当前位置:文档之家› 基于2_4_6_三苯基吡啶星型液晶分子的设计合成及性能研究

基于2_4_6_三苯基吡啶星型液晶分子的设计合成及性能研究

基于2_4_6_三苯基吡啶星型液晶分子的设计合成及性能研究
基于2_4_6_三苯基吡啶星型液晶分子的设计合成及性能研究

TFT-LCD液晶显示器的工作原理

TFT-LCD液晶显示器的工作原理 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程,只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

DSP课程设计---液晶显示器控制显示

一、设计题目:液晶显示器控制显示 (1) 二、设计目的与步骤: (1) 2.1、 (1) 2.2、 (1) 三、设计原理: (2) 3.1、扩展IO接口: (2) 3.2、液晶显示模块的访问、控制是由VC5416 DSP对扩展接口的操作完成.. 2 3.3、液晶显示模块编程控制: (2) 3.4、控制I/O口的寻址: (2) 3.5、显示控制方法: (2) 3.6.液晶显示器与DSP的连接: (4) 3.7、数据信号的传送: (4) 四、 CCS开发环境 (5) 4.1、 (5) 4.2、 (6) 五、C语言程序 (8) 六、实验结果和分析 (15) 6.1、 (15) 6.2、 (16) 6.3、 (16) 6.4、 (16) 七、设计收获及体会 (17)

一、设计题目:液晶显示器控制显示 二、设计目的与步骤: 2.1、设计目的 通过实验学习使用VC5416 DSP的扩展I/O端口控制外围设备的方法,了解液晶显示器的显示控制原理及编程方法。 2.2、设计步骤 1.实验准备: ⑴连接实验设备:请参看本书第三部分、第一章、二。 2.设置Code Composer Studio 2.21在硬件仿真(Emulator)方式下运行: 3.启动Code Composer Studio 2.21: 选择菜单Debug→Reset CPU。 4.打开工程文件:浏览LCD.c文件的内容,理解各语句作用 工程目录:C:\ICETEK\VC5416AES61\VC5416AES61\Lab0403-LCD\LCD.pjt。5.编译、下载程序。 6.运行程序观察结果: 7将内层循环中的 “CTRLCDLCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]);”语句改为“CTRLCDRCR=( nBW==0 )?(ledkey[nCount][i]):(~ledkey[nCount][i]);”,重复步骤5-6,实现在屏幕右侧显示。 8.更改程序中对页、列的设置,实现不同位置的显示。

吡啶

吡啶 汉语拼音:bǐdìng 英文名称:pyridine 中文名称2:氮(杂)苯 CAS No.:110-86-1 分子式:C5H5N 分子量:79.10 吡啶是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中的一个(CH)被N取代的化合物,故又称氮苯。 吡啶及其同系物存在于骨焦油、煤焦油、煤气、页岩油、石油中。 [编辑本段]物理性质 外观与性状:无色或微黄色液体,有恶臭。 熔点(℃):-41.6 沸点(℃):115.3 相对密度(水=1):0.9827 折射率:1.5067(25℃) 相对蒸气密度(空气=1):2.73 饱和蒸气压(kPa): 1.33/13.2℃ 闪点(℃):17 引燃温度(℃):482 爆炸上限%(V/V):12.4 爆炸下限%(V/V): 1.7 溶解性:溶于水、醇、醚等多数有机溶剂。 与水形成共沸混合物,沸点92~93℃。(工业上利用这个性质来纯化吡啶。) [编辑本段]化学性质 吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶液内能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反应,易被氧化成N-氧化吡啶。 [编辑本段]用途 除作溶剂外,吡啶在工业上还可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料、食品调味料、粘合剂、炸药等)的起始物。 吡啶还可以用做催化剂,但用量不可过多,否则影响产品质量。 [编辑本段]来源(合成方法) 吡啶可从天然煤焦油中获得,也可由乙醛和氨制得。吡啶及其衍生物也可通过多种方法合成,其中应用最广的是汉奇吡啶合成法,这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,然后用氧化剂(如亚硝酸)脱氢,再水解失羧即得吡啶衍生物。 也可用乙炔、氨和甲醇在500℃通过催化剂制备。 [编辑本段]衍生物 吡啶的许多衍生物是重要的药物,有些是维生素或酶的重要组成部分。吡啶的衍生物异烟肼是一种抗结核病药,2-甲基-5-乙烯基吡啶是合成橡胶的原料。 中文名称:吡啶 [编辑本段]危险信息及使用注意事项(MSDS) 燃爆危险:本品易燃,具强刺激性。 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。高温时分解,释出剧毒的氮氧化物气体。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等剧烈反应,有爆炸危险。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。 吡啶的危害:

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放置的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64× 64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为 256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film Transi stor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家 常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装置,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄

液晶显示器的工作原理

液晶显示器的工作原理 我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家Reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。 1. 被动矩阵式LCD工作原理 TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。 在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板? 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基

板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC 与印刷电路板相连接。 在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构,结果在显示屏上出现白

LCD1602液晶显示器设计

LCD1602液晶显示课程设计 第一章绪论 1.1课题背景 当今时候是一个信息化的时代,信息的重要性不言而喻的,获取手段显得尤其重要。人们所接受的信息有70%来自于人的视觉,无论用何种方式获取的信息最终需要有某种显示方式来表示。在当代显示技术中,主流的有LED显示屏和LCD液晶显示,而在这些显示技术中,尤其以液晶显示器LCD(Liquid crystal display)为代表的平板显示器发展最快,应用最广。LCD是典型的发光器件,它一材料科学为基础,综合利用了精密机械,光电及计算机技术,并正在微机械,微光学,纤维光学等前沿领域研究基础上,向高集成化,智能化方向发展。 液晶显示技术发展迅猛,市场预测表明,液晶显示平均年销售呈增长10%~13%,不久的将来有可能取代CRT,成为电子信息产品的主要显示器件,另外,液晶显示器对空间电磁辐射的干扰不敏感,且在紧凑的仪器空间不需要专门的屏蔽保护,因而课大大简化仪器的结构和制造成本,在各种便携式仪器,仪表将会越来越广泛的应用。特别是在电池供电的单片机产品中,液晶显示更是必选的显示器件。 1.2课题设计目标 本设计是基于AT89C51芯片单片机为主控芯片,结合1602液晶显示模板等外围电路,通过软件程序,来实现液晶显示英文字母。本次设计的目的在于利用单片机和IIC技术来显示英文字母。 1.3课程设计的主要工作 (1)对系统的各个模块的各个功能进行深入分析和研究,在对课题所采用的方案进行可行详细的研究后设计具体功能电路。 (2)熟悉所选芯片的功能并完成具体电路设计。

(3)对系统的最终指标进行测试,针对系统的不足,进行分析并提出一些改正方法。 1.4 设计要求 (1)运行IIC总线技术。 (2)循环显示字母。 第二章硬件设计 2.1 LCD1602简介 2.1.1 LCD1602引脚功能 LCD1602引脚如图2.1所示 图2.1 LCD1602引脚图 引脚图的功能如表2—1所示

吡啶的合成方法

吡啶的合成方法 1.hantzsch合成 用两分子β-酮酸酯,一分子醛基及氨作原料经多分子环化成吡啶 例如 One-Pot Synthesis of 1,4-Dihydropyridines via a Phenylboronic Acid Catalyzed Hantzsch Three-Component Reaction Efficient Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives in Aqueous Micelles A. Kumar, R. A. Maurya, Synlett, 2008, 883-885. A. Debache, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Synlett, 2008, 509-512. Yb(OTf)3 catalyzed an efficient, operationally simple and environmentally benign Hantzsch reaction via a four-component coupling reaction of aldehydes, dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature to yield polyhydroquinoline derivatives in excellent yield. L.-M. Wang, J. Sheng, L. Zhang, J.-W. Han, Z.-Y. Fan, H. Tian, C.-T. Qian, Tetrahedron, 2005, 61, 1539-1543.

