当前位置:文档之家› 一次函数图象的平移变换问题探究---绝对经典

一次函数图象的平移变换问题探究---绝对经典

一次函数图象的平移变换问题探究---绝对经典
一次函数图象的平移变换问题探究---绝对经典

一次函数图象的平移变换问题的探究

所谓平移变换就是在平面内,将一个图形整体沿某一个方向移动一定的距离,这样的图形运动就称为平移.经过平移后的图形与原来的图形相比大小、形状不变,只是位置发生了变化.简单的点P (x ,y )平移规律如下:

(1)将点P (x ,y )向左平移a 个单位,得到P 1(x -a ,y )

(2)将点P (x ,y )向右平移a 个单位,得到P 2(x+a ,y )

(3)将点P (x ,y )向下平移a 个单位,得到P 3(x ,y -a )

(4)将点P (x ,y )向上平移a 个单位,得到P 4(x ,y+a )反之也成立.

下面我们来探索直线的平移问题.

【引例1】探究一次函数l :y=32x 与1l :y=32x+2,2l :y=3

2x -2的关系. 【探究】我们可以通过列表、描点、连线在同一平面直角坐标系中画出3

个函数的图象(如图1),观察这3个函数的图象:从位置上看,它们是3

条平行的直线.(这是因为它们的k 值相同);从数量上看,对于同一自变量

的取值(不妨取x=0即直线与y 轴的交点),可以看出直线1l 在直线l 的上方2个单位处,直线2l 在直线l 的下方2个单位处,因此,一次函数1l :y=32x+2的图象可以看作是由正比例函数l :y=3

2x 的图象沿y 轴向上平移2个单位得到的;一次函数2l :y=32x -2的图象可以看作是由正比例函数l :y=3

2x 的图象沿y 轴向下平移2个单位得到的.

【拓广】:一般地,一次函数y=kx+b 的图象是由正比例函数y=kx 的图象沿y 轴向上(b>0)或向下(b<0)平移b 个单位长度得到的一条直线.

【应用】:例1、(08上海市)在图2中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .

分析:观察图像发现直线OA 是正比例函数的图象,可设直线OA 的解析式为

y=kx ,又点A (2,4)在函数图像上,所以4=2 k 即 k=2,又一次函数的图像是由直线OA 向上平移1个单位得到,故这个一次函数的解析式为y=2x+1. 【引例2】探究一次函数l :y=32x 与1l :y=32(x+3),2l :y=3

2(x -3)的关系. 【探究】观察引例1与引例2中的3个函数的解析式,经过变形我们可以发现他们是完全相同的,因而,画出3个函数的图象仍然是图1的情况.从位置上看,它们是3条平行的直线.(这是因为它们的k 值相同);从数量上看,对于同一因变量的取值

(不妨取y=0,即直线与x 轴的交点),可以看出直线1l 在直线l 的左方3个单位处,直线2l 在直线l 的右方3

个单位处,因此,一次函数1l :y=

32(x+3)的图象可以看作是由正比例函数l :y=3

2x 的图象沿x 轴向左平移3个单位得到的;一次函数2l :y=32(x -3)的图象可以看作是由正比例函数l :y=32x 的图象沿x 轴向右平移3个单位得到的.

【拓广】:一般地由正比例函数y=kx 的图象沿x 轴向左平移m (m>0)

个单位,得到的一次函数解析式为y=k (x+m )=kx+km ;沿x 轴向右平移m

(m>0)个单位,得到的一次函数解析式为y=k (x -m )=kx -km ;

综合上述归纳推广可以发现,直线上下平移时,影响的y 值的变化,直

线左右平移时影响x 值的变化.

【应用】:(08年武汉市)⑴点(0,1)向下平移2个单位后的坐标

是 ,直线21y x =+向下平移2个单位后的解析式

2l

x

是 ;

⑵直线21y x =+向右平移2个单位后的解析式是 ;

⑶如图,已知点C 为直线y x =上在第一象限内一点,直线21y x =+交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC

方向平移

分析:⑴点(0,1)向下平移2个单位,横坐标不变,纵坐标减去2,故为(0,-1).

