免了风机盘管系统中令人烦恼的冷凝水滴漏和污染吊顶问题。 4、系统灵活性好现代建筑工程中常需进行二次装修,若采用带V A V空调箱装置的变风量空调系统,其送风管与风口以软管连接,送风口的位置可以根据房间分隔的变化而任意改变,也可根据需要适当增加风口。而在采用定风量系统或风机盘管系统的建筑工程中,任何小的局部改造都显得很困难。 5、系统噪声低风机盘管系统存在现场噪声,而变风量空调系统噪声主要集中在机房,用户端噪声较小。 6、不会发生过冷或过热带V A V空调箱的变风量空调系统与一般定风量系统相比,能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象。 7、提高楼宇智能化程度采用DDC数字控制的变风量空调系统,可以实现计算机联网运行,接入到楼宇自控系统中,从而提高楼宇智能化程度。 8、减少综合性初投资由于增加了系统静压控制以及V A V空调箱等环节,设备控制上的造价会有所提高。但由于变风量空调系统可以根据冷热负荷的分布,使送风量在建筑物内各个控制区域间平衡转移,从而使系统的设计总送风量减少,因此可以减小空调系统的设备容量,系统综合性初投资不一定会增加,甚至可以降低。 9、变风量空调系统结构简单,维修工作量小,使用寿命长。 二、变风量空调系统(V A V)控制原理变风量控制器和房间温控器一起构成室内串级控制,采用室内温度为主控制量,空气流量为辅助控制量。变风量控制器按房间温度传感器检测到的实际温度,与设定温度比较差值,以此输出所需风量的调整信号,调节变风量末端的风阀,改变送风量,使室内温度保持在设定范围。同时,风道压力传感器检测风道内的压力变化,采用PI或者PID调节,通过变频器控制变风量空调机送风机的转速,消除压力波动的影响,维持送风量。 三、变风量空调系统(V A V)常用控制方式 1、定静压控制工作原理:保证系统风道内某一点(或几点平均)静压一定的前提下,室内所需风量由V A VBOX风阀调节;系统送风量由风道内静压与该点所设定值的差值控制变

变风量空调系统控制_杨国荣

暖通空调自动控制暖通空调HV&AC 2012年第42卷第11期15  变风量空调系统控制 华东建筑设计研究院有限公司 杨国荣☆ 摘要 简述了变风量末端装置控制的功能和传感器设置。详细阐述了变风量空气处理机组基本控制要求、控制原理图及风量控制方法。介绍了新风的控制要求、控制原理图及最小新风量的控制要求。 关键词 变风量空调系统 末端 空气处理机组 控制 方法 原理 最小新风量Control of variable air volume air conditioning system By Yang Guorong★ Abstract Briefly describes the function of VAV terminals and sensor setting.Expounds the basiccontrol requirement,control principle chart and air volume control methods of VAV air handling units.Represents the control requirement and control principle chart of outdoor air and the minimum outdoor airrate demand. Keywords VAV air conditioning system,terminal,air handling unit,control,method,principle,minimum air rate ★East China Architectural Design &Research Institute Co.,Ltd.,Beijing,China 0 引言 自20世纪90年代上海13栋高层及超高层办公建筑采用变风量空调系统[1]起,变风量空调系统逐渐在高级办公建筑中得到应用。到21世纪初,变风量空调系统已普遍应用在高级、高层办公建筑。近年来,变风量空调系统开始应用到别墅等非办公类民用建筑中。 变风量空调技术的发展与其控制技术的发展同步进行,自控技术的突破与发展引领了变风量空调技术的发展。自变风量空调系统在我国应用以来,暖通空调和楼宇控制方面许多专家对该系统的控制策略和控制方式进行了大量研究,得到了丰硕的成果,推进了变风量空调技术的发展。《变风量空调系统设计》全面介绍了变风量末端装置及其系统的控制原理和要求[2]。童锡东等人在分析变风量末端装置和空调方式的基础上总结了各种变风量系统的控制特点[3]。陈武等人根据变风量空调系统的热力模型,通过仿真研究建立变风量空调系统的动态模型和风机控制方法[4]。刘涛及胡益雄等人根据变风量空调系统的基本特点,研究了该系统及末端的模糊控制策略[5-6]。李超等人与钱以明等人结合全空气系统特点研究了变风量空调系统新风控制要求的控制策略[7-8]。 在工程实践方面,我国基本建立起从末端装置、控制系统到运行调试的整个变风量空调系统供应体系。数百栋办公建筑采用了变风量空调系统。但是,就已建成的采用变风量空调系统的办公建筑而言,运行和控制效果良好的建筑物不是很多,节能的建筑物很少。究其原因,主要可归纳为以下几方面。 1)设计方面:空调系统设计不合理,不能满足或难以满足空调使用和运行要求;变风量末端装置选型不合理,偏大或偏小;空气处理机组的组合方式不合理,其功能不能满足使用要求,机组的风量或机外余压偏大或偏小;控制策略和控制要求不明确,没有向自控承包商提供要求明确的控制需求信息。 2)业主方面:将变风量系统中的末端装置采购与控制系统采购分开进行,没有一个承包商对整个系统负责;重视末端装置与控制器等硬件设备,轻视调试等软件服务,采购合同中服务部分所占费用比例较低,难以保证系统调试质量。 *☆杨国荣,男,1957年6月生,工学硕士,教授级高级工程师,机电中心主任兼总工程师 200002上海市江西中路246号6楼 (021)63217420-6043 E-mail:guorong_yang@ecadi.com 收稿日期:2012-07-20

