当前位置:文档之家› 2008Vol42(11)压水堆核电厂全厂断电事故及其缓解措施

2008Vol42(11)压水堆核电厂全厂断电事故及其缓解措施

2008Vol42(11)压水堆核电厂全厂断电事故及其缓解措施
2008Vol42(11)压水堆核电厂全厂断电事故及其缓解措施

核电厂运行

1、核电厂与普通化石燃料电厂相比有哪些主要区别? a.核电厂有临界的特点,反应堆必须达到临界才能工作;核电厂必须保证足够的核燃料装 量,既有临界质量的限制,也要保证适当长的换料周期;反应堆中的核燃料不可能全部耗尽。 b.放射性特点:放射性物质的来源:裂变产物、衰变产物、活化产物和放射性废物(气、 液、固);防止放射性物质的释放是核电厂安全的首要目标。 c.剩余释热问题:剩余释热主要由剩余裂变发热和衰变热两部分组成;因此核反应堆必须 要有余热排出系统;冷却剂泵有一个很大的惰性飞轮。 d.系统的复杂性:核电厂系统设备比普通化石燃料电厂更为复杂;运行人员驾驭核电厂过 渡瞬变更为困难;核电厂的成本结构与普通化石燃料电厂不同(核电厂建造成本高而运行成本低,化石燃料电厂建造成本低而运行成本高);因此要求核电厂尽量带基本负荷运行,并且尽量减少停堆。 e.饱和蒸气问题:核电厂绝大多数使用饱和蒸汽,而化石燃料电厂使用过热蒸汽;饱和蒸 汽的焓值比过热蒸汽的焓值低;因此在相同规模的情况下,核电厂使用的蒸汽管道、汽轮机、调节阀门等的尺寸较大,给运行带来了一些问题。 2、压水堆核电厂载硼运行有哪些优点和缺点? 优点:1)可以控制较大的反应性,延长了反应堆的换料周期,提高了经济性; 2)有利于改善反应堆中子通量密度的分布,提高安全性,提高核燃料利用率。 3)减少了控制棒的数目,简化了控制棒系统的设计,减少了压力壳的开孔数目,提高了压力壳的安全性。 4)通过注硼可以实现可靠停堆,保证足够的停堆深度。 缺点:1)增加了一个化学容积控制系统,增加运行复杂性。 2)硼浓度过高可能导致正的慢化剂温度系数,增加了运行风险。 3)运行中需要经常调整硼浓度,增加了废物量。 3、为什么在压水堆运行中引入汽轮机快速降负荷功能?哪些条件引起汽轮 机快速降负荷? 原因:在保证反应堆安全的前提下,尽量避免紧急停堆 引起汽轮机快速降负荷的情况有:超温ΔT或超功率ΔT值比事故保护停堆值低3%; 功率高于80%满功率时一台主给水泵跳闸;一路加热器疏水箱疏水被旁通到冷凝器。 4、核电厂的运行工况有哪些 a)Ⅰ类工况:正常运行和运行瞬态 b)Ⅱ类工况:中等频度事件 c)Ⅲ类工况:稀有事件 d)Ⅳ类工况:极限事故 5、运行模式的分类(温度一栏舍去) 模式K eff额定热功率/% 冷却剂平均温度 /℃ 1. 功率运行≥0.99 >5 ≥176.6 2. 启动≥0.99 ≤5 ≥176.6 3. 热备用<0.99 0 ≥176.6

核电站严重事故下安全壳内氢爆风险研究现状

核电站严重事故下安全壳内氢爆风险研究现状 【摘要】对核电站严重事故下安全壳内氢气燃烧风险相关的火焰加速(FA)与爆燃-爆炸转变(DDT)的关键物理过程、经典分析模型、实验研究进展等进行了介绍。同时,对适用于大尺度空间的燃烧分析软件中存在的问题进行了讨论,对氢气风险研究具有一定参考意义。 【关键词】核电站;严重事故;火焰加速;爆燃-爆轰转变 【Abstract】This paper presents the state of art on Flame Acceleration(FA)and Deflagration Detonation Transit(DDT)researches relate to containment hydrogen combustion risk under nuclear power plant severe accident. Meanwhile,the remained problem in validation of combustion analyzing software is discussed. 【Key words】Nuclear power plant;Severe accident;FA;DDT 0 前言 核电站严重事故条件下,堆芯丧失有效冷却,堆芯余热使得核燃料元件锆包壳不断升温并与水蒸气反应,产生的大量氢气进入安全壳内与空气混合,当氢气浓度等因素满足一

定条件时,即使外界点火源能量较弱,被点燃的可燃混合气也能逐渐由缓慢的层流扩散燃烧逐渐发展为爆燃甚至爆轰,压力载荷可达初始压力的几倍甚至十几倍,这将直接威胁到安全壳的完整性。 三里岛事故(1979)之后,核工业界开始对氢气-空气-水蒸气混合物的燃烧行为开展研究[1]。对于大型干式安全壳,早期的安全分析表明安全壳设计可以承受爆燃(Deflagration)产生的压力冲击。同时,由于导致氢气混合气爆轰(Detonation)所需的能量较高[2],而安全壳内不存在此类高能火源,因此不可能发生氢气直接爆炸。但在一定条件下氢气燃烧模式可由爆燃转变为爆轰(DDT)。与外点火源引起的爆炸相比,DDT 现象出现不需要点火源提供较高能量,因此更可能在安全壳内发生,但其发生受到混合物组成、几何条件等因素的影响,机理较为复杂,是90年代至今氢气燃烧研究的重点[3]。 本文由火焰加速(FA)及爆燃-爆炸转变(DDT)的基本现象及发展过程出发,介绍了其中涉及的重要的火焰不稳定机制以及经典爆震波理论,同时,对业界开展的大型氢气燃烧实验进行了梳理,并对目前湍流燃烧数值模拟及其在工程中的应用存在的困难进行了分析。 2 火焰加速和爆燃-爆轰转变现象 火焰加速(FA)和爆燃-爆炸转变(DDT)现象本质是

