当前位置:文档之家› NRF24L01配置头文件

NRF24L01配置头文件

NRF24L01配置头文件
NRF24L01配置头文件

配置头文件:

#include

#include "24L01.h"

#define TX_ADR_WIDTH 5

#define TX_PLOAD_WIDTH 32

#define u8 unsigned char

#define RX_DR 0x40

#define TX_DS 0x20

#define MAX_RT 0x10

#define u8 unsigned char

#define u16 unsigned int

u8 TX_ADDRESS[TX_ADR_WIDTH] = {0xb2,0xb2,0xb3,0xb4,0x01}; u8 RX_BUF[TX_PLOAD_WIDTH];

u8 TX_BUF[TX_PLOAD_WIDTH]={

0x01,0x02,0x03,0x4,0x05,0x06,0x07,0x08,

0x09,0x10,0x11,0x12,0x13,0x14,0x15,0x16,

0x17,0x18,0x19,0x20,0x21,0x22,0x23,0x24,

0x25,0x26,0x27,0x28,0x29,0x30,0x31,0x32};

void spi_init()

{

ADCON1=0X07;

TRISA=0X10;

TRISB=0X0;

TRISC=0X10;

SSPSTAT=0XC0;

SSPCON=0X20;

INTCON=0X00;

PIR1=0X00;

}

void SPI_Send_byte(u8 data)

{

SSPBUF=data;

while(!SSPIF);

SSPIF=0;

}

static u8 SPI_Receive_byte(u8 data)

{

u8 temp;

SSPBUF=data;

while(!SSPIF);

SSPIF=0;

temp=SSPBUF;

return temp;

}

static void delay1us(u16 t)

{

while(--t);

}

u8 SPI_RW_Reg(u8 reg,u8 value)

{

u8 status;

CSN(0);

status=SPI_Receive_byte(reg); //select register and write value to it SPI_Send_byte(value);

CSN(1);

return(status);

}

u8 SPI_Read_Reg(u8 reg)

{

u8 status;

CSN(0);

SPI_Send_byte(reg);

status=SPI_Receive_byte(0); //select register and write value to it CSN(1);

return(status);

}

u8 SPI_Read_Buf(u8 reg,u8 *pBuf,u8 bytes)

{

u8 status,byte_ctr;

CSN(0);

status=SPI_Receive_byte(reg);

for(byte_ctr=0;byte_ctr

pBuf[byte_ctr]=SPI_Receive_byte(0);

CSN(1);

return(status);

}

u8 SPI_Write_Buf(u8 reg,u8 *pBuf,u8 bytes)

{

u8 status,byte_ctr;

CSN(0);

status=SPI_Receive_byte(reg);

delay1us(1);

for(byte_ctr=0;byte_ctr

SPI_Send_byte(*pBuf++);

CSN(1);

return(status);

}

u8 nRF24L01_RxPacket(u8* rx_buf)

{

u8 status,revale=0;

CE(0);

delay1us(10);

status=SPI_Receive_byte(STATUS);

if(status & RX_DR)

{

// CE(1);

SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer

// CE(0);

revale =1;

}

SPI_RW_Reg(WRITE_REG_NRF24L01 + STATUS,status);

CE(1);

return revale;

}

void nRF24L01_TxPacket(unsigned char * tx_buf)

{

CE(0);

SPI_Write_Buf(WRITE_REG_NRF24L01 + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);

SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH);

SPI_RW_Reg(WRITE_REG_NRF24L01 + CONFIGA, 0x0e);

CE(1);

delay1us(10);

}

void RX_Mode(void)

{

CE(0);

SPI_Write_Buf(WRITE_REG_NRF24L01 + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RX_PW_P0, TX_PLOAD_WIDTH);

SPI_RW_Reg(WRITE_REG_NRF24L01 + EN_AA, 0x3f);

SPI_RW_Reg(WRITE_REG_NRF24L01 + EN_RXADDR, 0x3f);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RF_CH, 40);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RF_SETUP, 0x07);

SPI_RW_Reg(WRITE_REG_NRF24L01 + CONFIGA, 0x0f);

CE(1);

}

void TX_Mode(u8 * tx_buf)

{

CE(0);

SPI_Write_Buf(WRITE_REG_NRF24L01 + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);

SPI_Write_Buf(WRITE_REG_NRF24L01 + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);

SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH);

SPI_RW_Reg(WRITE_REG_NRF24L01 + EN_AA, 0x3f);

SPI_RW_Reg(WRITE_REG_NRF24L01 + EN_RXADDR, 0x3f);

SPI_RW_Reg(WRITE_REG_NRF24L01 + SETUP_RETR, 0x0a);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RF_CH, 40);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RF_SETUP, 0x07);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RX_PW_P0, TX_PLOAD_WIDTH);

SPI_RW_Reg(WRITE_REG_NRF24L01 + CONFIGA, 0x0e);

CE(1);

delay1us(10);

}

void nRF24L01_Initial(void)

{

}

void nRF24L01_Config(void)

//initial io

//CE(0); // CE=0 ;chip enable

//CSN(1); //CSN=1 Spi disable

SPI_RW_Reg(WRITE_REG_NRF24L01 + CONFIGA, 0x0e); // Set PWR_UP bit, enable CRC(2 bytes) &Prim:RX. RX_DR enabled..