VAV变风量空调系统原理、特点、选型

VAV变风量空调系统原理、特点、选型VAV变风量集中空调系统,是相对于传统的定风量集中空调系统较先进的一种空调方式,是通过改变送入被控房间的风量(送风温度不变)来消除室内的冷、热负荷,保证房间的温度达到设定值并保持恒定,例如,夏季当室内温度高于设定值时就提高送风量,反之减小送风量;冬季当室内温度高于设定值时就减小送风量,反之提高送风量;VAV变风量集中空调系统是全空气系统的一种类别,60年代起源于美国,自80年开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统己占据了欧、美、日集中空调系统约30%的市场份额,并在世界上越来越多的国家得到应用。进入90年代以来,采用VAV变风量空调系统技术的多层建筑与高层建筑已达到95%,已被越来越多的中高端楼宇采用,并成为现代化智能化大楼的一部分,这种空调方式可以显著的降低空调系统的能耗和改善空调系统的性能,提高空调系统的舒适度。 一、VAV变风量空调系统组成:变风量空调系统有各种类型,他们均由四个基本部分构成:变风量末端装置(变风量空调箱、房间温控器)、空气处理及输送设备、风管系统(新风/排风/送风/回风管道)及自动控制系统。变风量空调系统基本构成图 二、VAV变风量空调系统原理:在空调系统中冷机风机、水泵是主要的耗电设备,要想降低空调系统的能耗,只能从这些设备中去考虑,而从根本上来说,空调系统的总能耗的多少最终是由室内达到的温湿度环境决定的,即空调系统的能耗维持着建筑物内温湿度与室外温湿度的差,要想降低空调系统能耗,必须首先从根本上,即合理的室内温湿度环境上进行分析研究,显 2 然最理想的模式就是任何情况下所需求的等于所供给的,VAV变风量空调系统的基本原理正是通过改变送入各房间的风量(改变风量调节温度)来满足室内人员对房间不同温湿度的要求,确保室内温度保持在设计范围内,从而使得空气处理机组在低负荷时的送风量下降,空气处理机组的送风机转速也随之而降低,并自动适应室外环境对建筑物内温湿度的影响,真正达到所需即所供,据国外多年成熟工程案例测算,总能耗相比FC+新风空调系统可节约30%~40%,节能效果非常显著。 三、VAV变风量空调系统的优点(详见VAV系统与FC+新风系统技术分析表)变风量空调系统区别于其它空调形式的优势主要表现在以下几个方面: 1、节能由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可以大幅度减少送风风机的动力耗能。据模拟测算,当风量减少到80%时,风机耗能将减少到51%;当风量减少到50%时,风机耗能将减少到15%。全年空调负荷率为60%时,变风量空调系统(变静压控制)可节约风机动力耗能78%。 2、新风作冷源因为变风量空调系统是全空气系统,在过渡季节可大量采用新风作为天然冷源,相对于风机盘管系统,能大幅度减少制冷机的能耗,亦可改善室内空气质量。 3、无冷凝水烦恼变风量空调系统是全空气系统,冷水管路不经过吊顶空间,避免了风机盘管系统中令人烦恼的冷凝水滴漏和污染吊顶问题。 4、系统灵活性好现代建筑工程中常需进行二次装修,若采用带VAV空调箱装置的变风量空调系统,其送风管与风口以软管连接,送风口的位置可以根据房间分隔的变化而任意改变,也可根据需要适当增加风口,而在采用定风量系统或风机盘管系统的建筑工程中,任何小的局部改造都显得很困难。 5、系统噪声低风机盘管系统存在现场噪声,而变风量空调系统噪声主要集中在机房用户端噪声较小。 6、不会发生过冷或过热带VAV空调箱的变风量空调系统与一般定风量系统相比,能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象。 7、可实现远程集中监控,提高楼宇智能化程度采用DDC数字控制的变风量空调系统,可以实现计算机联网运行,接入到楼宇自控系统中,从而提高楼宇智能化程度。

