当前位置:文档之家› 手机天线设计要求

手机天线设计要求

手机天线设计要求
手机天线设计要求

手机天线设计注意事项

PIFA天线基本注意:

1,天线空间一般要求预留空间:W (宽),L (长),H (高)其中W (15-25mm)、L (35-45mm)、H(6-8mm)。其中H和天线谐振频率的带宽密切相关。W、L 决定天线的最低频率。如果天线面积如下:双频(GSM/DCS):600x6~8mm 三频(GSM/DCS/PCS):700x7~8mm 满足以上要求则GSM 频段一般可能达到-1~0dBi,DCS/PCS 可达0~1dBi。当然高度越高越好,带宽性能得到保证。

2,2,内置天线尽量远离周围马达、SPEARKER、RECEIVER 等较大金属物体。有时候有摄像头出现,这时候应该把天线这块挖空,尽量作好摄像头FPC 的屏蔽(镀银襁),否则会影响接收灵敏度。尽量避免PCB 上微带、引线等与天线弹片平行。

3,3,内置天线附近的结构件(面)不要有喷涂导电漆等导电物质。

4,4,手机天线附近区域不要做电镀工艺以及避免设计金属装饰件等。有环形的金属圈就要接地. 装饰件,通过导电布接到入件上再接到电路板的边缘,即导地。

5,5,内置天线正上、下方不能有与FPC 重合部分,且相互边缘距离3mm 以上。

6,内置天线与手机电池的间距应在5mm以上。

7,手机PCB的长度对PIFA天线的性能有重要的影响,目前直板机PCB 的长度在75-105mm 之间这个水平。

8,=馈电点的焊盘应该不小于2x3mm;馈电点应该靠边缘。

9,天线区域可适当开些定位孔!

10,在目前的有些超薄滑盖机中,由于天线高度不够,可以通过挖空PIFA天线下方的地,然后在其背面再加一个金属片,起到一个参考地的作用,达到满足设计带宽的要求。

MONOPOLE 天线的基本注意:

内置的MONOPOLE 天线体积稍小,性能较外置天线差。具体要求如下:

1,内置天线周围3mm内不能有马达、SPEARKER、RECEIVER 等较大金属物体。

2,天线的宽度应该不小于15mm。

3,内置天线附近的结构件(面)不要喷涂导电漆等导电物质。

4,手机天线区域附近不要做电镀工艺以及避免设计金属装饰件等。

5,内置天线正上、下方不能有与FPC 重合部分,且相互边缘距离3mm 以上。

6,内置天线与手机电池的间距应在5mm以上。

7,MONOPOLE 必须悬空,平面结构下不能有PCB 的Ground,一般内置天线必须离主板3mm(水平方向),在天线正下方到地的高度必须保持在5mm(垂直方向)以上(如下示意图),可以把主板天线区域的地挖空,目前在超薄的直板机上基本上是满足这个要求。8,由于MONOPOLE 天线没有参考的地,SAR 一般比PIFA 天线大,实际应用中受到限制且这是测试的难点,但是效率一般比PIFA高。离电池要5mm以上。

假内置天线的注意事项:

1,假内置天线的顶端一定要高出PCB 上所有元件和铜箔至少6mm,并且与天线极化方向相同的方向尽量不要有大的铜箔和密集的布线。

2,假内置天线的最小空间要WxL=10x20mm,

2,周围元件离天线应该尽量远些。实际上安排可参照如下:Speaker磁性大要离天线尽量远些,相对Camera 磁性小些可以安排据天线近些。

4,假内置天线,效率不高,GSM 可以达到31,DCS 可以达到25 ;如果采用陶瓷天线

高频可以达到28 左右,但低频会降低到27-28 左右。

倒F 天线的注意事项:不同于PIFA 天线的倒F天线,弹片如单极天线是窄片或丝线,双馈电点。此种天线的注意如单极天线,天线必须悬空,要求天线周围3mm 范围内不能有大的铜箔和元器件。正下方不得有元器件。天线的最小空间要10x40x10mm左右。FICA 天线的注意事项,如右图:本天线的特点是高频带宽比较大,是做三频、四频等内置天线的首选。该天线占的面积理论上是PIFA天线的一半左右,可以避开大的金属元器件。该天线物理结构特点是曲折的长微带线双条并行,保持两条微带之间的距离会对天线的参数有影响。