SPI_RW_Reg(WRITE_REG_NRF24L01 + EN_AA, 0x3f);

SPI_RW_Reg(WRITE_REG_NRF24L01 + EN_RXADDR, 0x3f); // Enable Pipe0

// SPI_RW_Reg(WRITE_REG_NRF24L01 + SETUP_AW, 0x02); // Setup address width=5 bytes

// SPI_RW_Reg(WRITE_REG_NRF24L01 + SETUP_RETR, 0x1a); // 500us + 86us, 10 retrans...

SPI_RW_Reg(WRITE_REG_NRF24L01 + RF_CH, 40);

SPI_RW_Reg(WRITE_REG_NRF24L01 + RF_SETUP,0x07); // TX_PWR:0dBm, Datarate:2Mbps,

}

void NRF24L01_Send(void)

{

u8 status=0x00;

// CSN(0);

TX_Mode(TX_BUF);

while(IRQ);

CE(0);

delay1us(10);

status=SPI_Read_Reg(STATUS);

if(status&TX_DS) /*tx_ds == 0x20*/

{

PORTB=0X0F;

SPI_RW_Reg(WRITE_REG_NRF24L01 + STATUS, 0x20);

}

else if(status&MAX_RT)

{

PORTB=0XFF;

SPI_RW_Reg(WRITE_REG_NRF24L01 + STATUS, 0x10);

}

CE(1);

// status=20;

}

void NRF24L01_Receive(void)

{

u8 i,status=0x01;

RX_Mode();

while(IRQ);

CE(0);

delay1us(10);

status=SPI_Read_Reg(STATUS);

if(status & 0x40)

{PORTB=0X33;

// CE(1);

SPI_Read_Buf(RD_RX_PLOAD,RX_BUF,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer

for(i=0;i<32;i++)

{

PORTB=RX_BUF[i];TXREG=RX_BUF[i];delay1us(3000);

}

SPI_RW_Reg(WRITE_REG_NRF24L01 + STATUS, 0x40);

}

CE(1);

}

NRF24L01发送程序

#include #include typedef unsigned int uint; typedef unsigned char uchar; #define TX_ADDR_WITDH 5//发送地址宽度设置为5个字节 #define RX_ADDR_WITDH 5//接收地址宽度设置为5个字节 #define TX_DATA_WITDH 8// #define RX_DATA_WITDH 8 #define R_REGISTER 0x00 // 读寄存器 #define W_REGISTER 0x20 // 写寄存器 #define R_RX_PLOAD 0x61 // 读RX FIFO有效数据,1-32字节,当读数据完成后,数据被清除,应用于接收模式 #define W_TX_PLOAD 0xA0 // 写TX FIFO有效数据,1-32字节,写操作从字节0开始,应用于发射模式 #define FLUSH_TX 0xE1 // 清除TX FIFO寄存器,应用于发射模式 #define FLUSH_RX 0xE2 // 清除RX FIFO寄存器,应用于接收模式 #define REUSE_TX_PL 0xE3 // 重新使用上一包有效数据,当CE为高过程中,数据包被不断的重新发射 #define NOP 0xFF // 空操作,可以用来读状态寄存器 #define CONFIG 0x00 // 配置寄存器 #define EN_AA 0x01 // “自动应答”功能寄存 #define EN_RX_ADDR 0x02 // 接收通道使能寄存器 #define SETUP_AW 0x03 // 地址宽度设置寄存器 #define SETUP_RETR 0x04 // 自动重发设置寄存器 #define RF_CH 0x05 // 射频通道频率设置寄存器 #define RF_SETUP 0x06 // 射频设置寄存器 #define STATUS 0x07 // 状态寄存器 #define OBSERVE_TX 0x08 // 发送检测寄存器 #define CD 0x09 // 载波检测寄存器 #define RX_ADDR_P0 0x0A // 数据通道0接收地址寄存器 #define RX_ADDR_P1 0x0B // 数据通道1接收地址寄存器 #define RX_ADDR_P2 0x0C // 数据通道2接收地址寄存器 #define RX_ADDR_P3 0x0D // 数据通道3接收地址寄存器 #define RX_ADDR_P4 0x0E // 数据通道4接收地址寄存器 #define RX_ADDR_P5 0x0F // 数据通道5接收地址寄存器 #define TX_ADDR 0x10 // 发送地址寄存器 #define RX_PW_P0 0x11 // 数据通道0有效数据宽度设置寄存器 #define RX_PW_P1 0x12 // 数据通道1有效数据宽度设置寄存器 #define RX_PW_P2 0x13 // 数据通道2有效数据宽度设置寄存器 #define RX_PW_P3 0x14 // 数据通道3有效数据宽度设置寄存器 #define RX_PW_P4 0x15 // 数据通道4有效数据宽度设置寄存器 #define RX_PW_P5 0x16 // 数据通道5有效数据宽度设置寄存器

