当前位置:文档之家› 基于IEC61850的智能分布式馈线自动化模型

基于IEC61850的智能分布式馈线自动化模型

基于IEC61850的智能分布式馈线自动化模型
基于IEC61850的智能分布式馈线自动化模型

智能配电网分布式馈线自动化技术 郑文彩

智能配电网分布式馈线自动化技术郑文彩 发表时间:2017-11-24T10:34:39.573Z 来源:《电力设备》2017年第21期作者:郑文彩孙宝磊[导读] 摘要:目前,我国的配电自动化有很多试点,由分布的主站、分站和馈线端子结构形成的三层结构已得到普遍认可。 (国网山东省电力公司兰陵县供电公司山东临沂 277700) 摘要:目前,我国的配电自动化有很多试点,由分布的主站、分站和馈线端子结构形成的三层结构已得到普遍认可。光纤通信作为通信的主干也已经达成共识。馈线自动化的实现也可以在光纤通信的基础上构建,这使得馈线终端可以彼此快速通信,以实现更高性能的分布网络单相接地故障处理功能。通过自动监控的方式了解馈线线路中的每一个分段开关和联合开关的闭合情况以及电流电压的运行情况,并且能通过远程操控对馈线电路中的开关的闭合与开启以及电流电压的流通进行控制。 关键词:智能配电网;分布式馈线;自动化技术;应用 引言 随着经济的持续发展及科技的不断进步,供电可靠性越来越受到人们关注,同时,它也是电力公司争创一流的重要技术指标。馈线自动化(Feeder Automation,FA),作为配电自动化的一项的核心功能,是提高配电网可靠性的关键技术。 1 自动化的概念 所谓的自动化听起来是个比较专业的名词,其实简单地来说,自动化就是在没有人力的情况下,利用各种不同的传感器来控制工作需要使用的各类机器,执行它的控制功能。自动化的产生比较早,可以始于人们开始发明出机器并且利用机器按照设计机器时所设定的功能和必要的程序来代替人力进行一些固定的简单的重复性强的工作,已达到将人力从复杂、繁重、简单重复的劳动中解放出来,并且工作于需要脑力较多机器暂时无法代替的任务中。但是机器只做简单的工作随着时代的发展并不能满足人类的需求,为了让人类尽可能的解放出来,对机器的要求越来越高,不仅要求机器能自动地按固定程序工作,而且要求机器要在外界环境不断变化的情况下能够完成自己的任务,机器要具有分析外界环境变化的能力,并且结合自己接受到的外界信息来调整自己的行动。自动化技术就是研究如何能通过各种工具使机器自动的完成一些工作从而提高人类生活和工作的质量。 2 分布式馈线 馈线自动化(Feeder Automation,FA),是配电自动化的重要组成部分,是提高配电网可靠性的关键技术。当馈线在运行中发生故障时,能自动进行故障定位,实施故障隔离和恢复对健全区域的供电,提高供电可靠性。馈线自动化系统在实际的工作中,能够实现对馈线分段开关、联络卡关、线路开关的分闸操作和自动化系统的电压情况进行远程的跟踪和实时的监测,大大提高了馈线自动化系统的可靠性和安全性,能够在第一时间掌握发生故障的信息,并得到及时的解决,从而提高了供电的质量和稳定性,能够在发生停电故障时,减少停电的时间和影响的范围。(1)馈线自动化一次设备:一次设备的线路开关在变压器内的断路器切除了故障后,线路已经在停电状态下进行操作的。一般在实际的选择时,为了减少馈线自动化建设的成本消耗,都选用无电流开断能力的分段开关。(2)FTU:控制箱设备可以说是FTU馈线自动化系统的核心。控制箱能够实现馈线系统的统计、对时、遥信、和遥控功能,利用空间箱,能够对系统的事故进行记录,让馈线自动化系统实现自检,完成自我恢复。(3)FA控制主站:在FTU馈线自动化系统进行正常工作时,FA控制主站的主要功能就是联系起众多的分散的单元,相当于整个系统中的转发和通道集中装置。 3 智能配电网分布式馈线自动化技术的应用 随着我国当前经济的快速发展,电能对于经济的发展产生了极大的影响。在此现状下,关于配网的运行状况,以及工程建设也越来越复杂。此种情况下,配网的运行状态则影响着区域经济的发展以及电能的稳定供应。 3.1 快速定位故障 FA 仅将环网柜间隔发送的过流信号作为故障点判断依据,有故障电流流过的末端环网柜间隔即为故障点。如果末端环网柜故障间隔因设备缺陷未发过流信号将造成 FA 对故障点判断错误、扩大隔离范围、误导配网人员对故障点的查找。现有 FA 故障定位逻辑只单一依靠故障电流流过的环网柜间隔所发的过电流信号作为判断依据,而即使线路后端环网柜间隔保护出口跳闸,FA 故障定位逻辑也不会定位至该故障点处。通过与项目组沟通后,将配电自动化终端设备发出的保护出口信号也纳入 FA 故障定位判断逻辑条件,很大程度上完善了 FA 功能的故障定位功能。 3.2 馈线自动化的配网单相故障处理 第一,参与协同保护的是整个控制组,一个控制组所含的 FTU 只是本条馈线上所有的 FTU,只要单相接地故障发生在这条馈线上,整个控制组就会识别。第二,当发生较大的电流故障时,只有一个FTU 控制组能启动;并会发生单相接地故障,但是只能依靠零序电压启动,所以整个变电站所有控制组都被激活。第三,单相接地故障的发生,由于相对复杂的标准,一般处理将放在第一个控制组的第一个节点,不是两两通信。最后,纵向识别不能完全取代横向识别,尤其是对于不是全站实现馈线自动化的变电站,横向识别必不可少。 结束语 离线仿真平台不仅能够模拟故障,测试FA 动作情况,验证策略正确性。由于其较实时系统具有同步性及独立性,能够实现实时系统的功能且不会对实际运行设备造成任何影响,基于此特点,我们还将该系统应用于调度实际培训及 FA 投运校验工作。利用离线仿真平台模拟故障,还原现场,通过故障仿真培训有效提升配网调控员事故处理能力。 参考文献: [1] 刘剑.10kV配电网馈线自动化发展与现状分析[J].企业技术与开发,2010(11). [2] 刘健.配电网故障处理研究进展[J].供用电,2015(4):8-15. [3] 黄秋月.关于配网调度的馈线自动化应用要点分析[J].中国新技术新产品,2015,03:2.