吡啶型离子液体的合成

吡啶型离子液体的合成 李舒衡孟洁秦海霞 (南京大学化学化工学院南京 210093) 摘要研究了吡啶型离子液体的合成方法,并对不同阴阳离子的组合的离子液体在室温下的状态以及性质进行了探索和研究 关键词离子液体吡啶合成性状 离子液体(ionic liquids)又称为室温离子液体(room temperature ionic liquid) 、室温熔融盐( room temperature molten salts) 、有机离子液体等,是指仅由离子组成在室温或低温下为液体的盐。 离子液体的特点是没有显著的蒸汽压:一方面它不会成为蒸气扩散到大气中去,是一种“绿色溶剂”,另一方面它可以有很宽的液态范围;除此之外,离子液体中的正负离子可以由有机离子和无机离子共同组成,所以对许多物质都有很好的溶解性且大多为非质子型,可以减少溶剂化和溶剂解的现象;良好的导电性、较好的热稳定性和化学稳定性使在如今,离子液体成为了热门的研究方向。早在1951年,就制成了将l-溴丁烷与吡啶反应生成的N-丁基吡啶溴代盐与无水三氯化铝混合的第一种离子液体[1]。 离子液体的主要作用是为化学反应提供了不同于传统分子溶剂,(例如水)的环境,可能改变反应机理使催化剂活性、稳定性更好,转化率、选择性更高;离子液体种类多,选择余地大,可以对有机离子进行调整和修饰;将催化剂溶于离子液体中,与离子液体一起循环利用,催化剂兼有均相催化效率高、多相催化易分离的优点;产物的分离可用倾析、萃取、蒸馏等方法,因离子液体无蒸气压,液相温度范围宽,使分离易于进行。 目前离子液体有很多重要工业应用价值的反应,如:F.C.反应[2,3],烯烃氢化[4],Beckman重排[5],Heck反应[6],氧化反应[7]等都在离子液体催化剂体系中取得了很好的结果。据文献报道离子液体还用于天然产物中多肽的萃取[8],核废料[9]的回收处理等。 一般来说,离子液体有阴离子和阳离子两个部分,阴离子的种类比较多,阳离子主要有以下四种: 烷基季铵离子:[NRxH1-x]+,例如[Bu3NMe]+; 烷基季膦离子:[PRx]+,例如[Ph3POc]+; N-烷基取代吡啶离子,记为[RPy]+; 1,3-二烷基取代咪唑离子,或称为N,N 一二烷基取代咪唑离子,记为[RR’im]+。目前主要采取的离子液体的合成主要有直接合成法和两步合成法。 直接合成法即通过酸碱中和反应或季铵化反应一步合成,操作经济简便,没有副产物,产品以纯化。 当直接合成法难以得到目标离子液体的时候,就必须使用两步合成法;首先通过季铵化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出原阴离子或加入Lewis酸来得到目标离子液体。 本实验小组研究了吡啶型离子液体的合成方法,并对不同阴阳离子的组合的离子液体在室温下的状态以及性质进行了探索和研究,但由于时间、试剂和设备的限制,未能对制备的离子液体在有机反应中的应用进行检验,实为遗憾。 1 实验部分

LCD液晶拼接屏设计方案设计书

LCD液晶拼接屏设计方案设计书 目录 第1章. 项目需求分析4 1.1 需求分析 4 1.2 项目建设规模 4 第2章. 系统设计依据5 第3章. 系统设计目标6 4.1 系统的可行性 6 4.2 系统的实用性 6 4.3 系统的可靠性 6 4.4 系统的经济性 6 4.5 系统的开放性及可扩展性 6 第4章. LCD液晶屏显示原理及DID屏的特征8 3.1 液晶显示原理及构造8 3.2 三星DID TFT LCD特点 9 第5章. 系统总体规模与组成10 5.1系统总体描述10 5.2 液晶拼接墙的基本构成11 第6章. LCD液晶拼接墙功能特点13 6.1 LDU46拼接单元功能特点16 6.2 DVWNT930F外置拼接控制器特点20 第7章. 主要设备技术指标23

6.1 LDU46拼接单元性能参数23 6.2 LDUNT930内置控制器和监视器技术指标25 6.3 DVWNT930F外置多屏图象控制器技术指标26 第8章. 液晶拼接墙相关设计图纸 28 8.1 拼接墙外观尺寸图28 8.2 系统连接示意图29 第9章. 系统环境设计和要求30 9.1 安装要求30 9.2 操作控制台(室)装修及设备位置要求30 9.3 光线要求30 9.4 走线及线槽要求30 9.5 空调要求31 9.6 供电电源31 9.7 系统环境31 第10章. 设备配置清单33 需求分析 本系统安装安装一套由超窄边三星46”液晶显示单元组成的4×4 LCD 显示屏,用于显示安全生产监测、生产工艺流程控制、安全监测组态和图表等多种图像格式,指挥矿井安全生产。 要求配置图像拼接处理器及RGB矩阵控制器和视频矩阵,实现整个液晶显示拼墙的图形拼接功能,可任意组合拼接。 要求显示墙控制软件,能够实现显示屏任意拼接,同时也可以实现单个画