VAV变风量空调系统难点解析要点

VAV变风量空调系统难点解析 第一节 VAV空调系统概述 变风量VAV 中央空调是指空调系统根据区域负荷变化和要求,自动调整送风量的一种空调系统。其最大优点是节能显著,素有“节能之王”的美称;同时还具有使用舒适灵活,可用新风作冷源等优点。 变风量空调系统60年代起源于美国,自80年代开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统已占据了欧、美、日集中空调系统约30%的市场份额,并在世界上越来越多的国家得到应用。 变风量空调系统由变风量空气处理机组、新风/排风/送风/回风管道、变风量末端、房间温控器等组成,其中变风量末端是该系统最重要部分。 末端各区域的新风均由空气处理机组提供,为了保持室内空气清新,使用VAV的办公楼一般均禁止吸烟,也禁止随意打开窗户,以防破坏室内风平衡。 由于本项目办公区域采用吊顶回风,故在内装时需考虑回风顺畅、保证空气循环,不要将空间绝对封闭,应留出回风口。 第二节 VAV空调系统的特点及优势 变风量空调系统区别于其它空调形式的优势主要在以下几个方面: 1.节能 由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可大幅度减少送风风机的动力耗能;同时在确定系统总风量时,还可以考虑一定的同时使用情况,所以能够节约风机运行能耗和减少风机装机容量。对不同的建筑物同时使用系数可取0.8 左右可以节约空调系统的总装机容量10%—30% 左右。有关文献介绍VAV 系统与定风量系统相比大约可以节能30%—70%,据实际测算当风量减少到80% 时,风机耗能将减少到约51% ;当风量减少到50% 时,风机耗能将减少到约15%;若全年空调负荷率只有60% 时,变风量空调系统可节约风机动力耗能75%。例如对于商场以空调机组每周运行100小时计,单位装机容量的节电量一年可达4000 度/Kw;对于写字楼以每周运行60小时计,单位装机容量的节电量也可达2300度/kW。节电效果相当可观,同时还延长了机组使用寿命。 2.舒适性高能实现各局部区域的灵活控制 可以根据负荷的变化或个人的要求自行设置环境温度,与一般空调系统相比能更有效地调节局部区域的温度,实现温度的独立控制,避免在局部区域产生过冷或过热现象,并由此可以减少制冷和供热负荷15%—30%。

空调调节方案

西安欧亚经济论坛 空 调 调 试 方 案

西安欧亚经济论坛空调调试方案 一、工程概况 西安欧亚经济论坛工程,位于西安市东北浐灞河三角洲地块北端.本工程为五星级酒店,主体结构地下一层、地上五层,分A、B、C三个段。该设计全年空调为主,游泳池周边设地板辐射采暖。A段设新风加风机盘管系统7个,其中SPA设排风热回收系统2个,排风系统10个,地下室设排烟系统2个,正压送风系统1个,补风系统1个;B段设全空气系统5个,新风加风机盘管系统13个,排风系统23个,地下室排烟系统1个,正压送风系统1个,补风系统4个,其中KTV及B1段会议室设排风热回收系统各1个;C段设新风加风机盘管系统14个,排风系统7个,地下室排烟系统1个,正压送风系统1个。 室内空气调节设计参数,如下表:

二、编制依据 2.1 《通风与空调工程施工及验收规范》GB50243-2002 2.2 建设单位提供的设计文件、图纸资料、设备样本 三、调试目的、要求 在新建的空调系统安装结束,正式投入使用前,需同设计施工和建设单位联合组成调试小组,对系统进行测试调整,这对于检验设计是否正确、施工是否可靠、设备性能是否合格都是必不可少的环节,也是施工单位交工前的重要工序。 通风与空调工程系统工程无生产负荷的联合试运转及调试,应在制冷设备和通风与空调设备单机试运转合格后进行。空调系统带冷(热)源的正常联合试运转不少于8小时,通风系统的连续试运转不小于2小时。 系统调试所使用的测试仪器,性能应稳定可靠,其精度等级及最小分度值应能满足测定的要求,并应符合国家有关计量法规及检定规程的规定。 空调系统测定与调整的目的,就是要检测和调整空调系统的风量:包括送、回风量、新风量、排风量及各分支管的风量符合设计和使用要求,并按设计要求调整平衡各个风口的风量,以保证室内换气次数,温度、相对湿度、室内气流速度、噪声等满足设计及规范要求。 检测完毕后,应针对检测中发现的问题提出恰当的改进措施,使