几种馈线自动化方式

1.集中控制式 集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。 优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。 缺点:终端数量众多易拥堵,任一环节出错即失败。 案例: 假设F2处发生永久性故障,则 变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。 隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制 2.1负荷开关(分段器) 主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。 这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。 在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。 (1)基于重合器与电压-时间分段器方式的馈线自动化 基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。 而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。 特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。 (2)基于重合器与过流脉冲计数分段器方式的馈线自动化

智能分布式配电终端FTU-DTU..

智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

智能分布式馈线自动化的现状及发展趋势

暨南大学 本科生课程论文 论文题目:智能分布式馈线自动化 的现状及发展趋势 学院:电气信息学院 学系: 专业:自动化 课程名称:配电自动化 学生姓名: 学号: 指导教师:李伟华 2013年12 月23 日

0引言 (2) 1智能分布式馈线自动化及其故障处理概述 (3) 2分布式馈线自动化的发展概况及其局限 (3) 2.1现阶段馈线自动化系统技术分析 (2) 2.2馈线自动化技术故障处理的局限性 (2) 3智能分布式馈线自动化亟待解决的问题 (2) 3.1无电源端故障判别问题 (2) 3.2三相故障加速问题 (3) 3.3线路空载加速问题 (3) 4未来配网自动化的发展趋势 (3) 结论 (4)