1,要求天线所占平面的下方要铺满地铜箔,并且天线正下方不能有大的元器件。

2,天线的高度要6-8mm

3,天线的馈电点比较有特点,两个馈电点可以较远。安排馈电点的原则是在PCB的顶端或边缘,两个馈电点到天线弹片的尾端长度一般要对称相等。

4,天线的周围机壳上的处理不要有金属饰物和导电漆。这一点是所有天线的要求。

第一讲 天线基本原理

第一讲天线基本原理 1、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如:开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? 开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰 开。 TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励

高次模。 由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 2、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷)

2.4G 天线设计完整指南(原理、设计、布局、性能、调试)

本文章使用简单的术语介绍了天线的设计情况,并推荐了两款经过测试的低成本PCB天线。这些PCB天线能够与PRoC?和PSoC?系列中的低功耗蓝牙(BLE)解决方案配合使用。为了使性能最佳,PRoC BLE和PSoC4 BLE2.4GHz射频必须与其天线正确匹配。本应用笔记中最后部分介绍了如何在最终产品中调试天线。 1、简介 天线是无线系统中的关键组件,它负责发送和接收来自空中的电磁辐射。为低成本、消费广的应用设计天线,并将其集成到手提产品中是大多数原装设备制造商(OEM)正在面对的挑战。终端客户从某个RF产品(如电量有限的硬币型电池)获得的无线射程主要取决于天线的设计、塑料外壳以及良好的PCB布局。 对于芯片和电源相同但布局和天线设计实践不同的系统,它们的RF(射频)范围变化超过50%也是正常的。本应用笔记介绍了最佳实践、布局指南以及天线调试程序,并给出了使用给定电量所获取的最宽波段。

图1.典型的近距离无线系统 设计优良的天线可以扩大无线产品的工作范围。从无线模块发送的能量越大,在已给的数据包错误率(PER)以及接收器灵敏度固定的条件下,传输的距离也越大。另外,天线还有其他不太明显的优点,例如:在某个给定的范围内,设计优良的天线能够发射更多的能量,从而可以提高错误容限化(由干扰或噪声引起的)。同样,接收端良好的调试天线和Balun(平衡器)可以在极小的辐射条件下工作。 最佳天线可以降低PER,并提高通信质量。PER越低,发生重新传输的次数也越少,从而可以节省电池电量。 2、天线原理 天线一般指的是裸露在空间内的导体。该导体的长度与信号波长成特定比例或整数倍时,它可作为天线使用。因为提供给天线的电能被发射到空间内,所以该条件被称为“谐振”。 图2. 偶极天线基础 如图2所示,导体的波长为λ/2,其中λ为电信号的波长。信号发生器通过一根传输线(也称为天线馈电)在天线的中心点为其供电。按照这个长度,将在整个导线上形成电压和电流驻波,如图2所示。 输入到天线的电能被转换为电磁辐射,并以相应的频率辐射到空中。该天线由天线馈电供电,馈电的特性阻抗为50Ω,并且辐射到特性阻抗为377Ω的空间中。

(整理)天线原理与设计习题集解答_第8_11章.