在线钠表在压水堆核电厂的常见故障及解决措施

在线钠表在压水堆核电厂的常见故障及解决措施 摘要:及时、准确的测量钠离子浓度对核电厂机组 的安全运行至关重要。结合压水堆核电厂在线钠表在调试、运行期间出现的常见故障进行案例分析,提出以后钠表维护期间应注意的重点,为提高电厂在线钠表测量准确性和化学监督水平提供了有效的技术手段。 关键词:压水堆;在线钠表;常见故障 DOI:10.16640/https://www.doczj.com/doc/8d4851069.html,ki.37-1222/t.2018.09.091 1 在线钠表的重要性 NaOH作为一种强电离的碱,能够提高pH值,同时还会发生局部浓缩,在高温和热通量的功率运行时,钠离子的不正常浓缩会产生严重的后果,如燃料包壳的均匀腐蚀、堆芯中不锈钢螺钉产生裂纹、蒸汽发生器传热管一次侧产生裂纹、蒸汽发生器二回路侧发生晶间腐蚀[1]。 钠表是核电厂化学在线仪表中最关键的仪表之一,提高化学监督水平,严格控制水汽品质,可防止和减缓热力设备腐蚀、结垢,提高设备的安全性,延长使用寿命,提高机组运行的经济性。 2 在线钠表的常见故障及解决措施 2.1 在线钠表读数与人工分析偏差大

某核电厂在运行期间,蒸汽发生器下排污钠表一度出现读数与实验室一直存在偏差的异常情况。 由上表所得,实验室分析结果钠含量基本保持一致,而钠表数据前后波动较大。可以判定为在线钠表测量异常。 引起钠表读数异常的因素主要有: 1)钠表测量回路中存在脏污,校验过程中标液被污染,导致测量结果偏低; 2)电极使用时间过长,导致测量数据精度偏低; 3)标准液被污染或失效,导致钠表校验后测量不准。 2015.6.14-2015.6.16钠表数据测量持续偏高,6月17日对钠表电极进行更换,添加碱化剂,清洗测量管路,并重新对钠表进行校验,校验完成后钠表测量数据又持续偏低。 2015.6.23化学人员继续查找原因,发现6月17日校验使用标准液已过期,换用全新标准液对钠表再次进行校准后,数据保持在0.7ppb左右,和?v史正常数据相近。 结合蒸汽发生器下排污钠表测量异常的解决方案,重新评估钠表碱化剂最低刻度线,定期清洗测量管路,校验前检查标准液有效日期。 2.2 流通池漏水 钠表调试期间,发现标定时,到达虹吸的液位后,关闭转向阀,液位还在不断的下降,结果发现流通池底部密封不严,水一点点往外漏。最后将水排净,更换流通池密封圈,

核电工作几之后经验之谈

核电工作几年之后经验之谈 本文系转载,希望对向往核电的同学有点帮助 谨以此文献给那些即将进入核电工作的师弟师妹们 在核电大发展的今天,越来越多的人梦想进入核电工作,想乘着国家发展核电的大好契机实现个人人生价值,这种想法无可厚非,既顺应了国家的发展趋势,又能实现个人目标,何乐而不为呢?再者,在金融危机的大背景下,高校就业压力也越来越大,找个一般的工作有时候都很难,更不要说进入核电工作了。在外在的国家的号召和内心渴望的驱动下,很多师弟师妹们进入了核电工作。学生毕竟是学生,对:) 核电的运作机制也不太了解,等 到进入核电工作又感觉核电站的生活不是自己追求的生活的时候,想反悔都难了,大部分情形是骑虎难下。下来就通过简单的介绍,试图让师弟师妹们能对核电有个大致完整的了解。(有点大言不惭吧,^_^) 一.核电待遇。大家找工作最关心的就是待遇薪水,而核电站丰厚的待遇可能是吸引 大家来核电最大的动力了。客观的说核电待遇在社会阶层中算是中等偏上水平。每个公司不一样,有点工资高些,有的福利高些,但是总数基本上相差不大,这样主要是怕因为待遇问题造成人才流失,尤其是一个集团内部的电站之间,待遇是相差不大的。基本工资高的公司,福利就稍微逊色点,反之,工资低的话,其他福利补贴会略高一些。至于工资具体数额不便透露,原因有二:首先,工资数额是每个公司的商业秘密,其次,要是有些师弟师妹冲着工资来的,结果工资又没兑现,岂不是误人子弟?想了解详情的,可以找一些在你“目标电站”工作的校友私下里打听下。 二.核电工作内容。在核电工作,具体是干什么的,通常说来核电站前期有:生产准 备部、人力资源部、总经理部、采购处、设计管理处、工程建设处等等。前期主要是生产准备部的工作,比如说是操纵员的培养、技术人才的储备都是这个部门管理,而师弟师妹们去新开工的核电站工作,也基本上是去这些部门工作,随着工程的进展,这些大部门都会细化分成运行、维修、仪器控制、设计等处室。下面具体介绍这些处室: 运行:负责核电站的日常运行,相当于开车的司机,主要负责开车,他们关注的是如 何安全高效经济的让车满负荷运行以实现核电站的效益。运行人对电站工艺系统了解的很透彻,理论知识也很全面但对设备的具体结构和设计原理了解的不是很多 维修:就是负责电站设备的维护,还是以开车做比方,车子有问题了,你要能及时处 理问题缺陷,车子停下来了,维修的就更忙了,几乎所有设备都要修理,当然维修几百号人是不能完成这么庞大的任务的,通常每个电站都有很多承包商,这些承包商有来自核动力院的、也有来自常规电站检修工程公司的。 仪控:核电站的是个复杂的系统,如何让这些系统相互配合顺利工作,就是仪器控制 的主要工作。仪表的维护、控制系统的优化、工艺保护的实现都是仪器控制的主要工作。对于二回路的控制,中国的技术已经很成熟了,常见的DCS系统都能搞定,上海的新华、南 瑞都是我们国家比较厉害的企业。 三核电工作模式。核电的生活比较严谨,其主要工作是保证核安全,其次才是发电, 因为一旦出现核事故,不仅仅影响的是一个核电站,而是对整个中国核电的发展的进程造成影响。在这种大背景下,核电的工作效率没有外企那么高的,推诿扯皮的事情也有,又