智能分布式馈线自动化的现状及发展趋势何伶珍暨南大学电气信息学院广东珠海519000 摘要:智能分布式FA 的引进运用于配电网中, 大大减少无故障线路的连带性事故停电、缩小故障停电范围、缩短用户停电时间,从而提高用户的供电可靠性, 对电网的安全运行具有重要意义。本文以智能分布式FA 技术为基础, 讨论了智能馈线自动化的发展情况,重点论述了智能分布式馈线自动化故障处理的现状并就智能化馈线自动化系统组成进行了探讨,分析了其研究方向和亟待需要解决的问题。 关键词:智能配电网;分布式;馈线自动化;发展趋势 Abstract:The introduction of intelligent distributed FA used in the distribution network, greatly reducing trouble of route accidents blackout, power failure narrow range, shorten outage time users, so to improve the reliability of power supply for users, is of great significance to the safe operation of power grid.This paper is based on intelligent distributed FA technology, discusses the development of intelligent feeder automation, discusses the status of intelligent distributed feeder automation and intelligent feeder automation system are discussed, analyzed research direction and problems to solve. Keywords: intelligent distribution network;distributed;Feeder automation; the development trend 0 引言 馈线自动化( Feeder Automation,FA) ,又称配电线路自动化,是配电自动化的重要组成部分,是配电自动化的基础,是实现配电自动化的主要监控系统之一。馈线自动化是指在正常情况下,远方实时监视馈线分段开关与联络开关的状态和馈线电流、电压情况,并实现线路开关的远方合闸和分闸操作,在故障时获取故障记录,并自动判别和隔离馈线故障区段以及恢复对非故障区域供电。馈线自动化是提高配电网可靠性的关键技术之一。配电网的可靠、经济运行在很大程度上取决于配电网结构的合理性、可靠性、灵活性和经济性,这些又与配网的自动化程度紧密相关。通过实施馈线自动化技术,可以使馈线在运行中发生故障时,能自动进行故障定位,实施故障隔离和恢复对健全区域的供电,提高供电可靠性。 随着社会对电力需求的不断增长及对电能质量要求的不断提高,现有的配网故障处理及运营方式越来越难以满足用户对电能安全性及和可靠性的要求,配电自动化系统正是一种可以提高供电可靠性的重要技术手段,而它的核心就是馈线自动化功能。在配电自动化系统中,馈线自动化对于提高供电可靠性、减少停电面积和缩短停电时间具有深远的远的意义。它可以使停电时间大幅减少,并将线路故障范围从整条缩短到故障节点所在的分段之内,其最终效果使得停电故障对用户(或社会)

馈线自动化两种实现模式的对比研究

龙源期刊网 https://www.doczj.com/doc/874364258.html, 馈线自动化两种实现模式的对比研究 作者:吴慧 来源:《中国新技术新产品》2015年第02期 摘要:本文主要结合孝感城区配网馈线自动化建设探索实践经验,针对馈线自动化的两 种实现模式,分别从选点原则、动作原理、实践效果方面进行对比分析,提出建议。 关键词:配网自动化;馈线自动化;实例分析 中图分类号:TM76 文献标识码:A 馈线自动化实现故障处理的模式主要分为集中式和就地式两类。下文就孝感供电公司馈线自动化建设探索进程,对馈线自动化两种模式分别进行对比分析。 一、集中式模式实例分析 孝感城区配网自动化系统于2009年7月开始建设,11月底投入运行。系统采用双层体系结构,主要由主站层和终端设备层组成,二者之间通过光纤网络进行数据通信。 1选点原则:联络点优先、就近接入 对城区10KV配网128组开关进行了改造,加装电操机构和测控元件,并全部配备智能终端。系统监控设备总数约占当时配网设备总数的40%。 2动作原理:配网常采用手拉手环网常开运行方式:正常运行情况下,开关1、2、3、4 合闸位置,联络1开关分闸位置,如图1所示。 若开关3至开关4之间发生短路故障,则可能存在开关3、2、1三级跳闸的情况,此时必须这三级开关中至少有一组保护信号变位+开关动作触发DA计算启动,主站同时接收到多个开关保护信号变位后,按照电流方向和设备连接的拓扑关系,从馈线段的首端向末端查找,找到最后一个发送保护信号的开关3后,主站判定实际故障区域为开关3——开关4。 (1)开关3保护信号变位+开关3跳闸,隔离方案:开关4分闸;恢复方案:联络1合闸。 (2)开关3保护信号变位+开关2跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关2合闸、联络1合闸。 (3)开关3保护信号变位+开关1跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关1合闸、联络1合闸。