NRF24L01无线模块收发程序(实测成功 多图)

NRF24L01无线模块收发程序(实测成功多图) 本模块是NRF24L01无线传输模块,用于无线传输数据,距离不远,一般只是能够满足小距离的传输,目测是4-5m,价格一般是4元左右,可以方便的买到。 51最小系统学习板就可以,当时是用了两块学习板,一块用于发送,一块用于接收。 小车也是比较容易购到的,四个端口控制两个电机,两个控制一个电机,当两个端口高低电平不同时电机就会转动,即为赋值1和0是电机转动,赋值可以用单片机作用,当然这是小车启动部分,前进后退左转右转就是你赋值0和1的顺序问题了。

整体思路是用发射端的按键控制小车,即为按键按下就前进,再按其他按键实现其他功能,本次程序是在用NRF24L01发射数据在接收端用1602显示的基础上改变。 下面是程序源码(有好几个文件,分别创建) ////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////// #include #include #include'1602.h' #include'delay.h' #include 'nrf24l01.h' #define uint unsigned int #define uchar unsigned char uint Weight_Shiwu=1234; unsigned char KeyScan(void);//键盘扫描 // unsigned char KeyScan(void);//键盘扫描 //#define KeyPort P0 sbit KEY1 = P0^0; sbit KEY2 = P0^1; sbit KEY3 = P0^2; sbit KEY4 = P0^3; sbit KEY5 = P0^4; void main() { // char TxDate[4]; // LCD_Init(); //初始化液晶屏 // LCD_Clear(); //清屏

nRF24L01无线通信模块使用手册12

深圳市德普施科技有限公司 nRF24L01无线通信模块使用手册 一、模块简介 该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01: 1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm 2.2Mbps,传输速率高 3.功耗低,等待模式时电流消耗仅22uA 4.多频点(125个),满足多点通信及跳频通信需求 5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线) 6.工作原理简介: 发射数据时,首先将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD 按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号。如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD不会被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入待机模式2。 接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ变低,以便通知MCU去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。 三、模块引脚说明

NRF24L01无线模块收发程序例程

//下面是接收的NRF24L01的程序。 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include #include "nrf24l01.h" #include #define uchar unsigned char #define uint unsigned int sbit IRQ =P1^2;//输入 sbit MISO =P1^3; //输入 sbit MOSI =P1^1;//输出 sbit SCLK =P1^4;//输出 sbit CE =P1^5;//输出 sbit CSN =P1^0;//输出 uchar RevTempDate[5];//最后一位用来存放结束标志 uchar code TxAddr[]={0x34,0x43,0x10,0x10,0x01};//发送地址 /*****************状态标志*****************************************/ uchar bdata sta; //状态标志 sbit RX_DR=sta^6; sbit TX_DS=sta^5; sbit MAX_RT=sta^4; /*****************SPI时序函数******************************************/ uchar NRFSPI(uchar date) { uchar i; for(i=0;i<8;i++) // 循环8次 { if(date&0x80) MOSI=1; else MOSI=0; // byte最高位输出到MOSI date<<=1; // 低一位移位到最高位 SCLK=1; if(MISO) // 拉高SCK,nRF24L01从MOSI读入1位数据,同时从MISO输出1位数据date|=0x01; // 读MISO到byte最低位 SCLK=0; // SCK置低 } return(date); // 返回读出的一字节 } /**********************NRF24L01初始化函数*******************************/ void NRF24L01Int() {