吡啶介绍

吡啶产品简介 一、用途: 主要用作医药工业的原料,用作溶剂和酒精变性剂,也用于生产橡胶、油漆、树脂和缓蚀剂等2-氯吡啶2,6-二氯吡啶2-氨基吡啶N,N'-二环己基碳二亚胺吡啶三唑酮硫双灭多威百草枯还原灰M 可溶性还原蓝IBC 盐酸洛美沙星恶丙嗪维生素D2 甲睾酮醋酸氢化可的松氟他胺危险。 二、理化性质 中文别称:一氮三烯六环、氮杂苯、氮环、杂氮苯: 英文名Pyridine 英文别名Pyridine anhydrous; Azabenzene; Pyridin; Pyr 分子式C5H5N 分子量79.10 CAS号110-86-1 凝固点:一42℃ 沸点:115.3℃ 液体密度(26℃):978kg/m 闪点:-20℃ 自燃点:482.2℃ 折射率(20℃): 1. 5092 爆炸极限:1.8%~12.4%(体积) 外观无色微黄色液体,有恶臭 含量99.99% 熔点115.3℃~116℃ 在常温常压下吡啶为具有使人恶心的恶臭的无色或微黄色易燃有毒液体。能溶于水、醇、醚及其它有机溶剂。其水溶液呈微威性。遇火种、高温、氧化剂有发生火灾的危险。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等反应剧烈,有爆炸的危险。其蒸气与空气能形成爆炸性混合物。 三、生产方法 吡啶可以从炼焦气和焦油内提炼。

汉奇吡啶合成法:这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,然后用氧化剂(如亚硝酸)脱氢,再水解失羧即得吡啶衍生物。主要原料:37%甲醛,乙醛,液氨、丙酮等。但合成技术上很难突破,被美国等跨国公司垄断全球半个多世纪,我国曾组织专家历经五个五年计划攻关未果。目前,吡啶国内市场需求很大,目前主要依赖于进口,其吡啶项目生产工艺极其复杂,约有100多道工序。 唐教授:在目前的工业化生产中,催化合成的工艺主要是以甲醛、乙醛和氨气为原料通过缩合反应实现的。可通过改变原料中醛的种类或反应物的比例来调整产物的种类和产物的量。常用的催化剂主要是ZSM-5沸石分子筛。针对以甲醛、乙醛和氨气为原料合成吡啶及其衍生物的技术路线,本课题组于2005年开始进行催化剂及工艺条件的实验研究,并取得了初步的研究成果。在此基础上,本文进行了以下主要研究内容:(1)选用贵金属Pd改性的ZSM-5沸石分子筛作为醛氨缩合合成反应的催化剂,以甲.. 吡啶也可用乙炔、氨和甲醇在500℃通过催化剂制备。 四、国内外生产情况 全球吡啶类化合物生产主要集中在美国、欧洲、日本和我国,约占全球吡啶类化合物总产量的86.75%以上。 目前国内有南通醋酸厂与Reilly合资的设计能力1.1万吨装置,达产6000~7000T/a,80%外销,南京红太阳吡啶研发本身就花了6 年多时间,后来试车生产调试也花了2 年多,生产工艺从开始的固定床到最终的流化床,最终完成了对吡啶的突破。 红太阳集团吡啶产能由两部分组成,一为南京生化的1.2 万吨装置,另一个为安徽生化的2.5 万吨装置。其中南京生化吡啶装置,从2006 年开车后,一直到2007 年底,生产情况并不稳定,产品纯度稍差,产出吡啶基本上自用生产百草枯或少量外卖,而3-甲基吡啶则全部协议外销。由于2007 年前装置稳定性较差,公司为了保证百草枯的生产,还会有部分外购,2007 年一年外购吡啶约为2000 吨左右。公司介绍,进入2008 年后,由于雪灾和奥运会禁运等特殊原因,造成公司吡啶装置有 5 个月无法正常生产,不过从去年开始公司基本上不再外购原料生产百草枯,而是仅依靠南京生化和安徽生化的吡啶来满足9000 吨百草枯产能的需求。在