根据上面拓广的规律直线21y x =+向下平移2个单位后的解析式应为21y x =+-2,即21y x =-;

⑵直线21y x =+向右平移2个单位后的解析式应为y=2(x-2)+1即23y x =-;

⑶解法1:点C 为直线y x =上在第一象限内一点,

OC=C (3,3),将直线AB 沿射线OC 方

向平移相当于向右平移3个单位,再向上平移3个单位,根据拓广规律,解析式变为y=2(x-3)+1+3即y =;

解法2:点C 为直线y x =上在第一象限内一点,

OC=C (3,3),将直线AB 沿射线OC 方向

平移3个单位,再向上平移3个单位,从而点A (0,1)平移到(3,4),设平移后的直线的解析式为y=2x+b ,则有4=6+b 所以b=-2,所以所求直线的解析式为y=2x-2.

赏析一道函数图象探究题

函数是初中数学的重点内容之一,其图象是一种直观形象的交流语言,含有大量的丰富的有价值的信息.为考查同学们获取和应用图象信息的能力,函数图象探究题便成了近年来各地中考的新亮点,解答这类题的关键是从图象中获取信息,,正确地进行“形”和“数”的转换.现就08年中考有关一次函数图象探究题精选一例,浅析如下,供同学们鉴赏:

例(2008江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......

为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究:

信息读取

(1)甲、乙两地之间的距离为 km ;

(2)请解释图中点B 的实际意义;

图象理解

(3)求慢车和快车的速度;

(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决

(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

分析 (1)图中折线表示两车之间距离与慢车行驶时间之间的函数关系,从折线中可以看出,当x =0,即两车即将出发时,y =900(km ),这说明甲、乙两地之间的距离为900km ;

(2)当x =4,即慢车行驶4小时, y =0(km ),这说明两车之间的距离为0,即两车相遇;

(3)两车相遇后继续行驶,快车至乙地停止行驶(折线上为点C),慢车继续向甲地行驶,直至x =12,即慢车行驶了12小时到达甲地(折线上为点D).点D 的纵坐标为900(km ),这说明慢车12小时行驶的路程为900km ,从而可求得慢车的速度,再由两车4小时相遇,即4小时共走了900km ,则快车速度可求.

(4) 求线段BC 所表示的y 与x 之间的函数关系式,关键是要确定B 、C 两点的坐标,由图象可知,点B 的坐标为(4,0),点C 的横坐标为快车到达乙地的时间,由快车行驶路程÷快车行驶速度可得,而纵坐标则为此时两车之间的距离,可由慢车行驶时间×慢车行驶速度求得,再用待定系数法可求得线段BC 所表示的y 与x 之间的函数关系式.

(5) 慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车行驶的时间是4.5h .代入线段BC 所表示函数关系式,可以求得此时慢车与第一列快车之间的距离, 而这也正是两列快车之间的距离,再由快车行驶速度,则可求得两列快车发车的间隔时间,从而问题可解.

解:(1)900;

(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇.

(3)由图象可知,慢车12h 行驶的路程为900km ,

所以慢车的速度为90075(km /h)12

=; 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为900225(km /h)4

=,所以快车的速度为150km/h . (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150

=到达乙地,此时两车之间的距离为675450(km)?=,所以点C 的坐标为(6450),.

设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得

044506.k b k b =+??=+?, 解得225900.k b =??=-?

, 所以,线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.

自变量x 的取值范围是46x ≤≤.

(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h .把 4.5x =代入225900y x =-,得112.5y =.

此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h .

点评 本例确实是一道难得的函数图象探究题,从列意布局,信息读取,图象理解,问题解决,环环相扣,步步紧逼,既给了同学们解决问题的方法,又给了同学们广阔的思维空间和探索空间,既考查了同学们获取图象信息的能力,又考查了同学们探究学习的过程,还充分渗透了运动变化的观点.可以看得出命题者的构思巧妙,匠心独运.不得不令人耳目一新,拍案叫绝.