nRF24L01无线通信模块使用手册

nRF24L01无线通信模块使用手册 一、模块简介 该射频模块集成了NORDIC公司生产的无线射频芯片nRF24L01: 1.支持2.4GHz的全球开放ISM频段,最大发射功率为0dBm 2.2Mbps,传输速率高 3.功耗低,等待模式时电流消耗仅22uA 4.多频点(125个),满足多点通信及跳频通信需求 5.在空旷场地,有效通信距离:25m(外置天线)、10m(PCB天线) 6.工作原理简介: 发射数据时,首先将nRF24L01配置为发射模式,接着把地址TX_ADDR和数据TX_PLD按照时序由SPI 口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号。如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD 从发送堆栈中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC_CNT)达到上限,MAX_RT置高,TX_PLD不会被清除;MAX_RT或TX_DS置高时,使IRQ变低,以便通知MCU。最后发射成功时,若CE为低,则nRF24L01进入待机模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入待机模式2。 接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。当接收方检测到有效的地址和CRC时,就将数据包存储在接收堆栈中,同时中断标志位RX_DR置高,IRQ 变低,以便通知MCU去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。 二、模块电气特性 参数数值单位 供电电压5V 最大发射功率0dBm 最大数据传输率2Mbps 电流消耗(发射模式,0dBm)11.3mA 电流消耗(接收模式,2Mbps)12.3mA 电流消耗(掉电模式)900nA 温度范围-40~+85℃ 三、模块引脚说明 管脚符号功能方向 1GND电源地 2IRQ中断输出O 3MISO SPI输出O 4MOSI SPI输入I 5SCK SPI时钟I 6NC空 7NC空 8CSN芯片片选信号I 9CE工作模式选择I 10+5V电源

NRF24L01无线模块C语言程序

NRF24L01无线模块C语言程序 24MHz晶振 #include #include #include #include #include #include #define U8 unsigned char #define U16 unsigned int #define TX_ADDR_WITDH 5 //发送地址宽度设置为5个字节 #define RX_ADDR_WITDH 5 //接收地址宽度设置为5个字节 #define TX_DATA_WITDH 1//发送数据宽度1个字节 #define RX_DATA_WITDH 1//接收数据宽度1个字节 #define R_REGISTER 0x00//读取配置寄存器 #define W_REGISTER 0x20//写配置寄存器 #define R_RX_PAYLOAD 0x61//读取RX有效数据 #define W_TX_PAYLOAD 0xa0//写TX有效数据 #define FLUSH_TX 0xe1//清除TXFIFO寄存器 #define FLUSH_RX 0xe2//清除RXFIFO寄存器 #define REUSE_TX_PL 0xe3//重新使用上一包有效数据 #define NOP 0xff//空操作 #define CONFIG 0x00//配置寄存器 #define EN_AA 0x01//使能自动应答 #define EN_RXADDR 0x02//接收通道使能0-5个通道 #define SETUP_AW 0x03//设置数据通道地址宽度3-5 #define SETUP_RETR 0x04//建立自动重发 #define RF_CH 0x05//射频通道设置 #define RF_SETUP 0x06//射频寄存器 #define STATUS 0x07//状态寄存器 #define OBSERVE_TX 0x08//发送检测寄存器 #define CD 0x09//载波 #define RX_ADDR_P0 0x0a//数据通道0接收地址 #define RX_ADDR_P1 0x0b//数据通道1接收地址 #define RX_ADDR_P2 0x0c//数据通道2接收地址 #define RX_ADDR_P3 0x0d//数据通道3接收地址 #define RX_ADDR_P4 0x0e//数据通道4接收地址 #define RX_ADDR_P5 0x0f//数据通道5接收地址

nrf24l01无线模块NRF24L01模块收发c程序

//许多人都在找nrf24l01无线模块的c程序;我以前刚接触无线//时用的就是nrf24l01模块;搜索了许多程序有很多都没法直接用;甚至还怀疑模块是不是被我搞坏了;拿去让别人检测模块又是好的;为避免大家走弯路;我将我的程序发出来供大家参考; 这是nrf24l01无线模块pcb图; 下面有Nrf24l01无线模块的收发c程序;以下程序经本人亲自测试;绝对能用!! 请注意以下几点: 1、24L01模块的电源电压是否为3V-3.6V之间; 2、如果您用的单片机是5V的话,请在IO口与模块接口之间串一个1K电阻; 3、检查模块的GND是否与单片机的GND相连接 4、先用程序进行调试,如果IO口不同,请更改IO口或相关时序; 5、如果是51系列单片机,晶振请选用11.0592M Hz; 模块供电最好用asm1117 5v转3.3v 稳压 测试单片机是stc89c52;at89c52 通用; 收发一体;

一大截不废话了;上程序;此程序是按键控制led;当按下s的时候对应接受的led会闪闪发光;很简单的~如果要实现其他更先进的功能;自己发掘吧~~ 务必将硬件连接正确;否则;它不会工作的~~当然做什么都要严谨~~错一点就差大了~~ 《《收发一体程序》》 #include #include typedef unsigned char uchar; typedef unsigned char uint; //****************************************NRF24L01端口定义