第八章 口径天线的理论基础(8-1) 简述分析口径天线辐射场的基本方 法。 答:把求解口径天线在远区的电场问题分为两部分: ①. 天线的内部问题; ②. 天线的外部问题; 通过界面上的边界条件相互联系。 近似求解内部问题时,通常把条件理想化,然后把理想条件下得到的解直接地或加以修正后作为实际情况下的近似解。这样它就变成了一个与外部问题无关的独立的问题了。 外部问题的求解主要有: 辅助源法、矢量法,这两种是严格的求解方法; 等效法、惠更斯原理法、几何光学法、几何绕射法,这些都是近似方法。 (8-2) 试述几何光学的基本内容及其在口径天线设计中的应用。 答:在均匀的媒质中,几何光学假设能量沿着射线传播,而且传播的波前(等相位面)处处垂直于射线,同时假设没有射线的区域就没有能量。 在均匀媒质中,射线为直线,当在两种媒质的分界面上或不均匀媒质传播时,便发生反射和折射,而且完全服从光的反射、折射定律。 B A l nds =? 光程长度: 在任何两个给定的波前之间,沿所有射线路径的光程长度必须相等,这就是光程定律。''PdA P dA = 应用: ①. 可对一个完全聚焦的点源馈电的天线系统,求出它在给定馈源功率方向图 为P(φ,ξ)时,天线口径面上的相对功率分布。 ②. 对于完全聚焦的线源馈电抛物柱面天线系统,口径上的相对功率分布也可 用同样类似的方法求解。 (8-3) 试利用惠更斯原理推证口径天线的远区场表达式。 解:惠更斯元产生的场: (1cos )2SP j r S SP jE dE e r βθλ-?= ?+?? 222)()(z y y x x r S S SP +-+-= r , r sp >>D (最大的一边)

手机双频天线设计论文综述

通信工程专业实训 题目:手机内置天线的设计 专业:通信2班 学号:1167119226 姓名:李盼 指导老师:杜永兴 分数:_________________

目录 摘要: 关键字: 第一章:背景介绍 第二章:实训过程记录第三章:实训结论 第四章:实训总结 第五章:参考文献

摘要:现在的电子通讯技术飞速发展,随着技术可经济的推进,人们对手机的要求越来越高,然而手机的基本功能就是打电话,而对手机的内置天线要求就更高难度更大,小型化,并且能工作在不同的频段下,文中主要研究双频手机PIFA天线。采用了开槽的的设计方法实现了天线的双频,工作性能良好,易于实现,现在大多数手机都使用这种天线。 关键字:PIFA天线,双频,GSM,DCS,HFSS 第一章:背景介绍 1.1 移动通信对手机天线的要求 天线最主要的功能在于转换两种不同传播介质中的电磁波能量。在能量转换的过程中,会出现收发信机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发信机、天线以及传播介质之间形成一个连续的能量传输路径。 移动通信手机对天线的要求: 外在要求: 天线尺寸小,重量轻,剖面低,携带方便,机械强度好 电性能要求: 水平面要求有全向辐射方向图,频带宽,效率高,增益高,受周围环境影响小,对人体辐射伤害小 1.2 手机天线的指标意义 天线输入阻抗: 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。这一数值对天线的辐射效率,天线的带内增益波动,天线前端的功率容量有很大的影响。手机天线是一种驻波天线,,天线的阻抗不匹配,将导致大量的信号反射,使天线的辐射效率降低,同时由于反射的影响使得天线在宽频带内的增益有抖动,如果天线的驻波为6,手机前端的击穿电压将降为原来的1/6,而功率容量就会下降。 手机天线驻波对天线效率的影响不可不慎。 天线的驻波要求,我们目前统一要求为小于3。