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

对数函数性质及练习(有答案)

对数函数及其性质 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征???? ? log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数 log a x 的真数:仅是自变量x 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因 是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2 -a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2 -a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________. (1)y =log (a >0,且a ≠1);(2)y =log 2x +2; (3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析: 2.对数函数y =log a x (a >0,且a ≠1)的图象与性质

(1)图象与性质 谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. (2)指数函数与对数函数的性质比较 (3)底数a对对数函数的图象的影响 ①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上

对数函数图像和性质-函数专题平移和变换

函数专题:对数函数图象及其性质(1) 学习目标: 1.知道对数函数的定义 2.能够画出对数函数图象及并通过图象研究函数基本性质 3.会求简单的与对数有关的复合函数的定义域 4.掌握通过图象比较两个对数的大小的方法 学习重点:对数函数的图象、性质及其应用 学习过程: 一、复习引入: 1、指对数互化关系: 2、 )10(≠>=a a a y x 且 的图象和性质 3、我们曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y 是分裂次数x 的 函数,这个函数可以用指数函数y =x 2表示现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞? 二、新课学习: 1.对数函数的定义: 一般地,形如y=a log x (a >0且a ≠1)的函数叫对数函数。 练习:判断以下函数是对数函数的为(D ) 2A log (32)y x =-、(1)B log x y x -=、2 13 C log y x =、 D ln y x =、 2.对数函数的图象研究: 画出下列函数的图象2()log f x x =, 12 ()log f x x =图像略

3.对数函数的性质: 分析说明: 根据定义知,指数函数和对数函数互为反函数,所以定义域值域互换可得;图像关于y=x 直线对称,所以对数函数的性质及图像就一目了然了。 三、知识应用: 例1:求下列函数的定义域: (1)2 log x y a =; (2))4(log x y a -=; (3)y = 练习:(1)5log (1)y x =- (2)21log y x = 例2. 比较下列各组数中的两个值大小 (1)22log 3.4,log 8.5 (2)0.30.3log 1.8,log 2.7 (3)log 5.1, log 5.9a a (a >0,且a ≠1) 32(4)log 5, log 5 解析技巧: 对数比较大小的步骤:1.与0比其乐无穷满足口诀“同步为正,不同步为负” 2.与1比其乐融融 满足口诀“每个对数换为a log a 比较” 3.同底比~ 应用公式“换底公式①、②” 四、思考: 2 (1)a x ax -+函数f(x)=log 的定义域为R ,求的取值范围?2

函数图像平移公式

函数图像平移公式 设在直角坐标系xoy 中有一函数为)(x f y =则其图像平移公式有: 1. 把图像向右平移(X 轴正方向)m (m>0)个单位,再向上平移(Y 轴的正方向)n (n>0)个单位后所得的图像的解析式为)(m x f n y -=- 2. 把图像向右平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y -=+ 3. 把图像向左平移m (m>0)个单位,再向上平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=- 4. 把图像向左平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=+ 这些规律可总结为:左右平移“X 左加右减”上下平移“下加上减” 说明:利用这个规律写平移后函数图像的解析式只需要考查是用m x +还是用m x -替换)(x f y =中的x,是用n y +还是用n y -来替换)(x f y =中的y,使用起来很方便。 例一、 抛物线3422---=x x y 向左平移3个单位,再向下平移4个单位,求所得抛物线 的解析式。 解:根据左右平移“X 左加右减”上下平移“下加上减”的规律分别用3+x 、4+y 去替换抛物线3422 ---=x x y 中的x 、y 就可以得到平移后的抛物线的解析式,所以平移后的抛物线的解析式为3)3(4)3(242-+-+-=+x x y 即371622---=x x y 例二、 将一抛物线向左平移2个单位,再向上平移3个单位所得到抛物线的解析式为322+-=x x y 求此抛物线的解析式。 解:所求抛物线可以看成是将抛物线322 +-=x x y 向右平移2个单位,再向下平移3个单位所得。所以所求抛物线的解析式为3)2(2)2(32+---=+x x y 即862+-=x x y 例三、 求将直线15-=x y 向左平移3个单位,再向上平移5个单位所得到直线的解析式 解:所求直线的解析为1)3(55-+=-x y 即145+=x y