浅谈智能配电网分布式馈线自动化技术应用 林丹

浅谈智能配电网分布式馈线自动化技术应用林丹 发表时间:2018-05-30T09:01:37.530Z 来源:《电力设备》2018年第2期作者:林丹 [导读] 摘要:随着我国经济技术的全面发展,民众的生活水平得到了大力提升,电力资源作为一种与民众日常生活和社会生产密切相关的现代能源,对供电稳定性提出了更高的要求。 (广东电网有限公司汕头供电局广东省汕头市 515041) 摘要:随着我国经济技术的全面发展,民众的生活水平得到了大力提升,电力资源作为一种与民众日常生活和社会生产密切相关的现代能源,对供电稳定性提出了更高的要求。在信息技术和能源技术飞速发展的大背景下,电力传输技术经历了一个飞速发展的过程,智能配电网分布式馈线自动化技术就是其中的典型代表,给全社会提供了高质量的电力能源。该文在前人研究的基础上对智能配电网分布式馈线自动化技术进行了重点介绍,并着重分析了其在输电工程中的应用,希望对我国电力系统的进一步发展有一定的指导意义。 关键词:智能配电网;分布式馈线;自动化 1 概述 1.1 智能配电网 智能配电网的形成是基于配电网,加设网络信息传输设备。通过计算机软件的数据处理,将配电网中所有用电单位的数据进行统计,并针对数据作出集成处理。最终将配电网的各类数据,形成的数据表格或图形的智能化操作。 1.2 分布式馈线 馈线区别与输电线路,其主要作用为传输信号,监控整体配电网的运行状态,并针对其中出现的问题进行快速地反馈和处理。由于整体的配电网范围较大,涉及的用电单位也较多。因此为了保证整体配电网都在馈线的监控之下,施工人员将馈线合理地分布连接在整个配电网之上。形成对整体配电网的运行监控,最终形成的全体馈线称之为分布式馈线。 1.3 自动化技术 当前针对智能配电网分布式馈线自动化技术的应用,主要存在数据监控、数据反馈、数据处理、结果执行等方面。此类操作通过网络通信,结合硬件控制完成对配电网设备线路的控制。最终达到在较短的时间内,处理相对应的故障,保障整体配电网的安全运行。 2 分布式馈线自动化的技术特征 2.1 分布式馈线自动化的基本功能分析 分布式馈线自动化技术简称FA,其基本功能就是在系统某一部位发生故障时可以利用物理开关的结构在几秒或是几十秒内切断电源,最大限度地减小局部设备故障对系统整体产生的不利影响,并利用主站快速的分析能力和故障处理能力在几分钟内实现故障的计算、处理措施的选择以及处理指令的发出等,理想状态下可以在十几分钟之内实现恢复供电。配电网馈线自动化需要的投入资金比较大,容易受到网络黑客的攻击,造成整个自动系统的崩溃。为了应对这一问题,我国电力系统积极引进以太网和GPRS等先进技术,并建成了新型的FTU馈电自动系统,主要有光线以外网、无线、专线等工作模式,有效地控制了工程建设成本,降低了故障发生概率,具备优良的性能。 2.2 分布式馈线自动化系统工作模式 配电网分布式馈线自动化的主要工作流程分为故障诊断与故障识别等两个工作阶段。故障处理是配电网馈线自动化系统最主要的功能,相较于传统配电系统重合闸的工作形式相比,馈线自动化技术更具可靠性、灵活性与及时性,可以对线路故障、瞬时或永久故障等进行及时在线处理,有效地避免了电闸切断电源给系统带来的电流震荡影响,降低了对电路系统的二次损坏。馈电系统故障自动检测系统的工作流程分为3个阶段:以配电终端为基础进行故障检测、子系统分析中心进行初步处理、主站系统收集数据进行集中处理。如果子站系统不能成功实现故障部位的隔离就会将相关信息送交主站系统进行计算、整体调度和集中处理。 馈线自动化系统中的FTU模块负责对收集的故障信号进行集中计算与处理,可将电流的瞬时采样值作为故障评判标准。如出现单相电的接地故障时,零线电位会出现与正常线路相反的情况,且正常线路的电压值是故障电位的1.5倍以上,基于这些电路信息FTU系统就会自动识别这些电路特征,判定故障等级。但是从目前我国输电网配电系统的工作情况来看,由于普遍采用中性点不接地等零序分量幅值小的模式,造成了故障诊断的准确性下降,因此可以通过增设开关操作序列提示等功能提升对接地故障的检测准确性。 3 智能配电网分布式馈线自动化技术的具体应用 3.1 配电网整体监控 智能配电网的形成,提高了整体配电网的安全稳定运行。当前我国智能配电网分布式馈线自动化技术应用的主要手段之一为:配电网整体监控。配电网由于涉及的用电单位较多,涉及的范围也较大。因此一旦出现供电故障,产生的影响也较大。当前分布式馈线自动化技术在配电网中的应用,主要为监控整体的配电网。通过对整体配电网的合理分配,将馈线分布在整体的配电网之上。通过馈线对整体的配电网运行状态,进行有效地监控。 3.2 多电源保护管理 变电站将电力变压之后,将不同电压的电力进行输送。因此一般情况下变电站中的电源线路较多,同时供电的单位也较多。一旦发生局部线路故障,就有可能造成整体配电网的故障。针对此类情况智能配电网中分布式馈线自动化技术,对变电站输出电路电源进行保护。以此保证局部电源线路出现问题时,能够快速地进行电源的隔离。并保证其他电源线路的安全供电,随后针对故障电源线路进行恢复,减少了因局部线路故障引起的大范围停电。 3.3 自动化联防控制 当前针对智能配电网分布式馈线自动化技术的应用,依靠网络技术结合硬件控制进行。例如:当部分线路出现故障时,馈线针对其运行状况作出反馈。自动化系统根据反馈数据,启动硬件设备例如继电器等设备。将故障设备,从整体的配电网中隔离。以此保证其他线路的安全运行,并在此过程中完成故障线路的故障控制。 3.4 快速处理 网络技术的快速发展,对于当前经济的发展起到了促进性的作用,极大地方便了人们的日常信息沟通,当前在变电站中的应用也较多。其中智能配电网分布式馈线自动化技术,其核心技术即为网络通信技术。网络技术的特性为快速性、及时性,因此针对智能配电网分布式馈线自动化中的应用,也具备此类特性。电力故障在配电网中的影响较大,因此数据的快处理能够提升故障的处理速度,一定程度上

