当前位置:文档之家› 第6章 主成分分析实验报告

第6章 主成分分析实验报告

第6章 主成分分析实验报告
第6章 主成分分析实验报告

课程实验报告

专业年

课程名称应用多元统计分析

指导教师

学生姓名

学号

实验日期

实验地点

实验成绩

教务处制

年月日

实验项

目名称

因子分析的上机实现

实验目的及要求

SPSS软件中factor analysis的计算机操作及结果分析,使学生能熟练应用计算机软件进行因子分析与结果分析,培养实际应用能力。

实验内容题目:

对企业经济效益体系的8项指标建立因子分析模型(数据7-1)。这8项指标分别为:

x1-固定资产利税率,x2-资金利税率,x3-销售收入利税率,x4-资金利润率,x5-固定资产利润率,x6-资金周转天数,x7-万元产值能耗,x8-全员劳动生产率。

在分析过程中,提取因子的方法为“主成分”法,并以数据的“相关阵”为分析矩阵,并且提取3个因子,采用“最大方差旋转法”进行因子旋转。(1)则这3个因子的累积方差贡献率为多少?

(2)请写出原始变量x1和x2的因子表达式;

(3)所提取的3个公共因子分别在8个指标中的哪些指标上有较大载荷?并据此说明所提取的公因子概括了企业的何种能力?

(4)分别写出因子得分表达式,并计算“大同”企业的综合因子得分。注:均以因子旋转后的输出结果进行分析。

要求:

1、将SPSS软件的分析过程的关键步骤截图说明,需要计算的地方要写出详细计算步骤。

实验步骤

1.选择菜单项Analyze→Data Reduction→Factor。打开Factor Analysis对话框,将原始变量X1到X8移入V ariables列表框中,如图一所示。如果不想使用全部的样本进行分析,且数据文件中存在一个选择变量的话,将该选择变量移入Selection Variable 框中,并单击右边的Value按钮,在跳出的窗口中输入一个筛选值,这样,只有选择变量的值等于输入的筛选值的case才能参与因子分析。

图一:

2.点击Descriptives按钮,展开相应的对话框。选择Initial solution复选项。这个选项给出个因子的特征值,各因子特征值占总方差的

百分比以及累计百分比。单击Continue按钮,返回主界面,如图二所示。

图二:

3.单击点击Extraction按钮,打开Extraction子对话框,设置有关因子提取的选项,选择“主成分”因子分子方法,如图三所示。

在Method下拉列表中选择因子提取的方法,SPSS提供了七种提取方法可供选择,

一般选择默认选项Principal components,即“主成分法”。

在Analyze选项栏中指定用于提取因子的分析矩阵,分别为相关系数矩阵(Correlation matrix)和协方差矩阵(Covariance matrix)。如果选择相关系数矩阵,则

表示首先对原始数据进行标准化,然后再进行因子分析;如果选择协方差矩阵,则表示

直接对原始数据进行因子分析。这里我们选择默认的相关系数矩阵。

在Display选项栏中指定与因子提取有关的输出项,其中,Unrotated factor solutions

表示输出旋转前的因子方差贡献表和旋转前的因子载荷阵;Scree Plot表示输出因子碎

石图。因子碎石图其实就是样本协差阵的特征根按大小顺序排列的折线图,可以用来帮

助确定提取多少个因子。典型的碎石图会有一个明显的拐点,拐点之前是较大特征根连接形成的陡峭折线,拐点之后是较小特征根连接形成的平缓折线,一般选择拐点之前的特征根数目为提取因子的数目。这里我们将两个选项都选中。

在Extract选项栏中指定因子提取的数目,有两种设置方法:一种是在Eigenvalues over后的输入框中设置提取的因子对应的特征值的范围,系统默认值为1,即要求提取那些特征值大于1的因子;第二种设置方法是直接在Number of factors后的输入框中输入要求提取的公因子的数目。这里选择第二种,提取公因子数为3个。

4.点击Rotation按钮,打开Rotation子对话框,设置有关因子旋转的选项,选择Varimax(最大方差旋转法),如图四所示

Method选项栏用于设置因子旋转的方法,可供选择的方法包括方差最大旋转法(Varimax)、直接斜交旋转法(Direct Oblimin)、四次方最大正交旋转法(Quartmax)、平均正交旋转法(Equamax)、斜交旋转法(Promax),如果选择None选项,则不进行旋转。

Display选项栏用于设置与因子旋转有关的输出项。其中,Rotated factor solutions 表示输出旋转后的因子方差贡献表和旋转后的因子载荷阵;Loading plots表示输出旋转后的因子载荷散点图图,旋转后因子散点图是以因子为坐标轴,以旋转后因子载荷为坐标的散点图,从该散点图中可以直观地观察因子载荷在各因子上的分布状况。

图四:

5.点击Scores按钮,打开Factor Scores子对话框,设置有关因子得分的选项。如图五所示:

选中Save as variables复选框,表示将因子得分作为新变量保存在数据文件中。提取了几个因子则会在数据文件中保存几个因子得分变量,变量名为“fac m_n”,其中,m 表示第m个因子,n表示进行第n次因子分析的结果。

选中Display factor score coefficient matrix复选框,这样在结果输出窗口中会给出因子得分系数矩阵。

图五:

6.单击OK按钮,运行因子分析过程。

实验结果

分析结论:

Communalities

Initial Extraction

X1 1.000 .976

X2 1.000 .968

X3 1.000 .862

X4 1.000 .986

X5 1.000 .672

X6 1.000 .906

X7 1.000 .773 X8 1.000

.824

Extraction Method: Principal Component Analysis.