函数 图像的平移变换与伸缩变换

函数()y f x =图像的平移变换与伸缩变换 在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数 y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。 大家知道,sin y x =的图像向上(下)平移10个单位,可得到 10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的 图像向右(左)平移 10π,可得到sin()10y x p =-(sin()10 y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12 ),可得到1sin 2 y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反

高中数学-对数函数图像和性质及经典例题

对数函数的概念: 函数y 对数函数的图象和性质 高中数学-对数函数图像和性质及经典例题 第一部分:回顾基础知识点 log a x(a 0,且a 1)叫做对数函数其中x是自变量,函数的定义域是(o, +3). 在同一坐标系中画岀下列对数函数的图象; (1) y log 2 x (2)y log! x 2 (3)y log3x(4)y log i x 3 ■0 5 -? 图象特征函数性质 a 10 a 1 a 10 a 1函数图象都在y轴右侧函数的定义域为(0,+x) 图象关于原点和y轴不对称非奇非偶函数 向y轴正负方向无限延伸函数的值域为R 函数图象都过定点(1 , 1) 1 1 自左向右看,图象逐渐上升自左向右看, 图象逐渐下降 增函数减函数 第一象限的图象纵坐标都大于0 第一象限的图象 纵坐标都大于0 x 1, log a x 00 x 1, log a x 0 第二象限的图象纵坐标都小于0 第二象限的图象 纵坐标都小于00 x 1, log a x 0x 1, log a x 0 -1 -- 底数a是如何影响函数log a x 的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大

第二部分:对数函数图像及性质应用 例1 ?如图,A , B , C 为函数y log i x 的图象上的三点,它们的横坐标分别是 t , t +2, t +4(t 1). 2 ⑴设 ABC 的面积为S 。求S=f (t ); ⑵判断函数S=f (t )的单调性; 解:(1 )过A,B,C,分别作AAi,BB i ,CC i 垂直于x 轴,垂足为 Ai,B i ,C i , 则 S =S 梯形 AA i B i B +S 梯形 BB 1C 1C — S 上是减函数,且 1

一次函数图象的平移规律

一次函数图象平移的探究 我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移; 当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线 y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移, 是指函数图象的上下平移,而非左右平移. 以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平 移.对于一个一般形式的一次函数图象又该怎样进行平移呢? 【探究一】函数图像的上下平移 我们先从一些具体的函数关系开始. 问题1已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式. 分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+ b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线 l1与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式为y=2x-1. 问题2已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式. 答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)

对比直线l和直线l1、直线l2的解析式可以发现: 将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现?) 我们再来探究一般情况. 问题3 已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式. 简解:设直线l1的解析式为y=kx+p,直线l交y轴于点(0,b),向上平移m 个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m. 问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式. 答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成) 由此我们得到: 直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m, 直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m, 这是直线直线y=kx+b上下(或沿y轴)平移的规律. 这个规律可以简记为:函数值:上加下减 以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b 不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

函数图象变换及练习题

高中函数图象变换 一、基本函数作图(草图画法): 1、一次函数: 2、二次函数: 3、反比例函数: 4、指数函数: 5、对数函数: 6、幂函数: 7、正弦函数:

二、图像变换: ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐

三角函数图象的平移和伸缩

3 得 y =A sin( x + )的图象? 向 ?上平 ( ? 移 k k ? 个 )或 单 向? 位 下长 ? (k 度 ?) → 得 y = A sin(x + )+k 的图象. y = sin x 纵坐标不变 横坐标向左平移 π/3 个单位 纵 坐标不变 横坐标缩短 为原来的1/2 y = sin(x + ) y = sin(2 x + ) 横坐标不变 纵坐标伸长为原 来的3倍 先伸缩后平移 纵坐标伸长(A 1)或缩短(0A 1) y =sin x 的图象 ??? ??????→ y = 3sin(2x + 三角函数图象的平移和伸缩 函数y = A sin(x + ) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A , , ,k 来相互转 化. A ,影响图象的形状, ,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由 引起的变 换称周期变 换,它们都是伸缩变换;由 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左( >0)或向右( 0) y = sin x 的图象 ??平 ? 移 ? 个单 ? 位长 ? 度 ?→ 得 y = sin(x +)的图象 横坐标伸长(0<<1)或缩短 (>1) 到原来的1(纵坐标不变) 得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0

横坐标伸长(0 1)或缩短(1) ????????→ 到原来的 1 (纵坐标不变) 向左( 0)或向右( 0) 得 y = A sin(x ) 的图象 ???平移 ?个 ? 单位 ??→ 得 y = A sin x ( x + )的图象??平 ?移 k ?个单 ?位长 ?度 ?→得 y = A sin( x +)+k 的图象. 纵坐标不变 y = sin x 横坐标缩短 为原来的1/2 纵坐标不变 横坐标 向左平移 π/6 个单位 横坐标不变 y = 3sin(2x + ) 纵坐标伸长为原 3 来的3倍 例1 将y = sin x 的图象怎样变换得到函数y = 2sin 2x + π +1的图象. 解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π 的图象;②将所得 图象的 横坐标缩小到原来的1,得y =sin 2x +π 的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin 2x + π 的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐 标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2 x + π 的 2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin 2x + π +1的图象. 得 y = A sin x 的图象 y = sin2 x y = sin(2x + )

描点画对数函数的图象

课件3 描点画对数函数的图象 课件编号:ABⅠ-2-2-1. 课件名称:描点画对数函数的图象. 课件运行环境:几何画板4.0以上版本. 课件主要功能:配合教科书“2.2.2 对数函数及其性质”的教学,说明对数函数图象的画法,演示对数函数图象的性质. 课件制作过程(一): (1)新建画板窗口.单击【Graph】(图表)菜单中的【Define Coordinate System】(建立直角坐标系),建立直角坐标系.选中原点,按Ctrl+K,给原点加注标签A,并用【文本】工具把标签改为O. (2)单击【Graph】菜单的【New Parameter】(新建参数),弹出“New Parameter”对话框,如图1,把Name栏改为x,把Volum栏改为0.5,单击【OK】后,出现参数x=0.5.再新建参数y=-1,n=0(用来控制迭代次数). 图1 图2 (3)单击【Measure】(度量)菜单中的【Calculate】(计算)打开计算器,计算“x×2”以及“y+1”的值,如图2. (4)先后选中x,y,单击【Graph】菜单的【Plot As (x,y)】(绘制点

(x ,y )),画点(x ,y ). (5)单击【Display 】菜单的【Trace Plotted Point 】(追踪点的轨迹). (6)先后选中x ,y ,n ,按住Shift 键,单击【Transform 】(变换)菜单的【Iterate To Depth 】(带参数的迭代),如图3,弹出“Iterate ”对话框,依次单击“x 2”,“y +1”,最后单击【Iterate 】完成迭代,如图4. 图3 图4 (7)先后选中x ,y ,x ×2以及y +1,单击【Display 】菜单的【Hide Measurements 】(隐藏目标). (8)单击【Graph 】菜单的【Plot Points 】(绘制点)画点E (-0.5,0).再画点F (8,0). (9)选中两点E ,F ,按Ctrl +L 键画线段EF .单击【Construct 】菜单的 【Piont On Segment 】(在线段EF 上构造点A ). (10)单击【Measure 】(度量)菜单中的【Abscissa (x )】(度量点的横坐标),打开计算器,计算log A x 2的值,如图5.