显示屏工作原理

2 显示扫描原理 各个企业制造的LED显示屏的控制结构有所不同,但是,显示屏的显示扫描电路基本相同。双基色LED显示屏的显示扫描电路如图1所示。在图1中,IC1、IC2是数据锁存器电路74HC595,分别锁存红色、绿色数据,它们的性能是:①串行输入8位并行输出;②数据锁存、数据清除功能;③输出具有比较强的驱动能力。电阻RPB1、RPB2是限流电阻,根据颜色和模块的亮度来选择他们的数值。ML1是双色LED显示模块,共有8行×8列=64个LED,其中,8个引脚是红色信号输入端,8个引脚是绿色信号输入端,8个引脚是行控制输入端,共有24个引脚。三极管 Q0,Q2,…Q7是行选通、驱动作用。IC3是3-8地址译码电路74HC138,8个选通输出端分别控制相应的行。图中电路是显示屏的原理电路,其数据传送方式是数据传送与行信号异步进行:首先,同时传送8位红、绿颜色数据到电路IC1、IC2并将数据锁存,然后再传送行控制信号点亮一行LED,接下来重复上述操作,只是行信号移至下一行,依次到第八行为止,即是一次完整的扫描过程。 显示扫描电路板的设计要求具有比较低的生产成本,因此,许多企业都设计成双面电路板,这样可以节省约三分之一的电路板成本。在显示模块的相应尺寸范围内,要安放上图中的全部元器件,其对应的双层印刷电路板编制具有较大难度,所以IC1电路特别适合点阵扫描原理的LED显示模块的驱动。显示扫描电路都是采用串行方式传送数据,这样既可以节省电路板的位置,又适合显示屏与计算机之间的数据传送。 3 工作状态分析 显示扫描电路的原理是动态扫描方式,不能静态测量其工作电流,因此,要计算出工作电流,就要分析动态参数。图2是一个LED的工作电路图。电路中Q8是驱动电路,正端接电源,控制端接74HC138的输出,输出端接LED发光二极管D,与限流电阻连接,电阻接74HC595的数据输出端。LED的点亮方式是:控制74HC138的片选信号无效,为不选通,之后74HC595输出电平,低电平为点亮信号,再选通74HC138,控制输出选通信号,此时,有电流I0从Q8输出,流过D、R1后,进入74HC595的数据输出端。 在图中,V ab是加在LED上的电压,红、绿色高亮度发光二极管的压降均约2~3V,Vbc是加在限流电阻两端上的电压,通过调节限流电阻的数值,就可以改变电路的工作电流I0,当电阻R1=0时,电路依靠74HC595的输出有源电阻作为限流电阻。 在扫描电路中可以看出,电路结构比较简单,合理地调整各个部分工作参数就能够使电路工作在最佳状态。在选择电路时,还要准确掌握各个公司电路的性能,以及之间的技术参数的差别。不同型号的器件技术参数也有所区别,表1是74H C595的技术参数,表中给出了Texas Instru-ments,ST,Philips公司的74HC595的技术参数。在表中可以看出不同的公司生产的电路略有不同,因此,一块显示屏尽量要使用同一公司的电路器件,以免由于参数的差别影响显示屏的显示效果。 在表1中,Iik为输入尖峰脉冲电流,Iok为输出尖峰脉冲电流,I0为连续输出电流,Vcc为最高供电电压,f max表示在25℃时的最大工作频率(随着负载电容的不同,工作频率也不同),ta为工作温度。表中元件SN74HC595、M74HC595、74HC595对应公司是Texas Instryments,ST,Philips。 4 亮度和颜色的调整 4.1 亮度和颜色的调整 制造大屏幕时,首先要按照亮度指标选择LED或者显示模块,其次是根据选择的产品红、绿、蓝颜色的亮度比来确定哪一种颜色为基准,一般是将亮度比例低的一种作为亮度基准,当基准的一种已经达到最大亮度时,调整另外一种(双色)或两种(全彩)。显示屏幕是双色时,大多数情况下以绿色为基准,调整红色二极管的工作电流。一般是降低工作电流,以平衡颜色黄色为调整标准,这样就要减小整个显示屏幕的亮度。显示屏的颜色调整至最佳平衡状态,则会使屏的亮度降低。如果显示屏幕为了