表1给出了8个原始变量的变量共同度。变量共同度反映每个变量对提取出的所有公共因子的依赖程度。表1可以看出,除X3,X5的共同度小于80%,X6共同度为81.7%外,其余的变量共同度都在90%以上,说明提取的因子已经包含了原始变量的大部分信息,因子提取的效果比较理想。

图2:

Undefined error #60601 - Cannot open text file "D:\PROGRA~1\

Undefined error #60618 - Cannot open text file "D:\PROGRA~1\SPSS\en\wind

8

7

6

5

4

3

2

1

6

5

4

3

2

1

图2给出了因子的碎石图。图中横坐标为因子的序号,纵坐标为相应特征根的值。从图中可以看到,前3个因子的特征根普遍较高,连接成了陡峭的折线,而第4个因子之后的特征根普遍较低,连接成了平缓的折线,这进一步说明提取3因子是比较适当的。

表3旋转后的因子载荷

Rotated Component Matrix(a)

Component

1 2 3 X1 .815 .551 -.089 X2 .974 .107 -.092 X3 .675 .636 -.039 X4 .971 .200 -.057 X5

.660

.225

-.431

X6 .032 -.376 .873

X7 -.608 .138 .620

X8 .142 .857 -.264

表3给出了旋转后的因子载荷矩阵,根据该表可以写出每个原始变量的因子表达式:

X1=0.815F1+0.551F2+(-0.89)F3

X2=0.947F1+0.107F2+(-0.092)F3

表7-3给出了因子得分系数矩阵,根据表中的因子得分系数和原始变量的标准化值就可以计算每个观测值的各因子的得分。本例中旋转后的因子得分表达式可以写成:

efficiency

Fuel

capacity

Fuel

weight

Curb

Length

W idth W heelbas

Horsepower

size

Engine

thousands

in

ice

type

Vehicle

F

107

.0

012

.0

070

.0

105

.0

011

.0177 .0

368

.0

226

.0

Pr

414

.0

173

.0

1

-

+

+

-

+-

+

+

+

-

=

…………

由于我们在Factor Scores子对话框中选择了Save as variables复选框,所以,在数据文件中会生成3个因子得分变量,变量名分别为:fac1_1、fac2_1、fac3_1。

这里有两点值得注意的地方:

(1)由于我们是以相关系数矩阵为出发点进行因子分析,所以,因子得分表达式中的各变量应该是经过标准化变换后的标准变量,均值为0,标准差为1。

(2)由于因子载荷阵经过了旋转,所以,因子得分不是利用初始的因子载荷阵,而是利用旋转后的因子载荷阵计算得到的。

Component Score Coefficient Matrix

Component

1 2 3

X1 .159 .259 .160

X2 .331 -.173 .068

X3 .091 .381 .208

X4 .311 -.082 .122

X5 .139 -.075 -.248

X6 .218 -.123 .695

X7 -.187 .428 .515

X8 -.195 .654 -.007

Undefined error #11401 - Cannot open text file "D:\PROGRA~1\SPSS\en\windows\spss.err": No such file Undefined error #11408 - Cannot open text file

"D:\PROGRA~1\SPSS\en\windows\spss.err": No such file Undefined error #11418 - Cannot open text file "D:\PROGRA~1\SPSS\en\windows\spss.err": No such file

Component Score Covariance Matrix

Component 1 2 3

1 1.000 -1.222E-16 .000

2 -1.222E-16 1.000 .000

3 .000 .000 1.000

Undefined error #11401 - Cannot open text file "D:\PROGRA~1\SPSS\en\windows\spss.err": No such file

注:可根据实际情况加

附表

x1 x2 x3 x4 x5 x6 x7 x8 琉璃河16.68 26.75 31.84 18.4 53.25 55 28.83 1.75 邯郸19.70 27.56 32.94 19.2 59.82 55 32.92 2.87 大同15.20 23.40 32.98 16.2 46.78 65 41.69 1.53 哈尔滨7.29 8.97 21.30 4.8 34.39 62 39.28 1.63 华新29.45 56.49 40.74 43.7 75.32 69 26.68 2.14 湘乡32.93 42.78 47.98 33.9 66.46 50 32.87 2.60 柳州25.39 37.82 36.76 27.6 68.18 63 35.79 2.43 峨嵋15.05 19.49 27.21 14.2 6.13 76 35.76 1.75 耀县19.82 28.78 33.41 20.2 59.25 71 39.13 1.83 永登21.13 35.20 39.16 26.5 52.47 62 35.08 1.73 工源16.75 28.72 29.62 19.2 55.76 58 30.08 1.52 抚顺15.83 28.03 26.40 17.4 61.19 61 32.75 1.60 大连16.53 29.73 32.49 20.6 50.41 69 37.57 1.31 江南22.24 54.59 31.05 37.0 67.95 63 32.33 1.57 江油12.92 20.82 25.12 12.5 51.07 66 39.18 1.83

主成分分析实验报告

项目名称实验4―主成分分析 所属课程名称多元统计分析(英)项目类型综合性实验 实验(实训)日期2012年 4 月15 日

实验报告4 主成分分析(综合性实验) (Principal component analysis) 实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。利用矩阵代数的知识可求解主成分。

实验题目:下表中给出了不同国家及地区的男子径赛记录:(t8a6) Country 100m (s) 200m (s) 400m (s) 800m (min) 1500m (min) 5000m (min) 10,000m (min) Marathon (mins) Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98