11-函数的图象与变换.docx

※考纲解读※ ?掌握基木初等函数的图象的画法及性质。如正比例函数、反比例函数、一元一次函数、一元二次函数、指数函数、对数函数、幕函数等; ?拿握各种图象变换规则,女m平移变换、对称变换、翻折变换、伸缩变换等; ?识图与作图:对于给定的函数图彖,能从图彖的左右、上下分布范围,变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性。茯至是处理涉及函数图象?性质一些综合性问题;能止确地从函数的图象特征去讨论函数的主要性质.能正确应用数形结合的思想方法解题 ※重点难点※ ?熟练基本函数的图象;掌握函数图象的初等变换 ?识图与用图;数形结合讨论综合问题* ※命题探究※ ?函数不仅是高屮数学的核心内容,还是学习高等数学的基础,所以在高考屮,函数知识占冇极英巫要的地位。共试题不但形式多样,而且突出考查学生联系与转化、分类与讨论、数与形结合等重要的数学思想、能力。知识覆盖面广、综合性强、思维力度大、能力要求高,是高考考数学思想、数学方法、考能力、考索质的主阵地。 从历年高考形势来看:(1)与函数图象冇关的试题,要从图中(或列表中)读取各种信息,注意利用平移变换、伸缩变换、对称变换,注意函数的对称性、函数值的变化趋势,培养运用数形结合思想來解题的能力,会利用函数图象,进一步研究函数的性质,解决方程、不等式屮的问题;(2)函数综合问题多以知识交汇题为主,其至以抽象丄 函数为原型來考察;(3)与幕函数有关的问题主要以歹=兀,》= _?,〉, =兀3,),=尤-1,=匹为主,利用它们的图象及性质解决实际问题;预测2011年高考函数图象:(1)题型为1到2个填空选择题;(2)题目多从由解析式得函数图象、数形结合解决问题等方面出题。函数综合问题:(1)题型为1个人题;(2)题目多以知识交汇题目为主,重在考察函数的工具作用;幕函数:单独出题的可能性很小,但一些具体问题甚至是一些大题的小过程要应用瓦性质來解决; ?高考中有关函数图象主要考查:儿类初等函数的图象特征和函数图象的变换(平移、对称、伸缩) ?考查的形式主要冇:知式选图;知图选式;图象变换,以及门觉地运用图象解题,是每年必考内容 ※高考赏析※ 1. (2011 -四川丿已知/(x)是R上的奇函数,且当x>0时,/'(尢)=(》"+ 1,则/(兀)的反函数的 图像大致是 当兀>0,0v(丄)"vl,二2,故选A 2.(2010?江西)如图,一个正五角星薄片(英对称轴与水面垂直)匀速地升出水面,记t吋刻五角星露出水面部分的图形面积为S⑴(S(0) = 0),则导函数y = S'⑴的图像大致为 【解析】由反函数的性质原函数的值域为反函数的定义域,原函数的定义域为反函数的值域。 (A ) (D) D .

一次函数图像平移的探究

一次函数图像平移的探 究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一次函数图像平移的探究 我们知道,一次函数y=kx+b 的图像是一条直线,我们称它为直线 y=kx+b ,它可以看作由直线y=kx 平移∣b ∣个单位长度得到(当b >0时,向上平移;当b <0时,向上平移).或者说,直线y=kx 平移∣b ∣个单位长度得到直线y=kx+b (当b >0时,向上平移;当b <0时,向下平移).例如,将直线y=-x 向上平移3个单位长度就得到直线y=-x+3,将直线y=-x 向下平移1个单位长度就可以得到直线y=-x -1.需要注意的是,函数图像的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图像的上下平移,而非左右平移. 以上平移比较简单,因为它是对最简单的一次函数即反比例函数进行平移.对于一个一般形式的一次函数图像又该怎样进行平移呢让我们一起进行探究: 问题1 已知直线1l :y=2x -3,将直线1l 向上平移2个单位长度得到直线2l ,求直线2l 的解析式. 分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线2l 的解析式为y=2x+ b ,由于直线2l 的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢注意到直线1l 与两条坐标轴分别交于两点,而直线1l 与y 轴的交点易求,这样就得到一个条件,于是直线2l 的解析式可求. 解:设直线2l 的解析式为y=2x+b ,直线1l 交y 轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b ,得b =-1,从而直线2l 的解析式为y=2x -1.