*************************************** sbit M ISO =P1^3; sbit M OSI =P1^4; sbit SCK =P1^2; sbit CE =P1^1; sbit CSN =P3^2; sbit IRQ =P3^3; //************************************按键*************************************************** sbit KEY=P2^0; //***************************************************************************** sbit led=P2^1; //*********************************************NRF24L01*********************** ************** #define TX_ADR_WIDTH 5 // 5 uints TX address width #define RX_ADR_WIDTH 5 // 5 uints RX address width #define TX_PLOAD_WIDTH 20 // 20 uints TX payload #define RX_PLOAD_WIDTH 20 // 20 uints TX payload uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址//***************************************NRF24L01寄存器指令******************************************************* #define READ_REG 0x00 // 读寄存器指令 #define WRITE_REG 0x20 // 写寄存器指令 #define RD_RX_PLOAD 0x61 // 读取接收数据指令 #define WR_TX_PLOAD 0xA0 // 写待发数据指令 #define FLUSH_TX 0xE1 // 冲洗发送FIFO指令 #define FLUSH_RX 0xE2 // 冲洗接收FIFO指令 #define REUSE_TX_PL 0xE3 // 定义重复装载数据指令 #define NOP 0xFF // 保留 //*************************************SPI(nRF24L01)寄存器地址**************************************************** #define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA 0x01 // 自动应答功能设置 #define EN_RXADDR 0x02 // 可用信道设置 #define SETUP_AW 0x03 // 收发地址宽度设置 #define SETUP_RETR 0x04 // 自动重发功能设置 #define RF_CH 0x05 // 工作频率设置 #define RF_SETUP 0x06 // 发射速率、功耗功能设置 #define STATUS 0x07 // 状态寄存器 #define OBSERVE_TX 0x08 // 发送监测功能 #define CD 0x09 // 地址检测 #define RX_ADDR_P0 0x0A // 频道0接收数据地址 #define RX_ADDR_P1 0x0B // 频道1接收数据地址

NRF24L01功能使用文档

NRF24L01使用文档 基于c8051f330单片机

目录 芯片简介 (3) 1 NRF24L01功能框图 (4) 2 NRF24L01状态机 (5) 3 Tx与Rx的配置过程 (7) 3.1 Tx 模式初始化过程 (7) 3.2 Rx模式初始化过程 (8) 4控制程序详解 (9) 4.1 函数介绍 (9) 4.1.1 uchar SPI_RW(uchar byte) (9) 4.1.2 uchar SPI_RW_Reg (uchar reg, uchar value) (10) 4.1.3 uchar SPI_Read (uchar reg); (10) 4.1.4 uchar SPI_Read_Buf (uchar reg, uchar *pBuf, uchar bytes); (11) 4.1.5 uchar SPI_Write_Buf (uchar reg, uchar *pBuf, uchar bytes); (11) 4.1.6 void RX_Mode(void) (12) 4.1.7 void TX_Mode(void) (13) 4.2 NRF24L01相关命令的宏定义 (13) 4.3 NRF24L01相关寄存器地址的宏定义 (14) 5 实际通信过程示波器图 (16) 1)发射节点CE与IRQ信号 (17) 2)SCK与IRQ信号(发送成功) (18) 3)SCK与IRQ信号(发送不成功) (19)

芯片简介 NRF24L01是NORDIC公司最近生产的一款无线通信通信芯片,采用FSK调制,内部集成NORDIC自己的Enhanced Short Burst 协议。可以实现点对点或是1对6的无线通信。无线通信速度可以达到2M(bps)。NORDIC公司提供通信模块的GERBER文件,可以直接加工生产。嵌入式工程师或是单片机爱好者只需要为单片机系统预留5个GPIO,1个中断输入引脚,就可以很容易实现无线通信的功能,非常适合用来为MCU系统构建无线通信功能。