简述配网自动化及馈线自动化技术

简述配网自动化及馈线自动化技术 摘要:馈线自动化在配电网自动化系统中发挥着非常重要的作用,可远程实时 监测馈线运行过程中电压和电流参数变化以及各种开关设备和保护装置的状态, 实现远程操作控制保护装置,对开关设备进行分闸和合闸操作,准确记录配电网 线路的故障情况,并且实现故障线段的自动隔离,保障非故障线路的安全可靠供电。因此应仔细研究配电网馈线自动化技术,优化和完善馈线自动化设置,确保 配电网的安全、稳定运行。 关键词:配电网;馈线;自动化技术 一、配网自动化及馈线自动化的内容 配电自动化系统的建设应包括以下五方面:配电网架规划、馈线自动化的实施、配电设备的选择、通信系统建设和配网主站建设。 1.1配电网架规划 合理的配电网架是实施配电自动化的基础,配电网架规划是实施配电自动化 的第一步,配电网架规划应遵循如下原则:遵循相关标准,结合当地电网实际; 主干线路宜采用环网接线、运行、导线和设备应满足负荷转移的要求;主干线路 宜分为段,并装设分段开关,分段主要考虑负荷密度、负荷性质和线路长度;配 电设备自身可靠,有一定的容量裕度,并具有遥控和智能功能。 1.2馈线自动化的实施 配电网馈线自动化是配电网自动化系统的主要功能之一。配网馈线自动化是 配电系统提高供电可靠性最直接、最有效的技术手段,因此目前电力企业考虑配 网自动化系统时,首先投人的是配网馈线自动化(DA)的试点工程。馈线自动化 的主要任务是采用计算机技术、通信技术、电子技术及人工智能技术配合系统主 站或独立完成配电网的故障检测、故障定位、故障隔离和网络重构。目前通过采 用馈线测控终端(FTU)对配电网开关、重合器、环网柜等一次设备进行数据采 集和控制。因此,FTU、通信及配电一次设备成为实现馈线自动化的关键环节。 配网馈线自动化主要功能包括配网馈线运行状态监测,馈线故障检测,故障定位,故障隔离,馈线负荷重新优化配置,供电电源恢复,馈线过负荷时系统切换操作,正常计划调度操作,馈线开关远方控制操作,统计及记录。 配电网馈线自动化系统,与其它自动化系统关系密切,如变电站综合自动化 系统、集控中心站、调度自动化系统(SCADA)、用电管理系统、AM/FM/GIS地 理信息系统、MIS系统等。因此必须采用系统集成技术,实现系统之间信息高度 共享,避免重复投资和系统之间数据不一致。配电网中的停电包括检修停电和故 障停电两部分,提高供电可靠性就是要在正常检修时缩小因检修造成的停电范围;在发生故障时,减小停电范围,缩短停电时间。这就要求对具有双电源或多电源 的配电网络,在进行检修时,只对检修区段进行停电,通过操作给非检修区段进 行供电;故障时快速的对故障进行定位、隔离、恢复非故障区段的供电。配电网 络的构成有电缆和架空线路两种方式。电缆网络多采用具有远方操作功能的环网 开关,对一次设备和通信系统的要求高,适合于经济发达的城区;对于大多数县 级城市,配网改造必须综合考虑资金和效果两个因素,采用以重合器、分段器和 负荷开关为主的架空网络方案比较合适。其中,架空线路电源手拉手供电是最基 本的形式。线路主干线分段的数量取决于对供电可靠性要求的选择。理论上讲, 分段越多,故障停电的范围越小,但同时实现自动化的方案也越复杂。在手拉手 供电方式下,要求系统对各分段的故障能够自动识别并切除,最大限度缩短非故