PCTran压水堆核电站事故仿真实验报告

PCTran压水堆核电站事故仿真实验报告 一、预习报告 实验名称:压水堆核电站事故PCTRAN仿真模拟 实验目的:1、熟悉PCTRAN软件的使用; 2、利用PCTRAN软件模拟核电站的工作、事故工况和事故现象; 3、结合仿真软件深入了解核电站事故的发生原因、现象、后果。 实验仪器设备: 电脑、仿真软件 实验内容: 1、启动电脑,打开PCTRAN仿真软件,熟悉操作界面和 方法。 2、加载运行工况,然后加载事故工况。 3、在事故工况稳定之后,导出事故流程记录,并对事故 中产生响应的参数进行图表记录。 实验原理和背景材料: PCTRAN是基于PC的核能仿真软件包尤其针对核电站运行和事故反应的培训。如堆芯熔化,安全壳失效和放射性物质释放等严重事故也包含在它的范围内。从1985引入以来,PCTRAN 已经成为全世界安装在核电站和研究机构中最成功的培训仿真软件。从1996年起,PCTRAN被国际原子能机构(IAEA)选为年度先进反应堆仿真专题研讨会培训软件。相当多的大学用PCTRAN教授核能技术并用作硕士和博士的论文开发平台。 在核电站模拟方面,提供了正常运行时的仪表和控制显示。另外还提供了反应对冷却剂边界泄露或者安全壳失效的图标。组

合的放射物释放形成了应急计划区的放射性剂量分布。PCTRAN 可以为核电站的工作人员提供真实的培训和练习。模拟程序延展到可以根据现实的气象条件提供区域的剂量预测。它的运行可以是真实的速度也可以是数倍于真实的速度。它的图形用户界面使操作起来十分方便。所有的图标,文本信息和数据都是通过Microsoft Office Suite传递。 PCTRAN现有的模型: · GE BWR 2 (Oyster Creek), 4 (Peach Bottom), 5 (La Salle), 6 (River Bend) and ABWR (Lungmen) with Mark I, II, III or advanced containment · GE ABWR and ESBWR · Westinghouse 2-loop Chasma (300 Mwe) 与秦山一期同型, 600 MW Point Beach与秦山二期同型, and 4-loop (Salem) PWR dry containment or ice condenser containment (Sequoyah) · Westinghouse AP1000 三门或海阳 · Korean Standard Nuclear Plant OPR1000 and APR1400 · B&W (now Areva) PWR’s of once through steam generators (TMI)· Framatome PWR’s 3-loop大亚湾或岭澳, Areva EPR 1600, ATMEA PWR 3-loop, Mitsubishi APWR · ABB BWR’s (TVO) · Russian VVER 1000 田湾, 第三代 AES92

先进压水堆核电厂运行及典型事故仿真实验

(申报2018国家级虚拟仿真实验项目) 先进压水堆核电厂运行及典型事故仿真实验 Virtual Reality for Operation and Typical Accidents of Advanced Pressurized Water Reactor 实验指导书 (在线实验版) Experiment Manual(online) 简介 先进压水堆是当前我国核电技术发展应用的主流。本实验基于工业级的全范围多功能核电厂压水堆模拟机开发。实验内容为正常运行工况下触发的典型事故(冷段破口失水事故、蒸汽发生器传热管断裂事故、控制棒弹棒事故等)的演化瞬态过程及干预操作,也包含反应堆原理演示等。实验形式生动,支持远程运行。

实验分步指导 请在项目主页面点击“我要做试验”,或直接输入虚拟仿真实验项目网址:https://www.doczj.com/doc/8d4851069.html,/virexp/hdc,该页面包含了相关的实验资料,并可下载本实验指导书。点击“操作实验”进入在线实验页面。 注意,本实验支持IE内核的浏览器(如果是Windows 10内置Microsoft Edge 浏览器,打开后请中请点击菜单栏右上角的省略号“…”,在下拉菜单中选择“使用Internet Explorer打开”),推荐使用360极速浏览器。进入实验页面后,请按提示下载安装插件(UnityWebPlayer)。 插件下载完毕后,显示如下界面,进行在线实验的装载。 装载完毕后,显示实验开始界面。 点击开始后,进入在线实验界面。分为实验预备和正式实验两个环节。