烟道气体成分分析方案

a) 对烟气成分进行分析,在设备上选择质谱仪作为在线分析仪表。采用 1 台质谱仪、4套采样探头、2套前处理系统、1套后处理系统及1座分析小屋。质谱仪同时对两个采样点(余热锅炉入口、电收尘出口)进行分析,两采样点双流路切换分析,每个点的分析时间小于10S。 对于烟气成分分析选用上海舜宇恒平的工业连续在线质谱仪进行测量。质谱仪可快速响应,实时监测烟道气中成分变化,以便快速反映工艺状况、指导工艺生产。烟气中湿度测量选用瑞士ROTRONI(公司的高温湿度计进行测量,自带温度计算。 由于烟气中含有大量粉尘和水,系统难点在于预处理系统的处理,本系统主要采用采样探头的一备一用设计,同时自动控制反吹以防止堵塞,同时采用美国杜邦公司的nafion 管进行脱水。 整个方案主要由采样探头、前处理、后处理、及在线分析设备构成。 在现场需要布置单独的现场小屋用于放置在线分析设备。 样品采样探头安装在工艺现场取样点位置,针对余热锅炉入口和电收尘出口工况中高温、高粉尘、高水的特殊情况,每个采样点均采用一反吹的冗余设计,由PLC控制系统实现,正常工作时,PLC空制相应的电磁阀动作,一个采样探头正常工作取样、另外一套采样探头反吹电磁阀打开,氮气对另外一个采样探头进行反吹。以防止探头堵塞。 探头采用法兰对接,采样探针伸入烟道的至位置。由于烟道内的高温高粉尘工况,为防止粉尘的冲刷在探针外部设有保护套管,同时探针入口处设有金属网的过滤器,以减少进入取样管的粉尘,防止管线堵塞。 PLC控制系统安装在分析小屋内,同时控制4个采样点之间的切换和反吹,每个位号的采样点的双采样探头切换采用定时反吹,具体的切换间隔根据现场实际调试而定。 前处理箱就近安装在工艺现场取样点位置,用于样品的降温、除尘和脱水。样品的降温通过风冷方式实现,冷却用的仪表风先进行伴热,温度维持在

实验六主成分分析报告

实验六 主成分分析 一、实验目的 通过本次实验,掌握SPSS 及ENVI 的主成分分析方法。 二、有关概念 1. 主成分分析的概念 主成分分析(又称因子分析),是将多个实测变量转换为少数几个不相关的 综合指标的多元统计分析方法。代表各类信息的综合指标就称为因子或主成份。 主成分分析的数学模型可写为: m m x a x a x a x a z 131********++++= m m x a x a x a x a z 23232221212++++= m m x a x a x a x a z 33332321313++++= ……… m nm n n n n x a x a x a x a z ++++= 332211 其中,x 1、x 2、 x 3、 x 4 …x m 为原始变量;z 1、 z 2、 z 3、 z 4 …z n 为主成份,且有m ≥n 。 写成矩阵形式为:Z=AX 。Z 为主成份向量,A 为主成份变换矩阵,X 为原始变 量向量。主成份分析的目的是把系数矩阵A 求出,主成份Z1、Z2、Z3…在总方差中所占比重依次递减。 从理论上讲m=n 即有多少原始变量就有多少主成份,但实际上前面几个主成 份集中了大部分方差,因此取主成份数目远远小于原始变量的数目,但信息损失很小。 因子分析的一个重要目的还在于对原始变量进行分门别类的综合评价。如果 因子分析结果保证了因子之间的正交性(不相关)但对因子不易命名,还可以通过对因子模型的旋转变换使公因子负荷系数向更大(向1)或更小(向0)方向变化,使得对公因子的命名和解释变得更加容易。进行正交变换可以保证变换后各因子仍正交,这是比较理想的情况。如果经过正交变换后对公因子仍然不易解释,也可进行斜交旋转。 2. 因子提取方法 SPSS 提供的因子提取方法有: ①Principal components 主成份法。该方法假设变量是因子的纯线性组合。

浅谈商用燃气灶具烟气成分分析

浅谈商用燃气灶具烟气成分分析 浅谈商用燃气灶具烟气成分分析 摘要:针对商用燃气灶具烟气成分分析,讨论了影响因素和分析方法,并对新旧标准中烟气成分的计算公式进行对比分析。通过分析得出烟气成分最准确的分析方法。 关键词:商用燃气灶具取样方法空燃比烟气成分分析 中图分类号:TK01 前言 商用燃气灶具遍布机关、学校、医院食堂及宾馆饭店的厨房。随着人们生活水平的提高和生活节奏加快,越来越多的人选择在外就餐,商用燃气灶具的需求量大幅上升,国内生产企业上千家并且呈现与日俱增的势态。生产企业数量不断增加,产品质量却参差不齐。如果控制不好商用燃气灶具的质量不但会造成燃料的极大浪费,而且会排放有害气体污染环境。在国家大力倡导节能减排的今天,如何能够生产出低排放、高效能的产品是生产企业和质检部门日前关注的焦点。分析烟气成分是提高产品质量的关键措施之一。 根据烟气中氧含量的多少,可以推算出燃烧所用空气的多少,进而可以调整空气量,使燃气灶具具有更高的热效率。同时通过控制完全燃烧的程度,限制排放到大气的烟气中的有害物质,从而提高产品质量。因此,如何能够准确、及时地分析和检测商用燃气灶具的烟气是十分令人关心的问题。 1、烟气分析的影响因素 燃气燃烧后产生烟气中的成分有二氧化碳、水蒸气、氮气、氧气、一氧化碳、氧化物及硫化物等。但由于燃气成分与燃烧情况的不同,烟气中各种成分会有些变化。正确分析烟气成分的主要影响因素为取样方法和空燃比α(过剩空气系数)。 1.1取样方法 烟气成分正确分析的首要条件是分析的气体有代表性。因此燃烧产物的取样就显得特别重要。商用燃气灶具取样时特别注意取样的位