基于智能分布式FTU、智能分布式DTU的智能分布式馈线自动化方案实现

基于智能分布式FTU、智能分布式DTU的智能分布式 馈线自动化方案实现 一、架空线路智能分布式馈线自动化(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

国家电网公司就地型馈线自动化技术原则(试行)

附件7: 就地型馈线自动化技术原则 1自适应综合型 自适应综合型馈线自动化是通过“无压分闸、来电延时合闸”方式、结合短路/接地故障检测技术与故障路径优先处理控制策略,配合变电站出线开关二次合闸,实现多分支多联络配电网架的故障定位与隔离自适应,一次合闸隔离故障区间,二次合闸恢复非故障段供电。以下实例说明自适应综合型馈线自动化处理故障逻辑。 1.1 主干线短路故障处理 (1)FS2和FS3之间发生永久故障,FS1、FS2检测故障电流并记忆1。 FS1 1CB为带时限保护和二次重合闸功能的10KV馈线出线断路器 FS1~FS6/LSW1、LSW2:UIT型智能负荷分段开关/联络开关 YS1~YS2为用户分界开关

CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 YS1 YS1 (2)CB 保护跳闸。 CB CB LSW1 LSW1 FS6 FS6 YS3 YS3 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (3)CB 在2s 后第一次重合闸。 CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (4)FS1一侧有压且有故障电流记忆,延时7s 合闸。

CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (5)FS2一侧有压且有故障电流记忆,延时7s 合闸,FS4一侧有压但无故障电流记忆,启动长延时7+50s (等待故障线路隔离完成,按照最长时间估算,主干线最多四个开关考虑一级转供带四个开关)。 CB CB LSW1 LSW1 FS6 FS6 YS2 YS2 YS1 YS1 FS1 FS1 FS2 FS2 FS3 FS3 FS4 FS4 FS5 FS5LSW2 LSW2 (6)由于是永久故障,CB 再次跳闸,FS2失压分闸并闭锁合闸,FS3因短时来电闭锁合闸。

馈线自动化模式选型与配置技术原则(征求意见稿)

馈线自动化模式选型与配置技术原则 (征求意见稿) 2017年12月

目录 1概述 (1) 1.1范围 (1) 1.2规范性引用文件 (1) 1.2.1设计依据性文件 (1) 1.2.2主要涉及标准、规程规范 (2) 2馈线自动化模式概述与应用选型 (3) 2.1集中型馈线自动化概述 (3) 2.2就地型馈线自动化概述 (3) 2.2.1重合器式馈线自动化 (3) 2.2.2分布式馈线自动化 (4) 2.3模式对比与应用选型 (5) 2.3.1模式对比 (5) 2.3.2应用选型 (8) 3集中型馈线自动化应用模式 (9) 3.1适用范围 (9) 3.2布点原则 (9) 3.3动作逻辑 (10) 3.3.1技术原理 (10) 3.3.2动作逻辑原理 (11) 3.3.3短路故障处理 (12) 3.3.4接地故障处理 (13)

3.4性能指标 (13) 3.5配套要求 (14) 3.5.1配套开关选用 (14) 3.5.2配套终端选用 (14) 3.5.3配套通信选用 (15) 3.5.4保护配置选用 (15) 3.6现场实施 (17) 3.6.1参数配置 (17) 3.6.2安装要求 (18) 3.6.3注意事项 (18) 3.7运行维护 (18) 3.7.1操作指导 (19) 3.7.2检修指导 (19) 3.7.3运维分析指导................ 错误!未定义书签。 3.8典型应用场景 (19) 4重合器式馈线自动化应用模式 (22) 4.1电压时间型 (22) 4.1.1适用范围 (22) 4.1.2布点原则 (22) 4.1.3动作逻辑 (22) 4.1.4性能指标 (24) 4.1.5配套要求 (24)