实验预备:基础知识与实验原理回顾 在实验预备环节,可以选择如下动态观察和交互式操作,进行基础知识与实验原理的温习回顾,为正式实验做准备。 (1)基于核反应堆基本原理展示系统,观看压水堆部件结构动画演示; 图 核电站原理展示系统 (2)在核电站运行原理模拟机上,通过按钮进行交互式模拟核电站的各种操 作,包括启动、升功率、降功率、喷淋、停堆等关键操作。 图核电站运行原理模拟机界面

三代核电厂提升严重事故应对能力安全技术研发及应用-华南理工大学

附件4: 2018年度广东省科学技术奖公示表 项目名称三代核电厂提升严重事故应对能力安全技术研发及应用 主要完成单位中山大学 中广核研究院有限公司中广核工程有限公司华南理工大学 主要完成人(职称、完成单位、工作单位)1. 陈鹏(高级工程师、中广核研究院有限公司、中广核研究院有限公司) 2. 张小英(教授、中山大学、中山大学) 3. 展德奎(高级工程师、中广核研究院有限公司、中广核研究院有限公司) 4. 刘东杰(高级工程师、中广核工程有限公司、中广核工程有限公司) 5. 杨方青(工程师、中广核研究院有限公司、中广核研究院有限公司) 6. 张雷(工程师、中广核研究院有限公司、中广核研究院有限公司) 7. 梁峻铭(工程师、中广核研究院有限公司、中广核研究院有限公司) 8. 李华(实验师、华南理工大学、华南理工大学) 9. 王春发(工程师、中广核工程有限公司、中广核工程有限公司) 10. 王彪(教授、中山大学、中山大学) 11.林继铭(高级工程师,中广核研究院有限公司、中广核研究院有限公司) 12.张会勇(高级工程师,中广核研究院有限公司、中广核研究院有限公司) 13.冉小兵(研究员级高级工程师,中广核工程有限公司、中广核工程有限公司) 14.杨志飞(高级工程师,中广核研究院有限公司、中广核研究院有限公司)15.段承杰(高级工程师,中广核研究院有限公司、中广核研究院有限公司) 项目简介 项目面向自主三代核电厂严重事故应对能力安全技术提升,成功提出了一回路系统分析内耦合高精度和高稳定性的安全分析程序,三维堆芯熔化进程模拟程序;形成自主化的三代压水堆堆芯熔融物冷却滞留系统,形成完整的核电厂金属保温层工程设计、制造、施工工艺体系以及严重事故诊断响应支持系统,对于自主三代核电堆型“华龙一号”安全水平提升具有重大意义。主要技术创新包括: 1.提出了自主第三代大型压水堆堆芯与蒸汽发生器的直接耦合分析理论和高精度快速求解算法,实现全范围瞬态工况下反应堆一回路的热工水力分析。开发了三维堆芯熔化精细化模拟程序。 2.建设了三维IVR整体试验装置,攻克加热、密封等试验难题,获取国际首套1:5

核电厂安全题库与答案

1、按照反应堆堆芯体不同,核反应堆分为哪几种类型?(老师提 示7种) 压水堆、沸水堆、重水堆、石墨水冷堆、石墨气冷堆、高温气冷堆、快中子增殖堆、 2、压水堆核电站有什么优点? ①压水堆以轻水作慢化剂及冷却剂,反应堆体积小,技术十分成熟 ②压水堆采用低富集度铀作燃料,铀浓缩技术已经过关 ③压水堆核电厂有放射性的一回路系统和二回路系统分开,放射性冷却剂不会进入二回路而污染汽轮机,运行、维护方便;需要处理的放射性废气、废水及其他废物量较少 3、按照相关规定,核电厂应该设置哪几道安全屏障? 由燃料棒包壳构成的第一道屏障、由一回路压力边界构成的第二道屏障、安全壳及其辅助边界构成的第三道屏障 4、核反应堆第一道安全屏障由哪些部件构成? 燃料芯块、带压金属合金包壳及相关元件 5、核反应堆第二道安全屏障由哪些部件构成? 压力壳及其顶盖,蒸汽发生器一次侧,主泵(包括它们的第一道轴封),稳压器及其与一回路的连管、安全阀和卸压阀,一回路管道、蒸汽发生器和主泵、冷却环路的总成,压力壳内操作控制棒的机械装置,辅助系统(由与其相连的环路开始,到第二道隔离装置) 6、核反应堆第三道安全屏障由哪些部件构成? 反应堆厂房或安全壳、构成安全壳延伸的某些管道、安全壳隔离系统

管道、其他 7、如何保证安全壳的完整性? 可以通过改进安全系统以减轻施加在安全壳上的载荷,以及加强安全壳结构,使放射性物质的释放量减小到最低程度;加强其在设计、建造、运行和监督等环节的安全质量把关工作 8、核电厂一般设置哪几级防御?(5级) ①核电厂的设计、建造应考虑防止事故的发生,采取各种有效措施,在运行中提供必须的监督,把事故发生的概率降到最低程度,以达到预期安全运行 ②在满足第一级防御的各项要求之外,谨慎估计发生事故、影响安全的可能性及其对策问题 ③主要考虑如发生设计基准事故,而一些保护系统又同时失效时,必须有另外的专设安全设施投入工作,以防止燃料熔化和限制裂变产物释放 ④为防止和缓解核电厂的严重事故而采取的对策 ⑤以核电厂发生严重事故的应急对策为主要内容,以适时采取应急防护措施保护公众 9、核反应堆电厂核岛系统有哪些设备? 核蒸汽供应系统 ①压水堆及一回路主系统和设备 ②三个辅助系统:化学和容积控制系统、余热排出系统和安全注射系统