NRF24L01无线发射简易教程

NRF24L01 简易教程

先来看接口电路,使用的IO 口不是唯一的哦,可随意定义接口,当然是在使用IO 口模拟SPI 且IRQ 中断引脚不使用的使用查询方法判断接收状态的情况下了。作为初探我们就是用简单的IO 模拟SPI 的方法了,中断使用查询的方式。那么该教程讲解的接口与单片机的连接如下: 首先您需要了解NRF24L01,请参阅“NRF24L01 芯片中文资料”或者“NRF24L01 芯片英文资料”。 我们的教程是以一个简单的小项目为大家展示NRF24L01 的使用方法与乐趣。我们所写的教程均是以这种方式的呢,让您在学习的时候明白它能做什么,使您学起来不至于枯燥无味。 作为简易的教程,我们只需要知道它是怎么使用的就够了,我们本教程的目的是用NRF24L01 发送数据和接收数据,且接收方会对比发送的数据与接收的数据,若完全相同则控制LED 闪烁一次,并且把接收到的数据通过串口发送到PC 端,通过串口工具查看接收到的数据。 具体的要求如下: 1、具备发送和接收的能力。 2、发送32 个字节的数据,接收方接收到正确数据之后给予提示,通过LED 闪烁灯形 式。 3、把接收到的数据传送到PC 进行查看。 4、发送端每隔大约1.5 秒发送一次数据,永久循环。以上是程序的要求,若您想自行 设计出硬件接口,您也是可以添加一条呢:使用DIY 方 式设计NRF24L01 的接口板,且包含含单片机平台,使用PCB 方式或者万用板方式均可。如果您想让自己学的很扎实,那么推荐您自行做出接口板子呢。当然若您的能力不足,那么我们不推荐自行做板呢,因为这样会增加您学习的难度,反而起到了反效果呢。 我们使用的方式是画PCB 的方式呢,若您自己做了接口板子,那么您可以对比下一呢,O(∩_∩)O! 我们知道NRF24L01 的供电电压是1.9V~3.6V 不能超过这个范围,低了不工作,高了可能烧毁NRF24L01 芯片。我们常用的STC89C52 的单片机的供电电压是5V,我们不能直接给24L01 这个模块供电,我们需要使用AMS1117-3.3V 稳压芯片把5V 转成3.3V 的电压为24L01 模块供电。 为此我们的设计原理图如下:包含单片机最小系统、供电系统、下载程序接口、5V 转3.3V 电路、NRF24L01 模块接口。并且全部引出单片机的IO 口,另外还加了5 个电源输出接口,为扩展使用。还包括了电源指示LED 以及一个IO 口独立控制的LED,这个独立控制的LED用于NRF24L01 接收成功闪烁指示。为了保证系统的稳定性,在设计中添加了两个滤波电容。

NRF24L01参考程序(包含多个实例)

(相关人员如觉得本人水平低下,还请见谅) Nrf24L01的使用程序和使用方法和简单操作: 功能: 无线对发程序。两个模块a,b,实现按下一个按键,会在对方的数码管上显示3或4,在本机上显示1,2。 当一个模块,比如a模块。当两个按键按下其中一个,则会在另一个模块b上显示数字3,4(具体根据按下哪个按键)。以上功能描述,B模块按键按下,如同a模块一样的功能,不做系统性描述了。 下面给出程序中几个地方的解释: #define READ_REG 0x00 // 读寄存器指令 #define WRITE_REG 0x20 // 写寄存器指令 #define RD_RX_PLOAD 0x61 // 读取接收数据指令 #define WR_TX_PLOAD 0xA0 // 写待发数据指令 #define FLUSH_TX 0xE1 // 冲洗发送FIFO指令 #define FLUSH_RX 0xE2 // 冲洗接收FIFO指令 #define REUSE_TX_PL 0xE3 // 定义重复装载数据指令 #define NOP 0xFF // 保留 类似这种的描述,可以等同于READ_REG =0x00;这个是经过实际程序测试出来的,比如 以下程序: #include #define k 0xfe void main() { P1=k; } 则会出现此类结果:

MOSI = (uchar & 0x80); // output 'uchar', MSB to MOSI uchar = (uchar << 1); // shift next bit into MSB.. SCK = 1; // Set SCK high.. uchar |= MISO; // capture current MISO bit SCK = 0; 此处为spi的核心,是spi协议的编程,其中uchar |= MISO; 表示uchar |= MISO | uchar; MOSI = (uchar & 0x80);其中0x80是1000 0000,与上uchar,这种&,是按位与,故可以从uchar提取出一个电平给mosi。 MOSI = (uchar & 0x80); // output 'uchar', MSB to MOSI uchar = (uchar << 1); 这两句组合起来用,就实现了把uchar编程8位2进制数后的每一位都可以发送给mosi;Uchar的只待对象,就是上面的诸如#define FLUSH_TX 0xE1 这样的数,或者是相关的发送数据。 *pBuf这个并不是一个主要的问题,实际这个是涉及指针问题的,带*的跟地址有关系,但是我们其实不需要很关心编译的时候数据被具体存入哪个地址,即使是很重要的数据。 void init_NRF24L01(void) { inerDelay_us(100); CE=0; // chip enable CSN=1; // Spi disable SCK=0; // SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写本地地址 SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // 写接收端地址 SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 频道0自动ACK应答允许 SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 允许接收地址只有频道0,如果需要多频道可以参考Page21 SPI_RW_Reg(WRITE_REG + RF_CH, 0); // 设置信道工作为2.4GHZ,收发必须一致 SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为32字节 SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dB } 在整个初始化中我们看到: CE=0; // chip enable CSN=1; // Spi disable 这是设置整个的状态。如过状态设置成待机,则引脚可能变为高阻。(以上并非全部引脚)