变风量空调系统的优缺点

在各种空调方式中,VAV 空调系统有其自身的优点: 1、由于空调系统大部分时间在部分负荷下运行,所以风量的减少带来了风机能 耗的降低和末端设备里的再加热器能耗的降低; 2、能实现局部区域的灵活控制; 3、利用系统多样性,可使中央系统的初始成本低; 4、同样,由于可利用系统的多样性,今后扩展的成本大大降低; 5、系统是自平衡的(Self2balancing) ,等等。 因此,国外智能大厦的空调系统多采用VAV 空调系统, 或与CAV 空调系统、FCU 空调系统相结合的方式。 虽然VAV 空调系统具有上述优点,但是它的控制却最复杂。目前,VAV 空调系统的控制方式基本上采用多个回路的PID控制。在系统模型参数变化不大的情况下,PID 控制效果良好。但是,VAV 空调系统是一个干扰大的、高度非线性的、不确定性系统,这是由于: 1、外界气候和空调区域里的人员活动的变化很大,对系统形成很大的干扰; 2、空气调节过程是高度非线性的;各执行器的运行特性也是非线性的; 3、各个控制回路之间耦合强烈,完全解耦是不可能的; 4、随着时间的推移,设备会老化和更换,从而造成系统参数的变化。 5、在许多系统里,系统的数学模型很难建立。 1. 1 VAV 系统的节能研究 20 世纪70 年代到90 年代,主要集中研究它的能耗情况,即与定风量(CAV) 空调系统和风机盘管系统比较节能效果。与CAV 空调系统相比,VAV 系统可以不需或减少再热量,降低送风量,从而减小风机能耗,降低制冷负荷等。此外,VAV系统还可以通过消除过冷、回收灯光的热量而节能[1 - 3 ] 。Wallace 等人提出在高层建筑的VAV系统中引入建筑能耗监控系统和计算机控制,可以优化节能效果。风机能耗在VAV 系统中占很大的比重,因此对风机采取有效的调节措施,降低风机能耗是增强VAV 系统节能效果的重要途径。 目前,风机调节主要采用调节风机入口导流叶片角度和变风机转速两种方法, Englander 和Norford 比较了二者的节能效果,并用动态模拟软件HVACSIM + 进行了模拟计算,结果表明,采用变转速调节要比采用调节风机进口导流叶片角度节能30 % ,而且变转速调节与DDC 结合效果会更好。加州能源委员会总结多年的VAV 设计经验,认为风机的调节方式对能耗的影响比风机类型的影响大,而且指出变转速调节与变静压控制方式结合节能效果显著。 1. 2 VAV 系统送风量的控制研究 VAV 系统是通过改变送入室内的送风量来实现对室内温度调节的空调系统,因此风量控制是VAV 系统控制的关键环节,它关系着整个系统的能耗情况和系统的稳定性和可靠性。目前总送风量的控制方法主要有两种:静压控制法和风量控制 法。 1. 2. 1 静压控制法 静压控制法又分为定静压法和变静压法。定静压控制由于简单、运行可靠,目前仍作为一种主要的控制方法在变风量系统中得到普遍采用,但不利于风机节能。变静压法可以最大限度地降低能耗,节能效果显著。Tung 和Wang 等人介绍

变风量系统基本原理与控制策略

变风量系统基本原理与控制策略 [日期:2006-07-19] 来源:千家网作者:霍小平贾捷燕叶大法 杨国荣 [字体:大中 小] 提要:本文主旨指导初学者了解一些变风量系统的基本概念,提供变风量系统设计流程及设计方案选择指南,同时着重介绍Onyx-2000变风量系统基本控制策略。 一、变风量空调系统基本概念 1.1 变风量空调系统定义 众所周知,变风量空调系统是通过改变送风量也可调节送风温度来控制某一空调区域温度的一种空调系统。该系统是通过变风量末端装置调节送入房间的风量,并相应调节空调机(AHU)的风量来适应该系统的风量需求。变风量空调系统可根据空调负荷的变化及室内要求参数的改变,自动调节空调送风量(达到最小送风量时调节送风温度),以满足室内人员的舒适要求或其他工艺要求。同时根据实际送风量自动调节送风机的转速,最大限度地减少风机动力,节约能量。 1.2 国内外发展概况 变风量(Variable Air Volume)空调系统于20世纪60年代起源于美国。在当时定风量系统加末端再热和双风道系统在很长一段时间内占据舒适性空调的主导地位,因此,变风量系统出现以后并没有立刻得到推广,直到1973年西方石油危机之后,能源危机推动了变风量系统的研究和应用,此后20年中不断发展,如今已经成为美国空调系统的主流。 变风量系统在发展初期,因支管风量平衡的需要和控制设备的局限,大多要求采用高速送风系统,主要送风速度在12.5m/s以上,并且推荐采用静压复得法设计风管系统。尽可能地采用圆形或椭圆形风管,以减小摩擦阻力。但是高速送风系统的风机耗能大,且管路系统噪音增加。随着压力无关型VAV box基本上全面取代压力相关型VAV box及DDC控制器的发展,于是变风量空调方式在低速送风系统中的应用越来越普遍。 在日本,将变风量空调方式用于低速送风系统的研究与开发值得关注。由于传统的皮托管流量传感器在5m/s的风速下难以测定,因此日本人开发研究了超声波流量传感器和电磁式流量传感器等多种适用于低速送风系统的前端设备,一方面节能,另一方面降低了风管噪音,因此,进入90年代以后,无论是新建还是70年代以前建造的空调系统的翻新改造,基本上都采用变风量空调系统。 我国在70年代即有人研究VAV系统的开发和应用,并在地下厂房、纺织厂、体育馆等建筑中就采用过VAV系统。在80年代末期我国出现的首批智能化建筑中,也曾采用过VAV系统,但由于建设过程和使用过程中的种种问题,有些工程