核电厂水化学处理系统调试导则 征求意见稿编制说明

核电厂水化学处理系统调试导则 编制说明 (征求意见稿) 2012年4月8日

一.任务来源及计划要求; 1、任务来源。 本标准是根据《国家能源局关于核电标准制修订计划的通知》(国能科技[2011]48号)的安排编制。能源局常规岛标准体系表总编号135,计划号“能源2011H084”。 由中广核工程有限公司、中广核设计有限公司、国核工程有限公司、西安热工研究院、苏州热工研究院5家单位负责承担《核电厂水化学处理系统调试导则》标准的编写任务,主编单位为中广核工程有限公司。 2、计划要求。 根据课题任务书相关要求,本标准各阶段草案的完成时间安排如下: 2011年11月30日,完成初稿; 2011年12月30日,完成征求意见稿及编制说明; 2012年5月30日,完成送审稿及编制说明; 2012年11月30日,完成报批稿及编制说明。 二.编制过程 1、主要起草人及工作分工: 文功谦,负责本标准编写过程组织、审查,标准结构定位,定期召开研讨会议等; 邵玉林,负责本标准的资料收集与分析、提炼、电厂实际情况调研、编写通用部分、设备单体调试、循环水加药、制氯部分,以及文字校对等工作; 李新民,负责标准中离子除盐部分的编写; 刘加合,负责标准中二回路加药、取样部分的编写; 滕维忠,负责标准中预处理部分和精处理部分编写。 2、编制原则: 本标准的编制按照GB/T1.1-2009 “标准化工作导则第1部分:标准的结构和编写”进行编制;本标准描述了核电厂水化学处理调试内容、试验方法,并针对核电厂水化学处理系统的特点,对系统的单体调试、分系统调试过程做出了基本的技术指南。 本标准编写坚持适用性、准确性和可操作性原则,力求能够指导核电厂水化

核电厂运行期末考试答案

(1)一回路及核岛辅助系统 专设安全设施 厂房 (2)换料水箱 地坑 (3)多道屏障 纵深防御 (4)控制棒组件 可燃毒物组件 阻力塞组件 初级中子源棒组件 次级中子源棒组件 (5)蒸汽发生器 (6)Inconel-690 (7)2.8Mpa 10°C-180°C (8)磷酸盐处理法 全挥发处理 (9)6.5Mpa 99.75% 34% 1.影响堆芯反应性的因素有哪些? 第一:燃料的燃耗和裂变产物的积累。包括裂变产物氙和钐引起的反应性变化 第二:堆芯温度的不断变化引起燃料温度的变化进而由于多普勒效应,核燃料的共振吸收峰展宽,核燃料对中子共振吸收增加,改变反应性;慢化剂密度的改变,单位体积内慢化剂核子密度改变,引起慢化剂慢化能力和吸收性能。中子截面改变,因为中子截面是温度的函数,降低了,可溶硼的溶解度改变引起反应性的变化。以上都会导致堆芯有效增值因素的变化,进而引起反应性的变化。是温度效应。 第三:化学毒物硼酸也会影响堆芯反应性。插入和拔出控制棒也会改变堆芯反应性。 2.简述主冷却剂放射性的来源。 ①水及其中杂质的活化 ②裂变产物的释放 ③腐蚀产物的活化 ④化学添加物的活化 3.举例说明核电厂选址考虑的因素有哪些。 (1)接近电力负荷中心 (2)有充足的冷却水源 (3)交通运输方便 (4)有良好的自然条件(如地形,地质,地震等) (5)减少废热废物排放对生物的影响和防止环境污染的可能性等 4.压水堆氚的来源。 (1)三元裂变(氚可有重核元素三元裂变产生) (2)中子反应 ①锂的中子反应T n Li ),(6 ②B 10的中子反应 (3)氘的活化 5.简述主管道发生破口事故时,安注系统的安注过程。 发生破口事故时,一回路压力缓慢下降,低压安注泵出口压力小于一回路压力时,作为高压安注的前置增压泵运行,一回路压力继续下降到小于蓄压箱注入压力时,蓄压箱内含硼水注