置和取样方式。取样要求:1)能连续自动地取样;2)取样点应尽可能避开有化学反应的位置;3)若有一级烟道的燃气灶具采用图11[1](a)所示取样管,在距烟道口100mm处的中心位置(图1[1](b)所示)取样,若无一级烟道需用特制的取样罩见图1[1](c),取样方式见图1[1](d)。4)取样须在等速的条件下进行,即进入取样探头进口的吸入速度与探头周围烟道中的烟气流速相等。为保证准确取样,取样器的截面通常为流通截面的1%~2%,最大也不应超过5%,烟气分析时须采用补偿式静止灵位探头结构。 1.2空燃比α 当鼓风量过大时(即空燃比α偏大),虽能充分燃烧,但烟气中过剩空气量偏大(O2含量高),过剩空气带走热损失Q1值增大,导致热效率η偏低,同时,过量的O2会与燃料中的S、烟气中的N2 反应生成SO2、NOx等有害物质;当鼓风量偏低时(即空燃比α减小),烟气中O2含量低,CO含量高,未完全燃烧,热损失Q2增大,热效率η也将降低,且会产生黑烟。空燃比与热效率的关系如图2[2]所示。 由于商用燃气灶具燃烧时空燃比α(过剩空气系数)不能准确的控制且其对商用燃气灶具的烟气成分和热效率有直接影响,商用燃气灶具国家标准规定检测干烟气中CO含量时均换算为α=1(没有过剩空气)状态。 2、烟气成分分析方法 烟气成分综合分析方法主要有:奥氏气体分析仪分析烟气、气相色谱仪分析烟气、烟气连续自动分析等。目前,多项成分连续自动分析设备应用最为广泛。多项成分的烟气分析仪分析过程如图3[3]所示。一般安装多个传感器,分为电化学传感器和红外传感器来分析烟气中的CO、CO2、O2、NOx、SO2等气体含量。商用燃气灶具烟气检测采用多项成分烟气分析仪和计算相结合的方法。 标准中的公式(1)和公式(2)称为“氧稀释法”,公式(3)称为“二氧化碳稀释法”。老标准中CO含量计算采用公式(1),新标准中采用公式(2)和公式(3)。公式(1)和公式(2)的使用条件是氧含量占空气的20.9%,在不同地区和不同海拔,空气中氧氮比

锅炉烟气成分分析

7.2锅炉烟气成分分析 在火力发电的过程中,对锅炉烟气含氧量、二氧化碳含量、一氧化碳含量的分析测量对于指导锅炉燃烧控制有重要的意义。 为保持锅炉处于最佳燃烧状态,应使实际供给的空气量大于理论空气量,锅炉机组热损失最小的炉膛出口的最佳过剩空气系数应保持在一定范围内。 对锅炉铟气中的过剩空气系数的分析测量要考虑到烟气取样点的选择或给予必要的修正。目前,一般把烟气取样点设计在过热器出口或省煤器出口处。燃烧理论指出:在燃料一定情况下,当完全燃烧时,过剩空气系数是烟气中氧量或二氧化碳含量的函数,此时一氧化碳的含量为零。当不完全燃烧时,因烟气中含有一氧化碳,过剩空气系数与氧量或二氧化碳含量的函数要受到一氧化碳含量的影响:因此对一氧化碳含量和氧气或二氧化碳含量的监视,对于指导燃烧更为有利。实际燃烧时,很多情况是烟气中一氧化碳含量比较少.因此,对于一氧化碳分析仪要求有较高的灵敏度和精确度。在不完全燃烧时,烟气中还会有未燃尽的可燃物含量对烟气中的一氧化碳的含量、二氧化碳含量和氧量都有影响。过剩空气系数α与一氧化碳含量二氧化碳含量和氧量的函数关系就更复杂,这种情况下.通过对一氧化碳含量和氧量的监测来指导燃烧会更有实际意义。目前,对于高压大型锅炉,烟气中未燃尽可燃物的含量很小.通常多是通过对烟气中的含氧量的监测来指导燃烧控制。

7.2.2 氧化锆氧量计 氧化锆氧量计属于电化学分析器中的一种。氧化锆(2 ZrO )是一种氧离子导电的固体电解质。氧化锆氧量计可以用来连续地分析各种锅炉烟气中的氧含量,然后控制送风量来调整过剩空气系数α值,以保证最佳的空气燃料比,达到节能效果。氧化锆传感器探头可以直接插人烟道中进行测量,氧化锆测量探头工作温度必须在850℃左右的高温下运行,否则灵敏度将会下降。所以氧化锆氧量计在探头上都装有测温传感器和电加热设备。 1) 氧化锆传感器测量原理 氧化锆在常温下为单斜晶体,当温度为 1150℃时,晶体排列由单斜晶体变为立方晶 体,同时有不到十分之一的体积收缩。如果 在氧化锆中加人一定量的氧化钙(CaO )和 氧化钇(32O Y ),则其晶型变为不随温度而 变的稳定的萤石型立方晶体,这时四价的锆 被二价的钙和三价的钇置换,同时产生氧离 子空穴。当温度为800℃以上时,空穴型的 氧化锆就变成了良好的氧离子导体,从而可以构成氧浓差电池。 氧浓差电池的原理如图7.13所示。在氧化锆电解质的两侧各烧结上一层多孔的铂电极,便形成了氧浓差电池。电池左边是被测的烟气,它的氧含量一般为4%~6%,设氧分压为1p ,氧浓度为1?。电池的右边是参比气体,如空气,它的氧含量一般为20.8%,氧分压为2p ,浓度为2?。在温度T=850℃时,氧化锆氧浓差电池的工作原理可用下式表示: Pt p O CaO ZrO p O Pt ),(,)(,22212分压力分压力 负极 电解质 正极 在正极上氧分子得到电子成为氧离子,即 -?→?+22224)(O e p O 分压力 在负极上氧离子失去电子成为氧分子,即 )(421 22p O e O 分压力?→?-- 这个过程就好像2 O 从正极渗透到负极上去一样。这也好像是图7.13氧浓差电池的原理