LCD液晶显示屏设计书

LCD液晶显示屏设计书 一、设计的目的 1.学习液晶显示的编程方法,了解液晶显示模块的工作原理。掌握液晶显示模块与单片机的接口方法。 2.学习和了解微型打印机模块的工作原理。掌握微型打印机模块与单片机的接口方法。 二、设计的题目和要求 编程实现在液晶显示屏上显示且实现打印双行中文汉字“XX大学 XX学院”。 三、设计报告的容 3.1、总体实验功能要求 设计并实现程序: 1、在点阵式LCD模块上双行显示“XX大学 XX学院”。 2、打印机双行打印“大学信息学院”字样。 3.2、实现方案 1、LCD液晶显示屏模块 在点阵式LCD模块上双行显示“XX大学 XX学院”:硬件接口 接口协议为请求/应答(REQ/BUSY)握手方式。应答 BUSY 高电平

(BUSY =1)表示 OCMJ 忙于部处理,不能接收用户命令;BUSY 低电平(BUSY =0)表示 OCMJ空闲,等待接收用户命令。发送命令到 OCMJ 可在 BUSY =0 后的任意时刻开始,先把用户命令的当前字节放到数据线上,接着发高电平 REQ 信号(REQ =1)通知 OCMJ 请求处理当前数据线上的命令或数据。OCMJ 模块在收到外部的 REQ 高电平信号后立即读取数据线上的命令或数据,同时将应答线 BUSY 变为高电平,表明模块已收到数据并正在忙于对此数据的部处理,此时,用户对模块的写操作已经完成,用户可以撤消数据线上的信号并可作模块显示以外的其他工作,也可不断地查询应答线 BUSY 是否为低(BUSY =0?),如果BUSY =0,表明模块对用户的写操作已经执行完毕。可以再送下一个数据。如向模块发出一个完整的显示汉字的命令,包括坐标及汉字代码在共需 5 个字节,模块在接收到最后一个字节后才开始执行整个命令的部操作,因此,最后一个字节的应答BUSY 高电平(BUSY =1)持续时间较长,具体的时序图和时间参数说明查阅相关手册。 2. 点阵打印机模块 打印机双行打印“大学信息学院”字样: 进纸按钮:按下时,自动进纸。启动/停止按钮:向上时,启动打印;向下时,停止打印。 设计实现流程框图如下:

液晶显示器电源工作原理及维修

液晶显示器电源工作原理及维修 详细介绍液晶显示器电源的作用、工作原理、维修及代换, 一、电源的作用 1、电源的基本知识 液晶电源的作用是为整机提供能量,常见的电源适配器外观如图所示 它的输入是220V交流电,输出为12V、4A直流电。电源适配器的内部电路结构如图所示

2、液晶电源的常见存在形式 常见的液晶电源有内置式和外置式两种。内置式电源一般是和高压板做在一起,形成二合一电源板,驱动板需要的各路电压均有电源板产生。外置式电源也就是通常所说的电源适配器,它一般是220V交流电输入,12V直流电输出,驱动板需要的其他电原在驱动板上进行变换。 二、电源的工作原理 由于LCD采用低电压工作,而一般市电提供提是110V或220V的交流电压,因此显示器需要配备电源。电源的作用是将市电的220V交流电压转变成12V或其它低压直流电,以向液晶显示器供电。 LCD显示器中的电源部分均采用开关电源。由于开关电源具有体积小、重量轻、变换效率高等优点,因此被广泛应用于各种电子产品中,特别是脉宽调制(PWM)型的开关电源。PW M型开关电源的特点是固定开关频率、通过改变脉冲宽度的占空比来调节电压。 PWM开关电源的基本工作原理是:交流电220V输入电源经整流滤波是路变成300V直流电压,再由开关功率管控制和高频变压器降压,得到高频矩形波电压,经整流滤波后获得显示器所需要的各种直流输出电压。脉宽调制器是这类开关电源的核心,它能产生频率固定具脉冲宽度可调的驱动信号,控制开关功率管的导通与截止的占空比,用来调节输出电压的高低,从而达到稳压的目的。 以下将要介绍的电源适配器就是此类开关电源,我们以采用UC3842脉宽调制集成控制器的电源为例讲解相关电路。 1、UC3842的性能特点 (1)它属于电流型单端PWM调制器,具有管脚数量少,外围是路简单、安装调试方便、性能优良、价格低廉等优点。而且通过高频变压器与电网隔离,适合构成无工频变压器的20-50W小功率开关电源。 (2)最高开关频率为500KHZ,频率稳定度高达0.2%。电源效率高,输出电流大,能直接驱动双极型功率晶体管或VMOS管、DMOS管、TMOS管工作。 (3)内部有高稳定的基准电压源,档准值为5V,允许有+0.1%的偏差,温度系数为