轴流风机选型型号参数精

轴流风机轴流风机型号、用途、性能及轴流风机参数 ——(浙江聚英风机工业有限公司提供一、轴流风机型号名称、用途、性能 ■管道加压轴流风机 ●JSF轴流通风机(SDF ●大风量轴流风机(JSF-Z JSF轴流通风机是一种高轮毂比设计的新型节能管道加压风机,具有噪声低、风压适中、气动性能范围广、安装简单等特点,广泛应用于民用、商业及工业厂矿企业建筑工程的管道加压送排风系统。 JSF风机有两种叶轮结构形式,JSF-A采用模压圆柱形轮毂式叶轮,具有效率高、风压大等特点。 JSF-Z采用压铸铝合金叶轮,机翼型前掠扭曲可调叶片,具有噪声低、外形美观、铝质叶轮的防腐防爆性能优等优点,常用于机组设备冷却、机械生产线的工艺送风。 本系列风机一般为电机内置直联传动形式,也可做成电机外置皮带传动结构形式,用于输送特殊气体介质的场所,如厨房排油烟、工业热气等。 ■边墙壁式轴流风机 ●DFBZ低噪声方形壁式轴流风机 DFBZ系列风机采用高效低噪声轴流叶轮、风机专用电机直联传动,方形消音型外壳(可进一步降低风机噪声;整机制成方形,墙体预留方孔简单,安装方便。出风口装有铝合金自垂百叶(可防止室外雨水、灰尘和自然风向室内倒灌;具有明显的外形美观,噪声低、运行平稳、安装牢固等优点,广泛适用于民用商用建筑工程和厂矿企业车间的低噪声壁式排风。可根据使用场合要求制成防爆防腐型风机。 本系列风机一般配用三相电机,按用户要求可对以下配用单相电机。 ●DWEX边墙风机(WEX

DWEX系列风机采用先进的前掠型叶片、低噪音的外转子或内转子风机专用电机直联传动,方形外壳设计可以方便地安装在混凝土墙、砖墙或轻钢压型墙板上,方形防雨罩结构牢固,外形美观。具有噪声低、风量大、运行可靠、性能参数范围广、安装简便等特点,广泛 应用于厂矿企业车间和民用、商用建筑工程的边墙壁式通风换气。根据输送介质的要求,可制成防腐、防爆型。DWEX(WEX系列风机一般用于边墙壁式排风,配设45°防雨罩(或特殊制造成60°和防虫网(夜间可防止昆虫循灯光飞入车间。可按需要制成边墙送风机型号为DWSP(WSP,配设90°防雨罩(防风、雨、尘和防虫网(夜间可防止昆虫循灯光飞入车间。 附件选配:重力式止回风阀(可确保车间在风机不开时保持与室外隔绝,订货时注明。 ●DWBX板壁式轴流风机 DWBX系列风机采用高效翼型轴流式叶轮与低噪声电机直联驱动,压型金属板式外壳,具有墙面安装简便、整机重量轻、运转平稳、外形美观。多用于轻钢结构建筑边墙、窗框安 装的壁式送排风场合。 选配附件:出风口可根据使用场合配设铝制重力式止回阀或加设防雨罩、配设防虫网等,更 好的起到防尘、防自然风倒灌作用。 DWBX系列风机一般用于排风,如用于送风需在订货时另行说明。 ●JYFF大风量窗式负压风机 ●DZ低噪声轴流风机 DZ系列风机采用宽叶片、大弦长、空间扭曲倾斜式的轴流叶轮、风机专用电机,直联 传动。具有明显的噪声低、风量大、耗电省、重量轻等优点。广泛适用于厂房、仓库、办 公楼、住宅等场所的壁式排风、管道送风。 本系列风机分:DZ-I型壁式(可加设网罩、防雨弯头或防尘自垂百叶;DZ-II型管道式, 带底脚。DZ-III型电机外置式。 本系列风机一般配用三相电机,按用户要求可对以下配用单相电机。根据输送介质要求可制成防腐、防爆型:FDZ为防腐型轴流风机,用于输送有腐蚀性的气体;BDZ为防爆型轴流

负压风机型号与风量对照表

普通负压风机有哪些参数 1. 1.46M负压风扇 型号:SJ-MY1460Z03 发动机功率(kw):0.75 铲刀速度(R / M):450 排风量(m3 / h):46000 图片由注册用户“hem hum”提供,版权声明反馈2. 1.26 m负压风扇 型号:sj-my1260603 发动机功率(kw):0.75 铲刀速度(R / M):550 排风量(m3 / h):42000 3. 1.06 m负压风扇

型号:sj-my1060z03 发动机功率(kw):0.55铲刀速度(R / M):650排风量(m3 / h):38000 4. 0.85 m负压风扇 型号:sj-my850z03 发动机功率(kw):0.37铲刀速度(R / M):820排风量(m3 / h):32000负压风机参数的定义1.电机功率

负压风扇上指示的电动机功率通常以千瓦时(kw)单位表示。如果为1.1 kW,则意味着电动机每小时消耗1.1度。当消费者看到负压风扇电动机的电源时,他们可以计算线路负载,功耗和电费。 2.电机电压 负压风扇电机的标签上有一个电压参数。如果该值指示为380 V,则表示电源为380 V工业电源。如果值为220 V,则表示连接的电源为220 V照明电源。请勿错误地连接电源,否则将烧毁电动机,甚至烧毁整个电线电路。 3.电机转速 负压风扇的电动机速度代表电动机的空载,即每小时的轴转数。该参数与风扇叶片的数量有关。与消费者的最大关系是负压风扇电动机的转速越高,负压风扇电动机的噪声越大。对于低速负压风扇电机,负压风扇在使用时间内产生的噪音较小。为了减少噪音,许多负压风扇可以减少噪音,会改变皮带轮的尺寸,以降低电动机的转速。 4.电机品牌