主成分分析、因子分析实验报告--SPSS

对2009年我国88个房地产上市公司的因子分析 分析结果: 表1 KMO 和 Bartlett 的检验 取样足够度的 Kaiser-Meyer-Olkin 度量。.637 Bartlett 的球形度检验近似卡方398.287 df 45 Sig. .000 由表1可知,巴特利特球度检验统计量的观测值为398.287,相应的概率p值接近0,小于显著性水平 (取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。同时,KMO值为0.637,根据Kaiser给出的KMO度量标准(0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合)可知原有变量不算特别适合进行因子分析。 表2 公因子方差 初始提取市盈率 1.000 .706 净资产收益率 1.000 .609 总资产报酬率 1.000 .822 毛利率 1.000 .280 资产现金率 1.000 .731 应收应付比 1.000 .561 营业利润占比 1.000 .782 流通市值 1.000 .957 总市值 1.000 .928 成交量(手) 1.000 .858 提取方法:主成份分析。 表2为公因子方差,即因子分析的初始解,显示了所有变量的共同度数据。第一列是因子分析初始解下的变量共同度,它表明,对原有10个变量如果采用主成分分析方法提取所有特征根(10个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。可以看到,总资产报酬率、成交量、流

烟气成分分析

实验三 烟气成分分析 一、实验目的 锅炉中燃烧产物的计算和测定主要是求出燃烧后的烟气量和烟气组成。燃料燃烧后烟气的主要成分有:CO 2、SO 2 、O 2 、H 2 O 、N 2 、CO 等气体。本实验使用奥氏烟气分析器测定干烟气的容积成分百分数。通过实验使学生巩固烟气组成成分的概念,初步学会运用奥氏烟气分析器测定烟气成分的方法。 二、实验原理 奥氏烟气分析器是利用化学吸收法按容积测定气体成分的仪器。它主要由三个化学吸收瓶组成,利用不同化学药剂对气体的选择性吸收特性进行的。 吸收瓶Ⅰ内盛放氢氧化钾溶液(KOH ),它吸收烟气中的CO 2与SO 2气体。在烟气成分中常用RO 2表示CO 2与SO 2容积总和,即RO 2=CO 2+SO 2。 其化学反应式如下:2KOH+CO 2→K 2CO 3 ;KOH+SO 2→K 2SO 3 ; 吸收瓶Ⅱ内盛焦性没食子酸苛性钾溶液[C 6H 3(OK )3],它可吸收烟气中的RO 2与O 2气体。当RO 2被吸收瓶Ⅰ吸收后,吸收瓶Ⅱ则吸收的烟气容积中的O 2气体。 焦性没食子酸苛性钾溶液吸收O 2的化学反应式为: 4C 6H 3(OK )3 + O 2→2[(OK )3C 6H 2—C 6H 2(OK )3]+2 H 2 O 吸收瓶Ⅲ内盛氯化亚铜的氨溶液[Cu (NH 3)2Cl ],它可吸收烟气中的CO 气体。 其化学反应式为:Cu (NH 3)2Cl+2CO → Cu (CO )2Cl+ 2NH 3; 它同时也能吸收O 2气体。故烟气应先通过吸收瓶Ⅱ,使O 2被吸收后,这样通过吸收瓶Ⅲ吸收的烟气只剩下一氧化碳CO 气体了。 综上所述,三个吸收瓶的测定程序切勿颠倒。在环境温度下,烟气中的过饱和蒸汽将结露成水,因此在进入分析器前,烟气应先通过过滤器,使饱和蒸汽被吸收,故在吸收瓶中的烟气容积为干烟气容积,气体容积单位为Nm 3/Kg ,测定的成分为干烟气容积成分百分数,即CO 2+SO 2+O 2+CO+N 2=100% CO 2= %1002?gy CO V V (3-1) ; SO 2=%1002?gy SO V V (3-2) ; O 2 = %1002?gy O V V (3-3) ; CO = %100?gy CO V V (3-4);

教育信息处理(实验九因子分析与主成分分析)实验报告-示例

1、对北京18个区县中等职业教育发展水平进行聚类。X1:每万人中职在校生数;X2:每万人中职招生数;X3:每万人中职毕业生数;X4:每万人中职专任教师数;X5:本科以上学校教师占专任教师的比例;X6:高级教师占专任教师的比例;X7:学校平均在校生人数;X8:国家财政预算中职经费占国内生产总值的比例;X9:生均教育经费。 具体步骤如下: 1、导入数据,建立数据文件(data.sav) 2、选择聚类分析(分析—分类—系统聚类分析),选择变量,分群选择个 案方式 3、聚类分析描述统计(统计量—合并进程表;聚类成员—单一方案—聚类 数3) 4、聚类分析绘制(树状图;冰柱—所有聚类,方向—垂直) 5、聚类分析方法(聚类方法—组间联接,度量标准—区间—平方Euclidean