NRF24L01发送程序(可用)

//***************************************************发送程序**********************************************************// #include #include typedef unsigned char uchar; //****************************************NRF24L01端口定义*************************************** sbit M ISO =P1^5; sbit M OSI =P1^1; sbit SCK =P1^6; sbit CE =P1^7; sbit CSN =P1^2; sbit IRQ =P1^0; //***********************************发送缓冲区********************************************* uchar TxBuf[32]= { 0x01,0x22,0x32,0x04,0x08,0x01,0x07,0x08, 0x09,0x10,0x11,0x12,0x13,0x14,0x15,0x16, 0x17,0x18,0x19,0x20,0x21,0x22,0x23,0x24, 0x25,0x26,0x27,0x28,0x29,0x30,0x31,0x32, }; //

//*********************************************NRF24L01************************ ************* #define TX_ADR_WIDTH 5 // 5 uints TX address width #define RX_ADR_WIDTH 5 // 5 uints RX address width #define TX_PLOAD_WIDTH 32 // 20 uints TX payload #define RX_PLOAD_WIDTH 32 // 20 uints TX payload uchar const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址 uchar const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址 //***************************************NRF24L01寄存器指令******************************************************* #define READ_REG 0x00 // 读寄存器指令 #define WRITE_REG 0x20 // 写寄存器指令 #define RD_RX_PLOAD 0x61 // 读取接收数据指令 #define WR_TX_PLOAD 0xA0 // 写待发数据指令 #define FLUSH_TX 0xE1 // 冲洗发送FIFO指令 #define FLUSH_RX 0xE2 // 冲洗接收FIFO指令 #define REUSE_TX_PL 0xE3 // 定义重复装载数据指令 #define NOP 0xFF // 保留 //*************************************SPI(nRF24L01)寄存器地址**************************************************** #define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式 #define EN_AA 0x01 // 自动应答功能设置 #define EN_RXADDR 0x02 // 可用信道设置

nRF24L01温度发送与接收程序

/******************************************************* ** 温度无线发送程序 ** 时间:2012.2.3 ** ——by Keliwen *******************************************************/ #include #include #include #include typedef unsigned char uchar; typedef unsigned int uint; /***************************************************/ #define TX_ADR_WIDTH 5 // 5字节宽度的发送/接收地址 #define TX_PLOAD_WIDTH 4 // 数据通道有效数据宽度 uchar code TX_ADDRESS[TX_ADR_WIDTH] = {0x34,0x43,0x10,0x10,0x01}; // 定义一个静态发送地址 uchar RX_BUF[TX_PLOAD_WIDTH]; uchar TX_BUF[TX_PLOAD_WIDTH]; sbit CSN = P1^0; // Chip Enable pin signal (output) sbit MOSI= P1^1; // Slave Select pin, (output to CSN, nRF24L01) sbit IRQ = P1^2; // Interrupt signal, from nRF24L01 (input) sbit MISO= P1^3; // Master In, Slave Out pin (input) sbit SCLK= P1^4; // Serial Clock pin, (output) sbit CE = P1^5; // Master Out, Slave In pin (output) // SPI(nRF24L01) commands #define READ_REG 0x00 // Define read command to register #define WRITE_REG 0x20 // Define write command to register #define RD_RX_PLOAD 0x61 // Define RX payload register address #define WR_TX_PLOAD 0xA0 // Define TX payload register address #define FLUSH_TX 0xE1 // Define flush TX register command #define FLUSH_RX 0xE2 // Define flush RX register command #define REUSE_TX_PL 0xE3 // Define reuse TX payload register command #define NOP 0xFF // Define No Operation, might be used to read status register // SPI(nRF24L01) registers(addresses) #define CONFIG 0x00 // 'Config' register address #define EN_AA 0x01 // 'Enable Auto Acknowledgment' register address #define EN_RXADDR 0x02 // 'Enabled RX addresses' register address