变风量系统及控制原理

提要:本文主旨指导初学者了解一些变风量系统的基本概念,提供变风量系统设计流程及设计方案选择指南,同时着重介绍Onyx-2000变风量系统基本控制策略。 一、变风量空调系统基本概念 1.1 变风量空调系统定义 众所周知,变风量空调系统是通过改变送风量也可调节送风温度来控制某一空调区域温度的一种空调系统。该系统是通过变风量末端装置调节送入房间的风量,并相应调节空调机(AHU)的风量来适应该系统的风量需求。变风量空调系统可根据空调负荷的变化及室内要求参数的改变,自动调节空调送风量(达到最小送风量时调节送风温度),以满足室内人员的舒适要求或其他工艺要求。同时根据实际送风量自动调节送风机的转速,最大限度地减少风机动力,节约能量。 1.2 国内外发展概况 变风量(Variable Air Volume)空调系统于20世纪60年代起源于美国。在当时定风量系统加末端再热和双风道系统在很长一段时间内占据舒适 性空调的主导地位,因此,变风量系统出现以后并没有立刻得到推广,直到1973年西方石油危机之后,能源危机推动了变风量系统的研究和应用,此后20年中不断发展,如今已经成为美国空调系统的主流。

变风量系统在发展初期,因支管风量平衡的需要和控制设备的局限,大 多要求采用高速送风系统,主要送风速度在12.5m/s以上,并且推荐采用静 压复得法设计风管系统。尽可能地采用圆形或椭圆形风管,以减小摩擦阻力。但是高速送风系统的风机耗能大,且管路系统噪音增加。随着压力无关型V AV box基本上全面取代压力相关型VAV box及DDC控制器的发展,于是 变风量空调方式在低速送风系统中的应用越来越普遍。 在日本,将变风量空调方式用于低速送风系统的研究与开发值得关注。 由于传统的皮托管流量传感器在5m/s的风速下难以测定,因此日本人开发研究了超声波流量传感器和电磁式流量传感器等多种适用于低速送风系 统的前端设备,一方面节能,另一方面降低了风管噪音,因此,进入90年代以后,无论是新建还是70年代以前建造的空调系统的翻新改造,基本上都采 用变风量空调系统。 我国在70年代即有人研究VAV系统的开发和应用,并在地下厂房、纺织厂、体育馆等建筑中就采用过VAV系统。在80年代末期我国出现的首批智能化建筑中,也曾采用过VAV系统,但由于建设过程和使用过程中的种种问题,有些工程两三年后使用单位便取消了变风量系统的运行方式,相应的自控设备也拆除了,这使得变风量系统的优点没有发挥出来,变风量系统附加的投资难以得到回报。在此期间,变风量空调技术(包括控制技术和设备),也在不断地发展和完善。目前,在国内智能建筑的高速发展过程中,急需全面深刻地分析变风量空调系统的发展趋势和技术关键,总结工程实例,促进这一重要技术的平稳发展。

变风量空调系统的设计和工程实例模板

变风量空调系统的设计和工程实例 本站收集-07- :33:41 相关网站 变风量空调系统的设计和工程实例 、 八 、- 刖 言 变风量空调系统是利用改变进入空调区域的送风量来适应区域内负荷变化的一种空调系统。 和提供良好的舒适性。 当今变风量空调系统已经发展到能够经过计算机网络对空调系统进行实时采样、候、全 方位、全过程控制智能化,并成为现代化智能化大楼的一部分。 iWfl 丽 / 其最大优点在于节能 监测、分析和调控,实现全天

1变风量空调系统简介 1.1变风量空调系统的工作过程 一个典型的智能化控制型单风管带再热盘管的变风量空调系统如图1所示。 空调室内回风与室外新风混合,经集中式空调机组处理后,由风管送到各个空调区域。控制器根据室内负荷的大小,经过改变变风量末端风阀的开度,调节送入室内的风量;当室内需要供热时,再热盘管的热水阀打开,送风温度提高,经过改变变风量末端风阀的开度,调节送入室内的热风量。 空调房间送风量的改变,导致送风总管静压的变化,总管压力传感器测量风管系统静压后,由自控系统经过调节风机的送风量实现定静压控制。 冷水盘管的三通阀调节冷水的流量使送风温度保持恒定,新风量和室内正压由送风机和回风机同时控制。 系统的各个测量点能够与计算机通讯,进行实时监测、分析和调控并能够优化控制参数,实现最佳的控制方案。 1.2变风量空调系统的分类 广义上说,凡是改变系统送风量的空调系统都是变风量空调系统。在当前的工程实际中,变风量空调系统主要有 以下两种形式:单风管变风量系统和双风管变风量系统。其中单风管变风量系统又分为普通单风管变风量系统和单风 管末端再热变风量系统。 双风管变风量空调系统分别设有冷、热风管,能够根据室内的负荷情况精确地调节供冷量和供热量,在任何情况下均可满足房间的温度要求,具有调节方便、热稳定性好的特点。适合在一些舒适性要求高的空调场所使用。 1.3变风量末端的分类 变风量末端分为两种类型:变风量箱和变风量风口,其区别在于前者改变风量后再由某种形式的风口向空调室内送风,而后者则是直接在送风口处改变送风量。二者的工作特性和气流组织有很大的不同。