距离) 6、聚类分析保存(聚类成员—单一方案—聚类数3) 7、保存实验结果,并分析结果 结果与分析: (1)输出结果文件中的第一部分如下图1所示。 图1中可以看出18个样本都进入了聚类分析,但有效样本为14个,缺失14个。 (2)输出结果文件中的第二部分为系统聚类分析的凝聚状态表如图2所示。

第一列表示聚类分析的步骤,可以看出本例中共进行了17个步骤的分析; 第二列和第三列表示某步聚类分析中,哪两个样本或类聚成了一类; 第四列表示两个样本或类间的距离,从表格中可以看出,距离小的样本之间先聚类; 第五列和第六列表示某步聚类分析中,参与聚类的是样本还是类。0表示样本,数字n(非零)表示第n步聚类产生的类参与了本步聚类; 第七列表示本步聚类结果在下面聚类的第几步中用到。 图2给中第一行表示,第二个样本和第四个样本最先进行了聚类,样本间的距离为4803.026,这个聚类的结果将在后面的第六步

主成分分析实验报告

项目名称实验4—主成分分析 所属课程名称多元统计分析(英) 项目类型综合性实验_____________ 实验(实训)日期2012年4 月15日

二、实验(实训)容: 【项目容】 主成分分析。 【方案设计】 题目: 由原始数据求主成分。 【实验(实训)过程】(步骤、记录、数据、程序等)附后 【结论】(结果、分析) 附后 三、指导教师评语及成绩: 评语: 成绩:指导教师签名: 批阅日期: 实验报告4 主成分分析(综合性实验) (Prin cipal comp onent an alysis) 实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。这些综合指标反映了原始指标的绝

大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。利用矩阵代数的知识可求解主成分 实验题目:下表中给出了不同国家及地区的男子径赛记录:(t8a6) Country 100m 200m 400m 800m 1500m 5000m 10,000m Marathon (s) (s) (s) (min) (min) (min) (min) (mins) Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13

密炼车间烟气排放成分分析

炼胶工艺 1混炼:通过适当的加工将生胶与配合剂均匀混合在一起,制成质量均一的混合物的工艺过程。 2密炼的混炼:密炼机混炼密炼机通过转子、上下顶栓在密炼室中产生复杂的流动方式和高剪切力,使橡胶配合剂和粒状添加剂很快粉碎和均匀分散,是一种高效的混炼方法。但是高剪切力会使物料温度在混炼中迅速上升,一般会达到130℃。这已超过了大多数硫化系统的活化温度,会使胶料发生早期硫化(焦烧)。一般的做法是将大部分物料在密炼机中混炼,然后将胶料从密炼机排放到开炼机上,在开炼机上加硫化剂或超速促进剂。由于开炼机实际上只在辊缝线上对胶料有挤压作用,而提供了很大的冷却面积,致物料的温度降低。在这一阶段加入硫化剂可以避免胶料发生早期硫化(焦烧)。 密炼机混炼方法主要有一段混炼法、二段混炼法、引料法和逆混法: (1)一段混炼法指经密炼机和压片机一次混炼制成混炼胶的方法。通常加料顺序为:生胶→小料→填充剂或1/2→1/2炭黑→油料软化剂→排料。胶料直接排入压片机,薄通数次后,使胶料降至100℃以下,再加入硫黄和超促进剂,翻炼均匀后下片冷却。此法的优点是比二段混炼法的胶料停放时间短和占地面积小,其缺点是胶料可塑性偏低,填充补强剂不易分散均匀,而且胶料在密炼机中的炼胶时间长,易产生早期硫化(焦烧)。此法较适用于天然橡胶胶料和合成橡胶比例不超过50%的胶料。 (2)二段混炼法将混炼过程分为两个阶段,其中第一段同一段混炼法一样,只是不加硫黄和活性较大的促进剂,首先制成一段混炼胶(炭黑母炼胶),然后下片冷却停放8小时以上。第二段是对第一段混炼胶进行补充加工,待捏炼均匀后排料至压片机加硫化剂、超促进剂,并翻炼均匀下片。为了使炭黑更好地在橡胶中分散,提高生产效率,通常第一段在快速密炼机(40r/min以上)中进行,第二段则采用慢速密炼机,以便在较低的温度加入硫化剂。一般当合成胶比例超过50%时,为改进并用胶的掺合和炭黑的分散,提高混炼胶的质量和硫化胶的物理机械性能,可以采用二段混炼法。 (3)引料法在投料同时投入少量(1.5~2Kg)预混好的未加硫黄的胶料,作为“引胶”或“种子胶”,当生胶和配合剂之间浸润性差、粉状配合剂混入有困难时,这样可大大加快粉状配合剂(填充补强剂)的混合分散速度。例如,丁基橡胶即可采取此法。而且不论是在一段、二段混炼法或是逆混法中,加入“引胶”均可获得良好的分散效果。 (4)逆混法加料顺序与上述诸法加料顺序相反的混炼方法,即先将炭黑等各种配合剂和软化剂按一定顺序投入混炼室,在混炼一段时间后再投入生胶(或塑炼胶)进行加压混炼。其优点是可缩短混炼时间。还可提高胶料的性能。该法适合于能大量添加补强填充剂(特别

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

锅炉烟气成分(知识材料)