GSM 手机外置天线的原理

GSM 手机外置天线的原理 摘要: 手机在人们的生活中起着越来越重要的作用, 而手机在发送接收信号时性能的好坏, 一定程度上取决于射频电路天线部分的设计。介绍了GSM 频段手机外置天线的原理和电气特性要求, 及依据天线工作原理工厂对手机天线的检验方法。 1GSM 手机外置天线的原理 手机天线对整个手机来说是一颗机构电子料, 他的外观同工业设计有关系。这里着重讲述手机外置(exposed)天线电气方面的原理。 当电能量加到并联谐振网络上时, 并联谐振网络就会向外发射一定频率F = 1/2π√LC 的电磁波。当并联谐振网络处在电磁场中, 他会产生一定频率F = 1/2π√LC的电能量, 且频率F 与电磁波频率一致时, 产生电能量相对最大。手机天线就是运用这样的电气原理, 为了更好地发送和接收电磁波, 将并联谐振回路中的电容两个板极打开, 以电感为振子。电容性以分布容性实现, 因中国的全球通波段和欧洲一致, EGSM (低发高收880~915MHz 及925~960MHz) 加DCS (发1710~1785MHz, 收1805~1885 MHz) , 总对天线来说要求DualBand (880~960MHz, 1710~1880MHz)。故电感为一个有两种疏密度的线圈, 以满足两波段频率发送接收的需要。 若是做三频天线, 因PCS 频段与DCS 频段接近, 只需在DCS 频段上扩展就可以。调节手机天线电气性能时,需要一只最终定型的手机(所有其他部件不再会改变) 制作手机天线测试工具, 在其天线连接的部位引1 根钢管线出来安装SMA 头。通过接校准过单端口S11 参数的矢量网络分析仪Aginlent8753 来显示天线在两个频段的S11特性, 应该在有用频段内小于- 10 dB, 测试时周围不应该有金属反射面, 有些厂商EGSM 频段做不到小于- 10 dB,那最低要求也要做到小于- 8 dB。 若满足不了S11 特性, 就要通过改变线圈的长度和疏密度及手机内部PCB 板匹配网络来满足S11 参数特性。参数达标后, 将线圈固定并拍照记录下线圈的长度和疏密度, 使之可用以大量生产, 并记录下匹配网络各被动器件参数用于手机内部PCB 板匹配网络制作。若是翻盖手机,S11 在闭合和打开时都满足所测标准, 主要考察打开时的S11。S11 与V SWR 有对应换算关系。调好S11 后, 还要测其增益与方向性, 这就要求在3D 或2Dchamber 里测试, 绘出图形, 再换算成理论要求平均增益, 接近于0 dB。但实际做不到, 一般要求EGSM 频段不小于- 1 dB, DCS频段不小于- 2 dB。内置天线更低为- 4 dB, 另外SAR 测试也要达标, 这要求在专用的SAR 实验室测试(实验室必须具有国际认证资格) 目前国家并没有做强制要求。 因为要做到电气性能达标, 线圈必须大于一定长度,所以天线外露出机壳的部分必须大于1614mm, 但是把线圈缩入机壳内的除外。除装配合格外, 手机外置天线要做落甩实验, 直板机从高度为115 m 落下, 折叠机为112 m。经落甩后机构电气性能都不能改变。

4G智能手机天线设计的解决方案

4G智能手机天线设计的解决方案 2010年全球移动数据消费量增长了倍。这是移动数据使用量连续三年接近3倍的增幅。到2015年,全球移动数据业务量有望增长到2010年的26倍。导致这种戏剧性增长的关键因素之一是智能手机和平板电脑的快速普及。全球移动数据用户希望他们的设备在全球任何地方都能高速联网。 这种期望给网络和设备性能带来了巨大的负担。在移动数据设备中,天线是“接触”网络的唯一部件,优化天线性能变得越来越重要。然而,智能手机和平板电脑中的4G天线设计所面临的挑战十分艰巨。尽管应对这些挑战有多种可行的解决方案,但每一种都会有潜在的性能折衷。 4G天线设计挑战 有许多因素会影响手持移动通信设备的天线性能。虽然这些因素是相关的,但通常可以分成三大类:天线尺寸、多副天线之间的互耦以及设备使用模型。 天线尺寸天线尺寸取决于三个要素:工作带宽、工作频率和辐射效率。今天的带宽要求越来越高,其推动力来自美国的FCC频率分配和全球范围内的运营商漫游协议;不同地区使用不同的频段。“带宽和天线尺寸是直接相关的”且“效率和天线尺寸是直接相关的”--这通常意味着,更大尺寸的天线可以提供更大的带宽和更高的效率。 除了带宽外,天线尺寸还取决于工作频率。在北美地区,运营商V erizon Wireless和AT&T Mobility选择推广的LTE产品工作在700MHz频段,这在几年前是FCC UHF-TV再分配频段的一部分。这些新的频段(17,704-746MHz和13,746-786MHz)比北美使用的传统蜂窝频段(5,824-894MHz)要低。这个变化是巨大的,因为频率越低,波长越长,因而需要更长的天线才能保持辐射效率不变。为了保证辐射效率,天线尺寸必须做大。然而,设备系统设计人员还需要增加更大的显示器和更多的功能,因此可用的天线长度和整个体积受到极大限制,从而降低了天线带宽和效率。 天线间互耦更新的高速无线协议要求使用MIMO(多入多出)天线。MIMO要求多根天线(通常是两根)同时工作在相同频率。因此,话机设备上需要放置多根天线,这些天线要同时工作且相互不能有影响。当两根或更多天线位置靠得很近时,就会产生一种被称为互耦的现象。 举例说明,移动平台上紧邻放置两根天线。从天线1辐射出来的一部分能量将被天线2截获,截获到的能量将在天线2的终端中损耗掉,无法得到利用,这可以用系统功率附加效率(PAE)的损耗来表示。根据互换性原理,这种效应在发送和接收模式中是相同的。耦合幅度反比于天线的分隔距离。对于手机实现而言,MIMO和分集应用中工作在相同频段的天线之间的距离可以是1/10波长或以下。例如,750MHz时的自由空间波长是400mm.当间隔很小时,比如远小于一个波长,则耦合程度会很高。天线之间耦合的能量是无用的,只会降低数据吞吐量和电池寿命。 设备使用模型与传统手机相比,智能手机和平板电脑的使用模型有很大变化。除了正常工作外,这些设备还要满足电磁波能量吸收比(SAR)和助听器兼容性(HAC)法规要求。 使用模型的另一个方面是消费内容的类型。诸如大型多人在线角色扮演游戏(MMORPG)和实时视频数据流等视频密集型移动应用不断推动数据使用率飙升。据ABI Research预测,从2009年到2015年,西欧和北美地区数据使用率有望分别以42%和55%的年复合增长率(CAGR)增长。这些相似的应用正在驱动制造商生产出更大尺寸、更高分辨率的显示屏。数据使用率的提高也在悄然改变消费者对这些设备的手持方式。例如,对于游戏应用来说,使用者必须用两手紧握设备两头,而其它应用程序可能根本无需用手握住设备。 越来越大的显示屏和使用者抓握方式的改变,使得为天线辐射单元找一个不被显示屏或