液晶拼接屏设计方案-完整

LCD大屏幕显示系统 技术方案 深圳媒杰科技有限公司

2014年12月25日 目录 1 系统组成 (4) 2 模块规格 (5) 3 LCD幕墙功能介绍 (6) 3.1 基本显示 (6) 3.2实时视频信号显示 (6) 3.3 RGB信号显示 (7) 4.1液晶显示单元 (8) 4.11液晶显示单元的特点 (8) 4.12液晶显示单元主要技术指标 (10) 4.2 媒杰科技NT2000多屏拼接控制器描述 (11) 4.2.1媒杰科技NT2000多屏拼接控制器主要技术参数 (11) 4.2.2媒杰科技NT2000多屏拼接控制器的功能 (12) 4.3 媒杰科技DWPCS系统软件 (16) 5 媒杰科技液晶拼接系统的特点 (20) 5.1系统的可用性 (20) 5.2系统的可靠性 (20) 5.3系统的经济性 (20) 5.4系统的易扩充性 (21) 5.5美观的墙体结构 (21) 6系统环境设计及要求 (22) 6.1安装要求 (22) 6.2操作控制台(室)装修及设备位置要求 (22) 6.3光线要求 (22) 6.4走线及线槽要求 (23) 6.5空调要求 (23) 6.6供电电源 (23) 6.7系统环境 (24) 7售后服务及培训 (25) 7.1服务承诺 (25) 7.2质保期内 (25) 7.3有偿售后服务 (26) 7.4除外责任 (26)

7.5索赔 (27) 7.6员工操作和维修培训计划 (28) 8应用案例 (29)

概述 本拼接幕墙方案提供的大屏幕LCD显示系统是根据用户需求专门设计的。它将国际最先进的DID LCD显示技术、多屏图像处理技术、信号切换技术等的应用综合为一体,形成一个拥有高亮度、高清晰度、高智能化控制、操作方法先进的大屏幕LCD显示系统。 通过这套LCD拼接墙显示系统可以将各类计算机信号、视频信号在大屏幕上显示,形成一套功能完善、技术先进的信息显示管理控制系统,为用户提供一个交互式的灵活系统,适应不断发展的各种需要。

吡啶合成阿司匹林

吡啶催化合成阿司匹林 【摘要】在有机实验中,反应通常比较缓慢,常常要用加热,光照,加催化剂,加有机溶剂等手段。催化剂则能改变反应的速率,而不改变化学反应结果。在阿司匹林的制备反应中,酸碱催化剂起到很重要的作用。用吡啶催化剂,以水杨酸和乙酸酐为原料合成乙酰水杨酸.比较用不同的催化剂(浓硫酸,浓磷酸,吡啶,醋酸钠,碳酸钾)的催化作用,结果表明, 吡啶是合成乙酰水杨酸的优良催化剂。【关键词】阿司匹林吡啶催化剂水杨酸 【正文】 (一)前言:阿司匹林, 又名乙酰水杨酸, 化学名称:2-乙酰氧基- 苯甲酸, 化学结构式:相对分子质量:180.16 阿司匹林属于非甾体类抗炎药,即NSAIDs,具有较强的解热镇痛作用, 广泛用于抗炎、抗风湿,也是第一个用于临床的抗血小板聚集药。小剂量的阿司匹林可用于预防心脑血管病和短暂性缺血性疾病的发作,如脑血栓、冠心病、心肌梗死、人工心脏瓣膜或其他手术后的血栓形成及血栓闭塞性脉管炎等。【1】随着广大研究者对阿司匹林研究的不断深入,人们发现阿司匹林这100 年老药还有很多新的用途,比如治疗痛经,预防老年痴呆症,防癌作用,防治糖尿病眼底病变,降糖等作用【2】,因而阿司匹林又再次受到了人们的广泛关注。 (二)阿司匹林的制取(实验部分) 1、实验目的 (1)、学习酰化反应的原理和方法,掌握阿司匹林的制备方法。 (2)、掌握易氧化基团的保护方法。 (3)、进一步掌握重结晶的操作技术,抽滤装置的安装与操作。 安全需知:乙酸酐和浓磷酸,浓硫酸具有很强的腐蚀性,使用时须小心。如溅在皮肤上,应立即用大量的水冲洗