智能分布式配电终端FTU-DTU

智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终 端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

配电自动化系统馈线保护的配置

配电自动化系统馈线保护的配置 发表时间:2017-12-18T11:23:45.117Z 来源:《电力设备》2017年第24期作者:张建宋恩稼[导读] 摘要:随着国民经济的高速发展,人们的生活水平有了显著的提高,在能源方面的需求也越来越高,能源的紧缺问题开始渐渐地暴露出来。 (国网山东省电力公司乳山市供电公司山东乳山 264500)摘要:随着国民经济的高速发展,人们的生活水平有了显著的提高,在能源方面的需求也越来越高,能源的紧缺问题开始渐渐地暴露出来。目前为止,我国大部分地区电力事业的发展相对落后,为了确保对电力资源的有效控制,就需要采用自动化配电方式来确保用电的合理化,如何确保其安全性就显得越发重要。馈线系统保护充分吸取了高压线路纵联保护的特点,利用馈线保护装置之间的快速通信一次 性实现对馈线故障的隔离、重合闸、恢复供电功能,将馈线自动化的实现方式从集中监控模式发展为分布式保护模式,从而提高配电自动化的整体功能。 关键词:配电自动化;馈线保护;配置引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前为止,配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已经得到了普遍认可。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速的彼此通信,共同实现具有更高性能的馈线自动化功能。本文通过分析传统的馈线保护方式和馈线自动化的基本功能及原理,阐述了实施了配电自动化系统后,配电网馈线系统保护配置过程中应注意的问题。 1.配电网馈线保护的现状及方式 电力系统由发电、输电和配电三个部分组成。发电环节的保户集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降至最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,因为配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求快速。不同的配电网对负荷供电可靠性和供电质量要求不尽相同。许多的配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对用户的负面影响作为配电网保护的目的。配电网馈线保护的主要作用是提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复用电。具体有以下几种方式: 1.1重合器方式的馈线保护 实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式。目前在我国城乡电网改造中仍然有很多的重合器得到应用,这种简单而有效的方式能够提高供电可靠性。其相对于传统的电流保护而言有更大的优势。但是,这种方案的缺点就是故障隔离的时间较长,多次重合对相关的负荷有一定的影响。 1.2传统的电流保护 最基本的继电保护之一就是过电流保护,因为受到经济的限制,配电网馈线保护广泛采用电流保护。配电线路一般情况下很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。比较常见的方式有反时限电流保护和三段电流保护。电流保护实现配电网保护的前提是将整条馈线视为一个单元。如果发生馈线故障时,就要将整条线路切掉,并不用考虑对非故障区段的恢复供电,这些都不利于供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。 1.3基于馈线自动化的馈线保护 配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸等多种方式,能够快速的切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复用电。这种方案是目前为止配电网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复用电方面都有效的提高了供电可靠性。 2.馈线自动化基本功能及原理 馈线自动化的主要功能有:在正常的情况下,对馈电网进行监控和数据采集,包括相应馈线柱上开关的状态、馈线电流电压等;在发生故障时进行故障记录,遥控馈线柱上开关的合闸、分闸。在配电自动化系统综合分析故障信息后遥控执行自诊断、隔离、恢复功能。根据负荷均衡情况实现配电网的优化与重构。馈线自动化就是监视馈线的负荷及运行方式。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集和控制,从而实现配电SCADA、配电高级应用。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和配电高级应用的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。 目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:第一,电流保护切除故障;第二,集中式的配电主站或子站遥控FTU实现故障隔离;第三,集中式的配电主站或子站遥控FTU实现非故障区域的恢复用电。这种实现方式实质上是在自动装置无选择性动作后的恢复用电。如果能够解决馈线故障时保护动作的选择性,就能够大大的提高馈线保护性能,从而一次性的实现故障切除与故障隔离。这就需要馈线上的多个保护装置利用快速通信协作动作,共同实现有选择性的故障隔离,以上就是馈线保护的基本思想。 3.馈线保护的基本原理 馈线系统保护实现的前提条件是:快速通信;控制对象是断路器;终端是保护装置而非TTU。 在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。 系统保护动作速度及其后备保护。为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2s,即要求馈线系统保护在200ms内完成故障隔离。在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并启动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms。这样,只要通信环节理想即可实现快速保护。

相关主题
相关文档 最新文档