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

天线设计毕业论文

第一章绪论 一、绪论 1.1 课题的研究背景及意义 自古至今,通信无时无刻不在影响着人们的生活,小到一次社会交际中的简单对话;大到进行太空探索时,人造探测器与地球间的信息交换。可以毫不保留地说,离开了通信技术,我们的 生活将会黯然失色。近年来,随着光纤技术越来越成熟,应用范围越来越广。在广播电视领域, 光纤作为广播电视信号传输的媒体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统 具有的传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,已成为 城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常使用的电视传送 方式。随着全球通信业务的迅速发展,作为未来个人通信主要手段的现代通信技 术引起了人们的极大关注,我国在移动通信技术方面投入了巨大的人力物力,我国很多地区的电力通信专用网也基本完成了从主干线向光纤过度的过程。目前,电力系统光纤通信网已成为我国规模较大,发展较为完善的专用通信网,其数据、语音,宽带等业务及电力生产专业业务都是由光纤通信承载,电力系统的生产生活,显然,已离不开光纤通信网。 无线通信现状另一非常活跃的通信技术当属,无线通信技术了。无线通信技术包括了移动通信技术和无线局域网( WLAN )技术等两大主要方面。移动通信就目前来讲是 3G时代,数字化和网络化已成为不可逆转的趋势。目前,移动通信已从模拟通信发展到了数字移动通 信阶段。无线局域网可以弥补以光纤通信为主的有线网络的不足,适用于无固定场所,或有线局域网架设受限制的场合,当然,同样也可以作为有线局域网的备用网络系统。WLAN ,目前广泛应用 IEEE802.11 系列标准。其中,工作于 2.4GHZ频段的 820.11可支持 11Mbps 的共享接入速率;而802.11a 采用 5GHZ 频段,速率高达 54Mbps ,它比802.11b 快上五倍,并和 820.11b兼容。给人们的生活工作带来了很大的方便与快捷。 在整个无线通信系统中,用来辐射或接收无线电波的装置成为天线,而通信、雷达、导航、广播、电视等无线电技术设备都是通过无线电波来传递信息的,均 需要有无线电波的辐射和接收,因此,同发射机和接收机一样,天线也是无线电技术设备的一个重要组成部分,其性能的优良对无线通信工程的成败起到重要作用。天线的作用首先在于辐射和接收无线电波,但是能辐射或接收电磁波的东西不一定都能作为天线。任何高频电路,只要不被完全屏蔽,都可以向周围空间或多或少地辐射电磁波,或从周围空间或多或少地接收电磁波,但是任意一个高频电路并不一定能用作天线,因为它的辐射或接收效率可能很低,要能够有效地辐射或接收电磁波,天线在结构和形式上必须满足一定的要求。快速发展的移动通信系统需要的是小型化、宽频带、多功能 (多频段、多极化 )、高性能的天线。微带天线作为天线 家祖的重要一员,经过近几十年的发展,已经取得了可喜的进步,在移动终端中采用内置微带天线,不但可以减小天线对于人体的辐射,还可使手机的外形设计多样化,因此内置微带天线将是未来天线技术的发展方向之一,设计出具有小型化的微带天线不但具有一定的理论价值而且具有重要的应用价值,这也成为当前国际天线界研究的热点之一。