第三章 核电厂事故分析基本知识

第3章核电厂事故分析的基本知识 3.1 核电厂事故分析的作用 事故分析是研究核电厂可能发生事故的种类及发生频率,确定事故发生后系统的响应及预计事故的进程,评价各种安全设施及安全屏障的有效性,研究各项因素及操纵员干预对事故进程的影响,估计事故情况下核电厂的放射性释放量及计算工作人员与居民所受的辐射剂量。 在核电厂设计过程中,事故分析用于选取停堆保护信号,确定停堆参数整定值和停堆延迟时间,确定缓解事故的专设安全设施的参数。 对于设计基准事件的分析是核电厂安全分析报告中必要的一章。分析的目的在于表明该核电厂设计足以控制这些事件的后果,使工作人员、公众和环境不至于受到不适当的放射性风险。 通过严重事故分析,可以找到核电厂的薄弱环节,有助于提高核电厂的安全性。严重事故分析,还可作为制定应急计划的依据。 3.2核电厂事故分析的方法 事故分析采用确定论及概率论方法,这两种方法相辅相成。设计基准事件的分析,以确定论方法为主;严重事故的分析,两种方法并用,侧重于概率论方法。 3.2.1确定论安全分析 从系统及部件失效和损坏,或人员失误的角度,假定事故确定地发生,按照分析问题的要求,选用保守或现实模型以及一系列规则和假设,分析计算整个核电厂系统的响应,直至得到该事故的放射性后果。 保守模型 又称评价模型。在分析中采用的初始条件及各项参数,均须从不利方面加上不确定性。要选用保守的各种关系式及标准,此外还必须考虑四项基本假设。保守模型一般用于核电厂安全审批过程,在该模型中考虑了最不利的情况,得出的是事故后果的极限值,给核电厂留有相当大的安全裕度。其缺点是分析所得的事故过程,有时与真实情况相差较远,使工作人员不能了解过程的实际变化。 现实模型 又称最佳估算模型。在分析中采用核电厂的运行参数或参数的平均值,尽量选用接近真实情况的关系式及标准,不考虑不合实际的保守假设。因而所得结果能接近真实情况。现实模型经常用于核电厂操作规程的制定和严重事故分析。作为一种尝试,目前正在研究使用现实模型分析,在其结果上加上适当裕度,作为代替保守模型或平行于保守模型的一种方法。 在用确定论方法进行事故分析中,所涉及的事故分析程序大致可分成以下六种。 (1)系统分析程序 可以模拟核电厂的一、二回路系统以及稳压器、蒸汽发生器、泵、阀门、燃料元件等设备。具有能计及各种反应性反馈的点堆或一维中子动力学模型,一般在流体力学上是一维的,有些程序堆芯是三维的,程序的规模大,一般有数万至20余万行。总体上分析核电厂在失水事故及各种瞬变过程中系统的响应,是事故分析中最主要的程序,如RETRAN,RELAP5,TRAC等。 (2)堆芯分析程序 或可称之为子通道分析程序,它以系统程序计算的结果作为边界条件,考虑堆芯内各处

压水堆核电站工作原理简介

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低

秦山二期核电厂严重事故下安全壳内氢气浓度分布及风险初步分析

核 动 力 工 程 Nuclear Power Engineering 第29卷 第2期 2 0 0 8 年4月 V ol. 29. No.2 Apr. 2 0 0 8 文章编号:0258-0926(2008)02-0078-07 秦山二期核电厂严重事故下安全壳内 氢气浓度分布及风险初步分析 邓 坚,曹学武 (上海交通大学核科学与工程学院,上海,200240) 摘要:采用模块化严重事故计算工具,对秦山二期核电厂大破口失水事故(LB-LOCA)、小破口失水事故(LB-LOCA)和全厂断电(SBO)诱发的严重事故序列以及安全壳内的氢气浓度分布进行了计算分析。在此基础之上,参考美国联邦法规10CFR 关于氢气控制和风险分析的标准,对安全壳的氢气燃烧风险进行了初步研究。分析结果表明:大破口严重事故导致的安全壳内的平均氢气浓度接近10%,具有一定的整体性氢气燃烧风险,小破口失水和全厂断电严重事故可能不会导致此类风险,但仍然存在局部氢气燃烧的可能。 关键词:严重事故;安全壳;氢气浓度分布;氢气风险 中图分类号:TL364+. 4 文献标识码:A 1 引 言 在轻水堆核电厂严重事故进程中,锆合金包 壳与水或水蒸汽产生大量的氢气,并通过反应堆冷却剂系统(RCS)压力边界或压力容器破口释放 到安全壳中[1, 2]。如果压力容器下封头被熔穿,堆芯熔融物又会与安全壳堆腔内水或混凝土接 触反应,释放出大量氢气和少量其他易燃易爆气体[3]。释放的氢气在安全壳内扩散流动,与水蒸气、空气混合,形成可燃混合气体。当氢气的浓度超过可燃浓度限值4%时[4],则可能发生燃烧,甚至爆炸。这将会引起安全壳超压和温度升高,从而对安全壳的完整性构成威胁,放射性裂变产物因此可能释放到环境中,造成严重后果。 针对严重事故下安全壳内的可燃气体控制,我国最新颁布的《核动力厂设计安全规定》(HAF102)明确要求:“必须充分考虑在严重事故下控制可能产生或释放的裂变产物、氢和其他物质的措施”。另外,参考美国联邦法规10CFR 规定:①必须提供氢气控制系统以安全地容纳相当于100%燃料包壳金属-水反应产生的氢气;②在事故期间及以后,相当于100%燃料包壳金属-水反应产生的氢气均匀分布时的浓度小于10%。因此,对核电厂进行严重事故下安全壳内氢气浓度 分布的计算分析,根据计算结果确定有效的氢气控制措施,对于满足我国核安全法规要求,具有现实的工程意义。 氢气导致的安全壳失效风险与具体的严重事故序列、安全壳类型、体积和隔间结构等许多因素相关。本文以秦山二期核电厂为分析对象,使用模块化严重事故计算工具——MAAP 程序,对比分析了典型严重事故工况下的氢气产生以及氢气在安全壳内的流动分布情况。并参考法规要求,初步分析了该核电厂的氢气燃烧风险。这些分析工作,可为秦山二期核电厂的氢气控制和严重事故管理工作提供一些参考。 2 计算程序 本文使用模块化严重事故计算工具(MAAP4程序)对秦山二期核电厂不同严重事故条件下的安全壳内的氢气浓度分布进行了计算分析。MAAP 程序耦合了热工水力学计算以及裂变产物释放和迁移计算,可以模拟严重事故的进程现象,从初始事件开始,既可以向安全、稳定、可冷却的反应堆状态发展,也可以向安全壳结构失效最终导致裂变产物向环境释放的事故状态发展。MAAP 程序长期作为压水堆核电站严重事故 收稿日期:2007-03-30;修回日期:2007-09-10