对数函数的图象变换及在实际中的应用苏教版

对数函数的图象变换及在实际中的应用 对数函数图象是对数函数的一种表达形式, 形象显示了函数的性质。为研究它的数量关 系提供了“形”的直观性,它是探求解题途径、获得问题结果的重要途径。 一. 利用对数函数图象的变换研究复杂函数图象的性质 (一) 图象的平移变换 y log 2(x 2)的图象 主:图象的平移变换: 1.水平平移:函数y f (x b) , (a 0)的图像,可由y f (x)的 2.竖直平移:函数y f (x) b , (b 0)的图像,可由y f (x)的图像向上(+)或向下 平移b 个单位而得到. (二) 图像的对称变换 例2.画出函数y log 2 x 2的图像,并根据图像指出它的单调区间 ? 解:当 x 0 时,函数 y log 2 x 2 满足 f ( x) log 2( x)2 log 2 x 2 f (x),所以 2 2 y log 2 x 是偶函数,它的图象关于 y 轴对称。当x 0时,y log 2 x 2 log 2 x 。因 此先画出y 2 log 2 x ,( x 0)的图象为s ,再作出&关于 y 轴对称C 2, c i 与C 2构成函数y 由图象可以知道函数 y log 2 x 2 调增区间是(0,) 例1. 画出 函数 y log 2 (x 2) 与 y log 2(x 2)的图像,并指出两个图像 之间的关系? 解:函数y log 2 x 的图象如果向右平移 到y Iog 2(x 2)的图像;如果向左平移 /pl y i. J - ■- .— w ■■ *-------- 1 ------ ~ / - 1 ] ''5 / 3 = / ' 到y log 2(x 2)的图像,所以把y log 2(x 2) 图像向左(+)或向右 平移a 个单位而得到 2个单位就得 2个单位就得 的图象向右平移4个单位得到

“对称与平移”(一次函数)

求一次函数解析式----对称 若直线2l 与直线1l y k x b =+关于 (1)x 轴对称,则直线2l 的解析式为y kx b =-- 解:设直线2l 上的某一点A (x,y ),则点A 关于x 轴对称的点一定在直线1l y k x b =+上, 假设是点B ,那么B 点的坐标是(x, -y ),然后把点B 的坐标值代入它所在的 直线1l y k x b =+上,即得2l 的解析式为y kx b =-- (2)y 轴对称,则直线2l 的解析式为y kx b =-+ (3)原点对称,则直线2l 的解析式为y k x b =- (4)直线y =x 对称,则直线2l 的解析式为y k x b k =- 1 (5)直线y x =-对称,则直线2l 的解析式为y k x b k =+ 1 (6)直线y =2对称,则直线2l 的解析式为?

一次函数图象平移的三种类型 求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行 ?12k k =. 一、一次函数平移的三种方式: ⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减. ⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减. ⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题: (1)点(0,1)向下平移2个单位后的坐标是 ___,直线21y x =+向下平移2个单位后的解析式是___. (2)直线21y x =+向右平移2个单位后的解析式是___. (3)如图,已知点C 为直线y x =上在第一象限内一点,直线21y x =+交y 轴于点A ,交x 轴 于B ,将直线A B 沿射线OC 方向平移 32个单位,求平移后的直线的解析式. 【解析】根据平移规律,很容易的解决前两道题, (1)题中 - ,21221y x x =+-=-; (2)题中2(2)123y x x =-+=-. ⑶题中首先过B 作'B B ∥OC ,然后过'B 作'B D x ⊥轴于D , ∵'32BB =,∴'3B D B D ==.直线21y x =+与x 轴的交点坐标为1(,0)2 -,∴52 O D =. ∴'B 坐标为5 (,3)2,设平移后解析式为2y x b =+,把5,32 x y = =代入得2b =-, ∴解析式为22y x =-. x 21 y x =+ A B C O y x = y 'B D