天线设计注意事项

手机天线设计注意事项总结 一、主板 1.布线在关联RF的布线时要注意转弯处运用45度角走线或圆弧处理,做好铺地隔离和走线的特性阻抗仿真。同时RF地要合理设计,RF信号走线的参考地平面要找对,并保证RF信号走线时信号回流路径最短,并且RF信号线与地之间的相应层没有其它走线影响它。PCB板和地的边缘要打“地墙”。从RF 模块引出的天线馈源微带线,为防止走线阻抗难以控制,减少损耗,不要布在PCB的中间层,设计在TOP面为宜,其参考层应该是完整地参考面。并且在与屏蔽盒交叉处屏蔽盒要做开槽避让设计,以防短路和旁路耦合。 2.布板RF模块附近避免安置一些零散的非屏蔽元件,同时少开散热孔。最忌讳长条形状孔槽。天线投影区域内有完整的铺地,同时不要天线侧安排元器件,特别是含金属结构的元件,如喇叭、马达、摄像头基板等金属元件和低频驱动器件,要尽量接地。它们对天线的电性性能有很大的负面影响. 3.天线的空间辐射会被主板的金属元件(包括机壳上天线附近的金属成分装饰件)耦合吸收后产生一定量的二次辐射,频率与金属件的尺寸关联。会造成整机产生一定的杂散,整机杂散问题还与天线与RF模块之间的谐振匹配电路有关,如果谐振匹配电路的稳定性不好,很容易激发产生高次谐波的干扰。因此要求此类元件有良好的接地,消除或降低二次辐射。

二、机壳的设计 由于手机内置天线对其附近的介质比较敏感,因此,外壳的设计和天线性能有密切关系。外壳的表面喷涂材料不能含有金属成分,壳体靠近天线的周围不要设计任何金属装饰件或电镀件。若有需要,应采用非金属工艺实现。机壳内侧的导电喷涂,应止于距天线20mm处。对于纯金属的电池后盖,应距天线20mm以上。如采用单极天线,面板禁用金属类壳体及环状金属装饰。电池(含电连接座)与天线的距离应设计在5mm以上。 三、天线结构 1)PIFA天线基本注意: 1,天线空间一般要求预留空间:W(宽),L(长),H(高)其中W(15-25mm)、L(35-45mm)、H(6-8mm)。其中H和天线谐振频率的带宽密切相关。W、L决定天线的最低频率。如果天线面积如下: 双频(GSM/DCS):600x6~8mm 三频(GSM/DCS/PCS):700x7~8mm 满足以上要求则GSM频段一般可能达到-1~0dBi,DCS/PCS可达0~1dBi。当然高度越高越好,带宽性能得到保证。 2,内置天线尽量远离周围马达、SPEARKER、RECEIVER等较大金属物体。有时候有摄像头出现,这时候应该把天线这块挖空,尽量作好摄像头FPC的屏蔽(镀银襁),否则会影响接收灵敏度。尽量避免PCB上微带、引线等与天线弹片平行。