10级-核电站调试与运行思考题

《压水堆核电厂调试与运行》 第1章绪论 1.核电厂运行与常规火力发电厂运行相比存在哪些特殊问题? 2.压水堆核电厂运行的一般原则是什么? 3.按照我国《核电厂设计安全规定》中的定义,核电厂状态分为哪几类?正常运行、预计运行事件、事故工况、严重事故 第2章核电厂技术规格书 4.核电厂技术规格书一般包括哪六个方面的内容? 5.什么是运行模式?核电厂可以将机组正常运行的状态按照热力学和堆 物理的特性划分为哪六个运行模式? 反应堆压力容器内装有燃料时堆芯反应性状态,功率水平,反应堆冷却平均温度和压力容器封头顶盖螺栓张紧程度的任意一种组合。 反应堆功率运行模式(RP)蒸汽发生器冷却正常停堆模式(NS/SG)余热排出系统冷却正常停堆模式(NS、RRA)维修停堆模式(MCS)换料停堆模式(RCS)反应堆完全卸料模式(RCD) 6.在运行模式p-t图中标出各种运行模式,并解释各限制曲线的物理意义。 7.核电厂运行限值和条件起到哪些作用? 8.运行限值和条件根据其性质可分为哪些?各限值大小间有何关系? 安全限值,安全系统整定值,正常运行的限值和条件及监督要求 第3章压水堆核电厂的调试启动 9.大型压水堆核电厂建设工程可以分为哪几个阶段? 10.核电厂调试的目的是什么? 11.缩写EC、SUT、EESR、TOB、TOTO、NCC、NSSS、HFT、LOCA、SRC的中文 含义是什么? 12.核电站所有硬件设备的现场安装施工是由什么部门负责?对安装完毕 的设备和系统的调试,使其在功能和性能上满足设计要求,是由什么部 门承担的? 13.从安装到调试的责任转移的标志是什么? 14.当系统发生责任转移时,会产生系统和设备在某一区域的安装和调试有 接口的情况,这时就必须实行什么? 15.当核电站的系统处于安装结束和调试即将开始的阶段,安装和调试活动 所涉及的两个文件是什么? 安装状态结束(EESR)报告隔离移交(TOB)报告 16.什么是安装结束报告?

典型压水堆核电厂一回路热力系统小破口失水事故计算分析

典型压水堆核电厂一回路热力系统小破口失水事故计算分析 核工程与核技术专业 学生指导老师 [摘要]压水堆是使用轻水作冷却剂和慢化剂,在高温、高压条件下运行的核反应堆,它所使用的燃料为低浓度的浓缩铀。在20世纪80年代,压水堆被认为是技术最成熟,最经济,最安全的堆型。目前,我国内地大部分正在运行和在建机组为压水堆机组。而压水堆核电站与普通火电站的最大区别就在于:它的一回路带有放射性。当压水堆发生小破口失水事故后,可能导致反应堆冷却剂中的放射性物质进入安全壳,经安全壳泄露之后,会污染环境。而通过研究典型压水堆核电厂一回路热力系统在小破口失水事故工况下的系统响应,能够让我们对压水堆核电厂的安全有更直观的认识,确保核电能够安全有效的为人类服务。 本论文是以典型压水堆核电厂为研究对象,用RELAP5软件为工具,对核电厂的一回路热力系统进行建模和仿真。建模和仿真的范围是:反应堆冷却剂系统(RCP)、与安全分析有关的一回路辅助系统。一回路辅助系统主要包括:辅助给水系统(ASG)、反应堆余热排出系统(RRA)、安全注入系统(RIS)和化学容积控制系统(RCV)。在建模的过程中运用了模块化结构的方法,即:先将一回路的热力系统模型分解为若干个功能独立,能够分别调试、设计以及验证的模块,然后再逐层耦合组成分系统模型,最后整合成完整的一回路热力系统模型。 根据所建一回路热力系统模型进行稳态计算,并将计算结果与典型压水堆核电厂的数据进行对比分析。在此基础上,对冷管段的小破口失水事故的极限工况瞬态过程进行了模拟和分析,通过仿真实验,了解事故发生过程中反应堆堆芯的热工水力状况。 [关键词] 压水堆,RELAP5,一回路热力系统,建模,小破口失水事故

压水堆核电站组成

压水堆核电站组成 上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护 enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次 压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。 2-1 压水堆主要部件 2-1-1 堆芯 堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。 压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。用富集度为2%—4.4%的低富集铀为燃料。所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。 图2-1(a) 压水堆堆芯横剖面图