2、实验的反应原理 (1)实验反应方程式 : (2)反应温度应控制在90℃以下,温度过高易发生副反应,同时水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物。 副反应: O OH OH 2 OH C O O O O H +O H 2O OH OC OCH 3 O OH OH + OC OCH 3 C O O O O H 缩合反应: (3)反应机理: ①吡啶作为亲核试剂对乙酸酐的羰基碳进行加成,②酰氧基离去,生成N —酰基吡啶盐(此时N 带正电荷,吸电子能力比酰氧基强,进一步增加酰基碳的正电性,更有利于水杨酸的进攻,且是一个好的离去基团) 水杨酸酚羟基进攻N —酰基吡啶盐,吡啶离去,生成产物。

液晶显示器工作原理

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放置的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64×64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为

256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film T ransistor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装置,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄膜晶体管),被动式液晶屏幕有stn(super tn超扭曲向列lcd)和dstn(double

吡啶的生产工艺与技术路线的选择

吡啶的生产工艺与技术路线的选择 在吡啶类化合物中,最早被发现的是2-甲基吡啶。1946年,英国Anderson 自煤焦油中分离得到;1951年Anderson从骨油中分离得到吡啶并做了鉴定。 但煤焦油中分离吡啶量有限,产量少,组分复杂,随着世界能源结构发展,以油代煤的变化,从煤焦油中分离提取吡啶的方法已不适应大批量工业化生产,逐步被化学合成法淘汰。 2.1 焦油法生产粗轻吡啶 吡啶以往主要从煤焦油中提取,我国部分焦化厂以氨气中和法从饱和器母液中生产粗轻吡啶,见下图:..…. 2.2 化学合成法生产吡啶 吡啶以往主要从煤焦油中提取,现在主要由化学合成法获取。 化学合成的生产工艺是一步合成,分步分离、精制。 化学合成法生产吡啶,产品不仅仅是单一的吡啶,而是一个混合物,其组成依技术、反应条件及添加剂有所不同。..…. 2.2.1 醛(酮)-氨法合成烷基吡啶 此法自20世纪50年代工业化以来,因原料价廉易得、可以根据市场需求调整合成路线、生产多种产品而一直是热门的研究课题。..…. 我国红太阳集团有限公司吡啶合成工艺技术考虑下游产品发展及吡啶衍生物在国内市场的需求情况,工艺采用乙醛+甲醛--氨合成工艺技术,以吡啶和3-甲基吡啶为主要产品。..….

2.2.2 醛(酮)-烯腈法合成烷基吡啶 该法主要以不饱和烃为原料生产烷基吡啶,乙烯和乙腈在(Me4N2CoB10H12)2 催化剂作用下,可得2-甲基吡啶,产率18%。..…. 2.3 吡啶生产方法研究及相关专利 我国在吡啶及下游产品开发方面也取得一些新的成果。 东南大学从事吡啶的合成技术研究,1996年获得成功的一项新工艺投产后,为我国开发二类新药奥兰啦唑提供原料,..….2009年09月08日沙隆达集团公司 申请了“一种合成吡啶与甲基吡啶的方法及装置”专利,见下表: 表2.5 一种合成吡啶与甲基吡啶的方法及装置专利表 申请专利号200910063901 专利申请日2009/09/08 名称一种合成吡啶与甲基吡啶的方法及装置 申请(专利权)沙隆达集团公司 地址湖北省荆州市北京东路93号 发明(设计)人殷宏;王正国;薛光才;艾秋红;马安兵;向维德;李新年;杨浩斌;刘孝平;廖艳;张诗忠 摘要 本发明涉及一种中间体的制备方法,具体地说是一种合成吡啶与甲基吡啶的方法及装置。它是以氨、甲醛、乙醛为原料,在催化剂的作用下,原料气经气体分布板后,首先进入流化床反应器,从流化床反应器出来的气体,经扩大段后不经旋风分离器直接进入固定床反应器中反应得到吡啶。本发明具有催化剂可连续补充,反应周期长,吡啶收率高的优点。 主权项 一种合成吡啶与甲基吡啶的方法,它是以氨、甲醛、乙醛为原料,在催化剂的作用下,原料气经气体分布板后,首先进入流化床反应器,从流化床反应器出来的气体,经扩大段后不经旋风分离器直接进入固定床反应器中反应得到吡啶。 详细内容参见六鉴网(https://www.doczj.com/doc/844275133.html,)发布《吡啶技术与市场调研报告》。

相关主题
文本预览
相关文档 最新文档