一次函数图像的平移练习题

一次函数图像的平移练习题 一选择题 1.一次函数y=x图象向下平移2个单位长度后,对应函数关系式是 () A.y=x﹣2 B.y=2x C.y=1.5x D.y=x+2 2.一次函数y=2x+3的图象沿y轴向下平移4个单位,那么所得图象的函数解析式是() A.y=2x+2 B.y=2x-3 C.y=2x+1 D.y=2x-1 3.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是() A.y=2x-3 B.y=2x+2 C.y=2x+1 D.y=2x 4.正比例函数y=2x的图象沿x轴向右平移2个单位,沿y轴向上平移3个单位,得图象的函数解析式为() A.y=2x-4 B.y=2x+4 C.y=2x-1 D.y=2x+1 5.把直线y=-x+3沿y轴向下平移2个单位所得函数的解析式为() A.y=-3x+3 B.y=-x+5 C.y=-x+1 D.y=x+1 6.将直线y=-3x+1沿y轴向上平移3个单位,得图象的函数解析式为() A.y=-3x-2 B.y=-3x+4 C.y=-3x-1 D.y=-3x

7.直线y=-2x+1沿y轴向上平移2个单位,再沿x轴向左平移3个单位所得直线的解析式为() A y=-2x-5 B y=2x-5 C y=-2x-3 D y=2x-3 8.如图,把直线y=-2x向上平移后得到直线AB,直线AB过点(m,n),且2m+n=3,则直线AB的函数表达式是() A.y=-2x+3 B.y=-2x-3 C.y=-2x+6 D.y=-2x-6 9.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为() A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1 10.把直线y=kx+b向上平移2个单位,得到的直线y=-3x+m与函数y=-5x-2的图像交于y轴上,则k,b分别是()A -2,-3 B -3,-4 C -3,-5 D -2,-6 二填空题 1.一次函数y=-2x+p的图象一次平移后经过点A(-1,y1)、B(-2,y2),则y1____y2(填“>”、“<”、“=”) 2.已知函数y=k/x 的图象经过点(4,1/2 ),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),则平移后的一次函数图象与x轴的交点坐标为________ 3.将一次函数y=2x+3的图象向右平移1个单位长度,再向上平移4个单位长度,平移后的函数表达式为________

2018年必修一-函数图象的平移和翻折

2018年必修一-函数图象的平移和翻折 一、图象的平移变换 ①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意: (1)可以将平移变换化简成口诀:左加右减,上加下减 (2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-= 二、图象的对称变换 ①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。 ⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。 ⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形

课堂练习 1、把函数y = 1 1 +x 的图像沿x 轴向右移动1个单位后所得图像记为C ,则图像C 的表 达式为( ) A. y= x -21 B. y=-x 1 C. y=x 1 D. y=2 1 -x 2、函数y=|x|-1的图像是( ) A. B. C. D. 3、函数y=| 2 1(x-1)2 -3|的单调递增区间是 4、某人骑自行车沿直线旅行,先前进了a km,休息了一阵,又沿原路返 回b km(b

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩 函数s i n ()y A x k ω ?=++的图象与函数sin y x =的图象之间可以通过变化A k ω?,,,来相互转化.A ω,影响图象的形状,k ?,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由?引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象()ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象() A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><

得sin y A x =的图象(01)(1) 1 () ωωω <<>?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0) ???ω >

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题 1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5 y x π =- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππω???=∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个 函数的图象,只要将y sin x x R =∈()的图象上所有的( ) (A)向左平移 3π个单位长度,再把所得各点的横坐标缩短到原来的12 倍,纵坐标不变 (B) 向左平移3 π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移 6 π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω? ?=+> ???的图像向右平移6 π个单位长度后,与函数tan 6y x πω??=+ ?? ?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12 5、已知函数()sin()(,0)4f x x x R π ??=+∈>的最小正周期为π,为了得到函数 ()cos g x x ?=的图象,只要将()y f x =的图象( )

相关主题
文本预览
相关文档 最新文档