SPI方式STM32F103与2.4G模块NRF24L01收发通讯

1.简介 通过SPI方式与NRF24L01模块进行通讯,接收到的数据通过串口1打印出来,实时监测是否收到数据,发送的数据是“2.4G TEST”,当收不到数据时打印“no data”。一块STM32F103ZET6开发板接收数据,另一块STM32F103RBT6开发板发送数据,两个淘宝买的2.4G NRF24L01模块。还用到一块USB转TTL模块用来电平转换传送数据,串口调试助手接收串口发送数据。 2.代码部分 ---------nrf24l01.h----------- #ifndef __24L01_H #define __24L01_H #include "sys.h" /////////////////////////////////////////////////////////////////////////////// /////////////////////////// //NRF24L01寄存器操作命令 #define NRF_READ_REG 0x00 //读配置寄存器,低5位为寄存器地址 #define NRF_WRITE_REG 0x20 //写配置寄存器,低5位为寄存器地址 #define RD_RX_PLOAD 0x61 //读RX有效数据,1~32字节 #define WR_TX_PLOAD 0xA0 //写TX有效数据,1~32字节 #define FLUSH_TX 0xE1 //清除TX FIFO寄存器.发射模式下用 #define FLUSH_RX 0xE2 //清除RX FIFO寄存器.接收模式下用 #define REUSE_TX_PL 0xE3 //重新使用上一包数据,CE为高,数据包被不断发送. #define NOP 0xFF //空操作,可以用来读状态寄存器 //SPI(NRF24L01)寄存器地址 #define CONFIG 0x00 //配置寄存器地址;bit0:1接收模式,0发射模式;bit1:电选择;bit2:CRC模式;bit3:CRC使能; //bit4:中断MAX_RT(达到最大重发次数中断)使能;bit5:中断TX_DS使能;bit6:中断RX_DR使能 #define EN_AA 0x01 //使能自动应答功能 bit0~5,对应通道0~5 #define EN_RXADDR 0x02 //接收地址允许,bit0~5,对应通道0~5 #define SETUP_AW 0x03 //设置地址宽度(所有数据通道):bit1,0:00,3字节;01,4字节;02,5字节; #define SETUP_RETR 0x04 //建立自动重发;bit3:0,自动重发计数器;bit7:4,自动重发延时 250*x+86us #define RF_CH 0x05 //RF通道,bit6:0,工作通道频率; #define RF_SETUP 0x06 //RF寄存器;bit3:传输速率(0:1Mbps,1:2Mbps);bit2:1,发射功率;bit0:低噪声放大器增益 #define STATUS 0x07 //状态寄存器;bit0:TX FIFO满标志;bit3:1,接收数据通道号(最大:6);bit4,达到最多次重发 //bit5:数据发送完成中断;bit6:接收数据中断; #define MAX_TX 0x10 //达到最大发送次数中断 #define TX_OK 0x20 //TX发送完成中断

NRF24L01详细教程..

先来看接口电路,使用的IO 口不是唯一的哦,可随意定义接口,当然是在使用IO 口模拟SPI 且IRQ 中断引脚不使用的使用查询方法判断接收状态的情况下了。作为初探我们就是用简单的IO 模拟SPI 的方法了,中断使用查询的方式。那么该教程讲解的接口与单片机的连接如下: 首先您需要了解NRF24L01,请参阅“NRF24L01 芯片中文资料”或者“NRF24L01 芯片英文资料”。 我们的教程是以一个简单的小项目为大家展示NRF24L01 的使用方法与乐趣。我们所写教程均是以这种方式的呢,让您在学习的时候明白它能做什么,使您学起来不至于枯燥无味。 作为简易的教程,我们只需要知道它是怎么使用的就够了,我们本教程的目的是用NRF24L01 发送数据和接收数据,且接收方会对比发送的数据与接收的数据,若完全相同则控制LED 闪烁一次,并且把接收到的数据通过串口发送到PC 端,通过串口工具查看接收到的数据。 具体的要求如下: 1、具备发送和接收的能力。 2、发送32 个字节的数据,接收方接收到正确数据之后给予提示,通过LED 闪烁灯形 式。 3、把接收到的数据传送到PC 进行查看。 4、发送端每隔大约1.5 秒发送一次数据,永久循环。 以上是程序的要求,若您想自行设计出硬件接口,您也是可以添加一条呢:使用DIY 方式设计NRF24L01 的接口板,且包含含单片机平台,使用PCB 方式或者万用板方式均可。如果您想让自己学的很扎实,那么推荐您自行做出接口板子呢。当然若您的能力不足,那么我们不推荐自行做板呢,因为这样会增加您学习的难度,反而起到了反效果呢。 我们知道NRF24L01 的供电电压是1.9V~3.6V 不能超过这个范围,低了不工作,高了可能烧毁NRF24L01 芯片。我们常用的STC89C52 的单片机的供电电压是5V,我们不能直接给24L01 这个模块供电,我们需要使用AMS1117-3.3V 稳压芯片把5V 转成3.3V 的电压为24L01 模块供电。 为此我们的设计原理图如下:包含单片机最小系统、供电系统、下载程序接口、5V 转3.3V 电路、NRF24L01 模块接口。并且全部引出单片机的IO 口,另外还加了5 个电源输出接口,为扩展使用。还包括了电源指示LED 以及一个IO 口独立控制的LED,这个独立控制的LED用于NRF24L01 接收成功闪烁指示。为了保证系统的稳定性,在设计中添加了两个滤波电容。

相关主题
文本预览
相关文档 最新文档