锅炉烟气成分 2.6 燃料消耗量 根据煤质分析资料,本期3台220t/h锅炉,年利用小时按8000小时,单台锅炉最大连续蒸发量的耗煤量见下表: 燃煤量机组容量及煤种符 号 单 位 设计煤质校核煤质 锅炉最大负荷时耗煤量Bg t/h 30.566 35.311 锅炉计算耗煤量Bj t/h 29.955 34.605 2.7 烟气脱硫入口烟气参数 脱硫入口烟气为3台220t/h锅炉烟气总量,下表为单台锅炉参数。

项目单位设计煤种校核煤种备注烟气成分(标准状态,湿基,设计煤种a=1.45,校核煤种a=1.45) CO2Vol % 12.286 12.699 O2Vol % 6.334 6.339 N2Vol % 75.632 75.667 SO2Vol % 0.257 0.341 H2O Vol % 5.491 4.954 烟气参数 脱硫装置入口烟气量m3/h 409036.17 11 421047.29 09 实际,湿基 Nm3/h 251066.52 255412.08 标态,湿基 脱硫装置入口烟气温度℃133 134 设计值 160 160 最大值 160 160 FGD旁路烟气温度 脱硫装置入口烟气压力 Pa 1500 1500 正常运行至BMCR工 况 烟气中污染物成分(标准状态,干基,a=1.4) SO2mg/Nm37047.5 9298.1 SO3mg/Nm3144 214 Cl(HCl) mg/Nm350 50 F(HF) mg/Nm335 35 烟尘浓度(引风机出口)mg/Nm387.97 110.56 3 公用工程基本条件 1)吸收剂品质: A、尿素装置来氨水(用量满足需要)

主成分分析实验报告

主成分分析 地信0901班陈任翔010******* 【实验目的及要求】 掌握主成分分析与因子分析的思想和具体步骤。掌握SPSS实现主成分分析与因子分析的具体操作。 【实验原理】 1.主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。 2.因子分析研究相关矩阵或协方差矩阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。 【实验步骤】 1.数据准备 ●1)首先在Excel中打开“水样元素成分分析数据”,删除表名“水样元素成分分析数据”, 保存数据。 ●3)数据格式转换。 2.数据描述分析操作 1)Descriptives过程 点击Analyze下的Descriptive Statistics选项,选择该选项下的Descriptives ●选中待处理的变量(左侧的As…..Hg等);

●点击使变量As…..Hg 移至Variable(s)中; ●选中Save standrdized values as variables; ●点击Options 2)数据标准化 标准化处理后的结果

2.主成分分析 1)点击Analyze下的Data Reduction选项,选择该选项下的Factor过程。选中待处理的变量,移至Variables 2)点击Descriptives判断是否有进行因子分析的必要 Coefficients(计算相关系数矩阵) Significance levels(显著水平) KMO and Bartlett’s test of sphericity (对相关系数矩阵进行统计学检验) Inverse(倒数模式):求出相关矩阵的反矩阵; Reproduced(重制的):显示重制相关矩阵,上三角形矩阵代表残差值,而主对角线及下三角形代表相关系数; Determinant(行列式):求出前述相关矩阵的行列式值; Anti-image(反映像):求出反映像的共同量及相关矩阵。 Univariate descriptive单变量描述统计量(输出被选中的各变量的均数与标准差) Initial solution未转轴之统计量(显示因素分析未转轴前之共同性、特征值、变异数百分比及累积百分比) 3)点击Extraction : ●选择主成分分析方法 ●输出未旋转的因子载荷矩阵

卷烟烟气的形成及其理化性质(精)

第十章卷烟烟气的形成及其理化性质 20世纪50年代以来,随着吸烟与健康问题的提出,对卷烟烟气的形成机制和烟气理化特性的研究,已普遍开展。特别是70年代以来,在烟支燃烧状态的测定和烟气化学成分的分离鉴定等方面都取得了显著的进展。新的仪器设备、先进的分离鉴定技术,为这些研究创造了有利条件。 研究烟气理化特性的目的是显而易见的,即对卷烟烟气进行分析研究,以深入了解卷烟燃烧特性和烟气的化学组成,为探讨人们吸入烟气后所受到的刺激和影响提供线索。同时也只有在对烟气化学性质研究的基础上,才能采取有效的方法,既尽量减少烟气中的有害成分,又保持充足的香味和适当的劲头,研制开发出把对健康危害降到最低水平而又为消费者乐意接受的卷烟产品。 第一节烟支的燃烧 卷烟烟支主要是由烟草、添加剂、卷烟纸、滤嘴等构成的,其中最重要的是烟草。当烟支在高温条件下燃烧(或燃吸)时,内部化学成分发生一系复杂变化,从而形成卷烟烟气。烟草作为一种天然材料,在燃烧过程中由于温度和氧气供应量的不同,其燃烧机制不同,产生烟气的化学成分也不同。烟气中有数千种化合物,大约仅有1/3的化合物直接来自烟草,其余则是燃烧过程中产生的化合物,许多成分含量极微。 一、主流烟气和侧流烟气 烟支被点燃后,首端立即生成炭,从而形成了卷烟的燃烧系统。燃烧部分的固体物质形成一个椎体——燃烧锥,燃烧锥与未燃烧卷烟之间有一条黑色的炭线。抽吸时椎体底部外围的烟草被燃烧掉,炭线后移,椎体变长。暂停抽吸时,椎体阴燃而变短,直至与空气达到热平衡为止。于是抽吸卷烟时有两种燃烧方式—吸燃和阴燃,由此相应地产生了主流烟气(mainstream smoke简写为MS)和侧流烟气( sidestream smoke,简写为SS) (见图10-1)。 烟支被抽吸时,大部分气流是从燃烧锥底部周围进入,烟支燃烧形成气溶胶,从烟支尾端冒出的烟气流,称为主流烟气。主流烟气进入吸烟者的口腔,用吸烟机吸烟时主流烟气进入吸烟机。主流烟气通过喉部吸入肺部,达到刺激神经、产生生理强度的作用。在进行卷烟内在质量评吸时,主要通过对主流烟气的鉴别,判断其香味、杂气、刺激性、余味等的优劣。两次抽吸的间隔时间内,空气自燃烧锥周围上升,烟支进行阴燃,产生的烟气称为侧流烟气(也称支流烟气)。侧流烟气不进入吸烟者的口腔或吸烟机。动态抽吸时形成的主流烟气与静态燃烧产生的侧流烟气在化学成分及含量上有差异。 在点燃卷烟的过程中,当温度上升到300°C时,烟草中的挥发性物质开始挥发而进入烟气;到450°C时,烟草发生焦化;温度上升到600°C时,烟草就被点燃而开始燃烧。抽吸时最高温度可达到900°C,从点燃到最高燃烧温度只是一个瞬间的过程。 正在抽吸时,发生在燃烧锥底部周围的燃烧温度是最高的,大部分气流从这里通过,称为旁通区;而燃烧锥的中部却形成一个致密的不透气的炭化体,气流不易从这里通过,称为堵塞效应。因此,正在抽吸时,燃烧主要发生在旁通区,将进入的气流中的氧几乎耗尽。由于发生了有限度的燃烧,就导致了吸烟过程中形成大量的新生化合物。可见,烟支在抽吸时氧化过程并不起主要作用,二氧化碳和水也不是唯一的产物。在两次抽吸的间隔时间内,烟支内气流速度大大降低,燃烧主要发生在燃烧锥的周围,而且是在富氧的条件下燃烧,氧化反应才是主要的。