图2-1(b) 压水堆燃料组件 燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。 堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。第一个运行周期的长度一般为1.3—1.9年。以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。通常将新燃料装入最外区,将辐照过的燃料移向中心,称由外向内换料方案。由于辐照过燃料组件的放射性水平极高,所有装卸料操作均在水屏蔽层以下进行。为换料一般需要停堆3—4周,可利用这个时间进行汽轮发电机组及其它设备的检修,压力容器和蒸汽发生器在役检查工作。 为了确保燃料元件的安全,在运行中要严格限制核电站的负荷变化速率〈每分钟5%额定功率〉,用化学与容器控制系统和取样系统对冷却剂水质进行净化,PH值、氧、氢、氯、氟、硼、酸、锂-7等含量的控制及监测,并加强对燃料包壳完整性的监督。 2-1-2 控制棒组件

核电站调试与运行思考题

第一部分: 教材《900MW压水堆核电站系统与设备(上册)》(核岛) 1.稳态运行时,RCP系统处于什么状态?冷却剂平均温度如何选取? 2.蒸汽发生器水位如何测量? 3.蒸汽发生器水位整定值随负荷如何变化?※ 4.蒸汽发生器水位水位调节的原理是什么? 5.蒸汽发生器给水流量、蒸汽流量、蒸汽压力、给水-蒸汽母管压差如何测量? 6.试述稳压器压力控制原理。 7.稳压器水位过高或过低有哪些危害? 8.稳压器水位整定值如何确定?※ 9.试述稳压器水位控制原理。 10.论述正常运行工况、冷停堆和热停堆工况、机组启动、机组停堆、事故工况 时化容系统的运行。※ 11.试述反应堆硼和水补给系统正常补给的操作方式。 12.余热排出系统的运行范围是什么? 13.余热排出系统投入前一回路应具备哪些主要条件? 14.一回路冷却和加热过程中余热排出系统如何运行? 15.余热排出系统停运时外部先决条件有哪些? 第二部分: 教材《900MW压水堆核电站系统与设备(下册)》(常规岛) 16.正常运行时主蒸汽压力、流量与负荷之间有何关系?※ 17.正常运行时,旁路排放系统处于什么状态? 18.甩负荷时,旁路排放系统如何动作? 19.在反应堆启动和停运(余热排出系统未投入)、热备用、热停堆状态下,旁路 排放系统处于什么状态?※ 20.再热器隔离的原则是什么?※ 21.试述汽轮机轴封系统启停及正常运行的主要操作。 22.凝结水的控制包括哪三个控制系统? 23.低压加热器如何解列?※ 24.试述低压给水加热系统启停的主要操作。 25.试述给水除氧器系统冷态、热态启动及正常停运的主要操作。 26.负荷变化时,除氧器水位如何控制? 27.简述汽动给水泵向蒸汽发生器供水的主要过程。 28.当一列高加隔离时,如何向蒸汽发生器供水? 29.当机组小于18%额定负荷运行时,主给水流量控制系统如何向蒸汽发生器供 水?

核电厂汽轮发电机组调试技术导则 征求意见稿编制说明

核电厂汽轮发电机组调试技术导则 编制说明 (征求意见稿) 2012年4月8日

一.任务来源及计划要求 任务来源: 本标准是根据国家能源局印发的《国家能源局关于核电标准制修定计划的通知》(国能科技【2011】48号)的任务安排对《核电厂汽轮发电机组调试导则》进行编制的。能源局常规岛标准体系表总编号117,计划号“能源2011H077”。 计划要求: 本标准各阶段草案的完成时间安排为:2011年 12 月,完成编制组讨论稿, 2012 年 03 月完成征求意见稿, 2012 年 05 月完成送审稿, 2012 年 08 月完成报批稿。 二.编制过程 主要起草人及工作分工: 由中广核工程公司调试中心组成标准编制小组,小组成员有秦世刚、李响、霍雷、牛月套、刘勇等,其中秦世刚为编制组组长。 编制原则: 本标准的编制按照GB/T1.1-2009 “标准化工作导则第1部分:标准的结构和编写”进行编制;本标准作为压水堆核电厂常规岛及BOP标准体系中调试类的标准,主要规定常规岛汽轮发电机组调试过程中应进行的试验项目以及各试验的主要内容,本标准适用于指导我国新建压水堆核电厂常规岛汽轮发电机组调试。 编制组内部讨论情况: 本标准于2011 年11月25日进行了标准组内部讨论,讨论了5个问题,最后达成一致意见,并形成《编制组讨论稿》。 2012年2月在溧阳召开了行业标准初稿评审会,通过了专家的评审。会后编制组依据专家提出的评审意见对该初稿进行了修改,并于2012年3月《编制组讨论稿》上报公司总师办标准信息处审查,根据审查意见形成《征求意见稿》。 三.调研和分析工作的情况 标准编制过程中,编写组调研了岭澳一期核电站、岭澳二期核电站、宁德核电站、红沿河核电站、阳江核电站,另外还参考了秦山二期、三期核电站的相关调试过程。编制组认真研究了上述核电厂常规岛汽轮发电机组的设计、调试文件等,总结得出了调试过程需要进行的试验项目。 四.主要技术内容的说明 本标准主要规定本标准规定了新建核电厂汽轮发电机组及常规岛相关系统单体调试、分系统调试及整套启动调试过程中的主要试验内容和试验要求。 本标准适用于新建核电厂汽轮发电机组相关的常规岛系统调试试验。。五.验证试验的情况和结果 编制组成功组织实施了岭澳二期核电站2台机组常规岛汽轮发电机组调试工作,获得了大量的第一手资料。 六.采用国和国外先进标准情况

相关主题
文本预览
相关文档 最新文档