中央空调VAV空调系统优劣对比

VAV空调系统简介 变风量(Variable Air Volume)空调系统是一种通过改变送风量来调节室内温湿度的空调系统。Delta控制公司是世界上首家设计、制造出一体化(即集控制器、执行机构和流速传感器于一身)的VAV控制器的BA产品制造商。 变风量空调系统60年代起源于美国,自80年代开始在欧美、日本等国得到迅速发展,最重要的原因是变风量空调系统巨大的节能优势。经过十几年的普及和发展,目前变风量空调系统己占据了欧、美、日集中空调系统约30% 的市场份额,并在世界上越来越多的国家得到应用。进入90年代以来,采用VAV技术的多层建筑与高层建筑已达到95%。变风量空调系统由空气处理机组、新风/排风/送风/回风管道、变风量空调箱、房间温控器等组成,其中变风量空调箱是该系统的最重要部分。一、变风量空调系统(VAV)的优势 变风量空调系统区别于其它空调形式的优势主要在以下几个方面: 1、节能 由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变送风量来调节室温的,因此可以大幅度减少送风风机的动力耗能。据模拟测算,当风量减少到80% 时,风机耗能将减少到51%;当风量减少到50%时,风机耗能将减少到15%。全年空调负荷率为60% 时,变风量空调系统(变静压控制)可节约风机动力耗能78%。 2、新风作冷源 ---因为变风量空调系统是全空气系统,在过渡季节可大量采用新风作为天然冷源,相对于风机盘管系统,能大幅度减少制冷机的能耗,亦可改善室内空气质量。 3、无冷凝水烦恼 变风量空调系统是全空气系统,冷水管路不经过吊顶空间,避免了风机盘管系统中令人烦恼的冷凝水滴漏和污染吊顶问题。 4、系统灵活性好 现代建筑工程中常需进行二次装修,若采用带VAV空调箱装置的变风量空调系统,其送

负压风机型号与风量对照表

负压风机产品介绍 一、基本信息: 中文名称: 负压风机 外文名称: Suction fan 作用: 降温换气 二、负压风机降温原理:

镀锌板负压风机的工作原理:利用空气对流,负压循环交换的物理原理研发制造,当用户启动负压风机工作时,负压风机扇叶转动产生强大的抽风吸力,将室内的空气抽排出室外,顺势把室外新鲜空气从门或者窗户等进风口引入室内,这样就形成对流循环交换,达到通风换气改善室内空气质量的目的。 三、负压风机特点:

整机具有投资成本低,风量大,噪音低,耗能小,运行平稳,寿命长,效率高等特点,百叶窗自动起闭达到防尘,防水,美观大方;既可吹风,也可抽风,是现代化车间降温通风的最佳选择。环保、节能的负压风机将成通风降温设备市场主流。 四、应用介绍: 1、作抽风换气用:安装在车间窗口外,一般选择下风口、往外抽风,抽出异味气体。 2、配合湿帘使用:用作车间降温炎炎夏天,不论您的车间有多热,湿帘-负压风机系统都可让您车间的温度降至30C左右,而且有一定的湿度。 3、作排风扇用:一般排风扇(俗称扬谷扇)效能比较差,一台排风扇吹不到几个人,负压风机则不然,不管是放在地上用还是挂在空中用。一般1000平方米车间使用4台,即有满屋都是风吹的功效。 五、负压式风机的技术参数: 所有市售镀锌板方形负压风机结构、技术参数基本相同。主要型号有1380*1380*400mm1,1千瓦、1220*1220*400mm0,75千瓦、1060*1060*400mm0,55千瓦、900*900*400mm0,37千瓦四种型号。

所有镀锌版方形负压风机的转速均为450转/分钟,电机为4极1400转/分钟,电机防护等级IP44,B级绝缘。 相对大型的负压风机抽风效率更高、更节能。玻璃钢喇叭形负压风机从传动结构不同分为皮带式和直结式两种。皮带式转速在370-450转/分钟,采用六极或四极铝壳马达防护等级IP55 F级绝缘,转速低的产品噪音相对要低。直接式马达主要有12极440转/分钟、10极560转/分钟、8极720转/分钟三种,12极马达使用最多,转速高的风机噪音大。皮带式产品最省电节能、经济耐用,直结式产品适合在皮带式不能工作的如有油污、对皮带有腐蚀的场所使用。玻璃钢喇叭形负压风机风叶主要有6叶、7叶、3叶、5叶,风叶材质主要有压铸铝合金、工程塑料(尼龙加纤维)、玻璃钢三种。不同叶片数、风叶角度、弧度的风叶需要与转速、功率合理匹配,单一的数据不能说明风机的抽风性能。 某厂负压式风机产品参数:

(完整版)定风量空调系统与变风量空调系统有什么区别

定风量空调系统与变风量空调系统有什么区别? xjshuang520258回答的很专业,所谓的变风量空调系统也就是我们通常所称的VAV(Variable Air Volume)空调系统,该系统于60年代在美国诞生,其基本原理是通过改变送入房间的风量来满足室内变化的负荷。在当今特别提倡节能和舒适性的条件下,变风量空调系统正在逐渐被人们接收并得到应用。变风量空调系统主要有以下几个优点: 1、由于变风量空调系统是通过改变送入房间的风量来适应负荷的变化,而空调系统大部分时间的部分负荷下运行,所以风量的减少带来了风机能耗的降低。 2、区别于常规的定风量或风机盘管系统,在每一个系统中的不同朝向房间,它的空调负荷的峰值出现在一天的不同时间,因此变风量空调器的容量不必按全部冷负荷峰值叠加来确定,而只要按某一时间各朝向冷负荷之各的最大值来确定。这样,变风量空调器的冷却能力及风量比定风量可风机盘管系统减少10-20% 。 3、变风量空调系统属于全空气系统,与风机盘管系统相比有明显的好处是冷冻水管与冷凝水管不进入建筑吊顶空间,因而免除了盘管凝水和霉变问题。 ?变风量空调就是“变频空调”,它根据调整的环境温度自动变换出口的风量大小,从而达到在要求的温度范围左右。同时又节约了电。定风量的空调是不可以自动调节的,是用开开停停的方式来保持所调整环境温度范围左右的。 变风量与定风量空调系统之比较 (1)可以根据不同房间的使用要求来独立控制同一风系统中的各房间的温度。而不是象定风量系统中 只能控制总的回风温度。其每个VAV未端装置可自配温度控制,随着所控制区域的温度变化,自动调 节送风量。 (2)综合能效比高,这主要体现在两点: ①同一风系统中,不同房间一般是不可能同时达到最大负荷值,因此尽管每个VAV未端的最大送风量 可按房间最大负荷来选择,但空调机组总送风量应按各房间的逐时负荷之和的最大值来计算而不是象 定风量机组那样送风量为各房间最大送风量之和,因此,从设计上, VAV系统空调机组的送风量的选 择就比定风量空调机组低,使机组尺寸减小,所占机房面积也有所减少;同时,其设计的用电安装容量 下降,电气报装费也将下降。 ②在运行时,随着负荷的降低,VAV未端的风量减少,其空调机组的送风量也相应减少(通常以变频 调速的方式通过出口静压来控制风机转速)。由于一幢建筑的空调负荷(尤其是冷负荷)在全年中只有 大约5%的时间内出现满负荷情况,其余时间均是在低负荷工况下运行,因此,其全年运行的能耗大大降低,这也是VAV系统的一个主要优点。 ③对房间的灵活分隔有利,目前的办公搂多采用大开间设计,而用户通常会按自己的使用要求进行二次 分隔及装修,只要VAV未端的风量与其所在的每个房间的负荷相匹配即可。 与风机盘管加新风空调系统相比,VAV系统有以下特点: (1)室内无水管。众所周知,大陆的施工比发达国家有较大的差距,一幢建筑完工交付使用后,其水 管漏水及冷水管保温不严产生凝结水的现象相当普遍,对房间的使用者极为不利,用风机盘管,水管必然要进入室内,而VAV系统属于全空气系统,这一弊病就自然消除了。 (2)检修工作量减少。数量众多的风机盘管对检修来说是极为困难的,就本工程来说,如果全部采用 风机盘管,需千台以上,而采用VAV系统,仅有几十台空调机组,且其检修都集中在空调机房内进行,

变风量空调系统设计方案

变风量空调系统设计方案 变风量空调系统的检测与控制 变风量空调系统,可以根据各个房间或区域的空调负荷变化情况,用变风量末端装置(VAV BOX)分别调节各个房间或区域的送风量,来控制室内环境温度。这种系统可以降低非设计条件下的风机运行的能量消耗,运行费用较省。变风量空调系统主要由以下几部分组成:空气处理机组,室内温控器,变风量末端装置(VAV BOX)和智能变频控制器。空气处理机组是由新风阀、回风阀、送风阀、预热器、表冷器和送风机等组成。 2.1系统工作原理 为获得空调系统的实时负荷情况,在每个建筑单元内装设一个室内温控器,用来检测室内温度,并与用户设定的期望温度值进行比较,当二者出现差值时,温控器改变变风量末端(VAV-BOX)装置内的风阀开度,减少或增加送入室内的风量从而调节室内的温度,直到室内温度恢复为设定值为止。同时,根据末端VAV-BOX 的负荷情况,通过变频控制器调节送风机 速度,起到节能作用。送风机速度控制方法有定静压、变静压、总风量等控制方法。通常采用的定风量空调系统,其追踪房间负荷变化的手段是控制回风温度,调节冷热水阀门。在这个过程中,送风量保持不变,送风机的能耗不变。但对于变风量空调系统来说,追踪房间负荷变化的主要手 段是控制各个末端的送风量。由于空调负荷在全年的绝大多数时间里都低于设计负荷的状态,因此,低负荷时减少风机的送风量,将使得送风机的能耗得以降低,因而达到全年节能的目的。而由于变风量空调系统增加了系统静压、最大/最小送风量、以及新风量等控制环节,由此加大了其控制系统的复杂程度。变风量空调机组检测与控制系统原理图如图2所 示。 2.2 检测与控制功能 2.2.1变风量空气处理机组的检测与控制 (1)新风温、湿度检测 (2)送风温、湿度检测 (3)回风温、湿度检测(4)送、回风动压检测(5)风管静压检测(6)风机变频调节(7)滤网压差报警检测(8)防冻报警检测

相关主题
文本预览
相关文档 最新文档