应用多元统计分析习题解答_朱建平_第七章

Abbo无私奉献,只收1个金币,BS收5个金币的… 何老师考简单点啊……

第七章 因子分析 7.1 试述因子分析与主成分分析的联系与区别。 答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。 因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。 7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,①因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常用。③因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。 7.3 简述因子模型中载荷矩阵A 的统计意义。 答:对于因子模型 1122i i i ij j im m i X a F a F a F a F ε=++++++ 1,2,,i p = 因子载荷阵为1112 121 2221212 (,,,)m m m p p pm a a a a a a A A A a a a ????? ?==?? ?? ?? ? ? A i X 与j F 的协方差为: 1Cov(,)Cov(,)m i j ik k i j k X F a F F ε==+∑ =1 Cov( ,)Cov(,)m ik k j i j k a F F F ε=+∑ =ij a 若对i X 作标准化处理,=ij a ,因此 ij a 一方面表示i X 对j F 的依赖程度;另一方面也反映了

烟气成分

焚烧烟气污染物的形成及处理的分析 1.1 酸性气体 焚烧烟气中的酸性气体主要由SO X、NO X、HCl、HF组成,均来源于相应垃圾组分的燃烧。SO X主要由SO2构成,产生于含硫化合物焚烧氧化所致。NO X包括NO、NO2、N2O3等,主要由垃圾中含氮化合物分解转换或由空气中的氮在燃烧过程中高温氧化生成。HCl 来源于氯化物,如PVC、像胶、皮革,厨余中的NaCl以及KCl等。焚烧烟气中HCl气体的浓度相对较高,往往在400~1200 ppm。SO X与NO x的浓度相对较低[。所以HCl是垃圾焚烧烟气中主要的污染气体。 HCl气体对人体有较强的伤害性。据全球污染排放评估组织(GEIA )测算,全世界每年由生活垃圾焚烧向环境排放的HCl气体达218 kg之多,相当于每人每年仅通过垃圾焚烧向大气排放了0.42 kg HCl 。HCl气体会对余热锅炉受热面和监测仪表产生高低温腐蚀,影响余热锅炉安全并限制了过热蒸汽参数的提高;HCl气体的存在升高了烟气露点,导致排烟温度升高,降低锅炉热效率,氯源在一定条件下与重金属反应生成低沸点的金属氯化物,从而加剧了重金属的挥发,导致重金属在飞灰上的富集,增加飞灰毒性。HCl气体能促进氯酚、氯苯、氯苯并呋喃等“三致”有机物的生成,而且PVC裂解后生成的HCl被认为能促进多环芳烃(PAHs)的生成。因此,有效去除HCl气体直接关系到焚烧系统的安全和环保运行。 1.2 有机类污染物 有机类污染物主要是指在环境中浓度虽然很低,但毒性很大,直接危害人类健康的二噁英类化合物,其主要成分为多氯二苯并二噁英(PCDDs)和多氯二苯并呋喃(PCDFs)。通常认为,垃圾的焚烧是环境中此类化合物产生的主要来源。垃圾焚烧炉中二噁英有两种成因: 一是垃圾自身含有微量的二噁英类物质,二是焚烧炉在垃圾燃烧过程中产生二噁英,其形成机理概括起来有三种 (1)高温合成。在垃圾进入焚烧炉的初期干燥阶段,除水分外,含碳氢成分的低沸点有机物挥发后,与空气中的氧反应生成水和二氧化碳,形成暂时缺氧状况,使部分有机物同氯化氢反应,生成二噁英; (2)通过合成反应形成二噁英。即在低温(250~350℃)条件下,大分子碳(残碳)与飞灰基质中的有机或无机氯在飞灰表面反应,生成二噁英; (3)前驱物合成。不完全燃烧及飞灰表面的不均匀催化反应,可形成多种有机气相前驱物,

相关主题
文本预览
相关文档 最新文档