第六讲 手机天线类型比较和结构射频规则

第六讲手机天线类型比较和结构射频规则 一、各种手机内置天线的特点和演变过程 在常见的手机天线结构中,陶瓷介质天线由于Q值很高,带宽窄,损耗大,并且易受环境的影响而产生频率漂移,因此不推荐作为手机主天线使用,但由于其尺寸小的优势,可以用作对接收灵敏度要求不高的蓝牙天线。PCB板天线也一般仅仅是通过将外置单极子天线通过PCB过孔和PCB走线将辐射体做在PCB板上,并利用介质板的介电常数在一定程度上减小天线尺寸的形式,这种天线也由于介质板的损耗常数而产生一定的损耗,所以在大多数高端机情况下也不推荐使用,仅在少数低端机和工作频点较少的情况下才为节约成本而使用。PCB天线可作外置天线也可作内置天线。 PIFA天线自产生以来,一直到今天都一直是内置天线的主要形式,因为它尺寸较小,可以充分利用PCB板作为接地面,并通过接地片将谐振长度缩小为四分之一波长。但是随着手机小型化和集成度更高的发展要求,原有PIFA天线逐渐显示出一些对结构方面的严格限制。于是有不少业界领先的手机制造商Motorola、Samsung、Sony-Ericsson等公司逐渐改变手机天线的设计风格,改用各种变形的单极子天线设计,这样就减小了结构对天线的依赖性,增加了手机外观的灵活性。比如索爱E908的菱形天线设计,Samsung E708的城墙线(Meander)天线设计,以及Motorola V3中使用的一个金属铜棒作为天线的设计。这些新型的天线设计显示了高超的设计技巧,它们往往不易被天线其他天线厂家和手机厂家模仿,并逐渐发展成手机天线厂家之间和手机厂商之间竞争的一项核心技术。 二、PIFA天线和单极子天线的性能比较 前面我们已经分别对单极子天线和PIFA天线的一般特性进行过分析,下面我们在几种重要的特性方面比较一下两种天线性能的优劣。 1.空间结构要求 两种天线的设计对空间的预留都必须考虑Chu极限定理,但在组成上,PIFA要求必须有一个辐射单元和一个大的接地面,两者互相平行,并且辐射体和接地面之间必须有一个不小的间距。接地面和辐射体都是物理实体,它们必须位于手机上,所以对结构限制较大。采用PIFA天线手机不可能做得很薄。 而采用单极子天线进行设计,则天线仅有一个辐射体而没有地面,因此它对辐射空间的要求就仅仅是天线辐射体周围的空间而没有地面的限制,天线占用的辐射空间可以不在手机体上而在手机周围的外界空间。因此对结构的限制较小。

怎么改善手机天线的辐射性能

在移动手机里,天线直接影响了手机的可通讯能力,直接决定了手机的射接收性能,甚至 天线设计的好坏决定了该手机在市场的生存空间。在国外,品牌手机设计生产厂家普遍比较重视天线的前期研发与设计,他们多与参股与控股的形式培养一天线设计与生产研究所或专业电小天线设计公司,所以象三星,苹果等知名品牌总能在特定的环境下设计出性能优良的天线,把手机ID与一流功能完整的结合。 在国产手机中,目前只有为数不多的大公司比较重视天线的设计与制造,多数中小企业只是把天线视为普通的硬件,在空间上压缩再压缩,在性能上低劣又低劣,最终的结果是手 机的客户或终端消费者无法接受手机的“可通话”性能,导致项目的流产或重新设计,造成资源及人力的浪费及商机的流失,大大的降低了企业的综合竞争力。 专业的分析,天线性能的好坏大致由以下几个因素来影响: 空间 行业内有一絮语“多大的空间决定多少的性能”,足够的可实行空间对天线来说是必须的。关于天线的可设计空间,建议客户在方案设计前期多与天线设计工程师做深入的沟通, 了解天线的布置与潜在的问题点,以期位置的预留。天线工程师在设计过程中已经有相当 的设计经验,哪些布局对天线的设计是有利,哪些空间的对天线的性能有更大的提高,对新的方案定义是必须的。同时多参考几家天线设计公司的建议,更有利于天线空间的合理 性分配,来更完整的分配天线的空间。

关于天线的可利用空间,经常会遇到天线设计公司与手机整机商为了提高天线的性能争取天线的空间布局,只有绝少部分的设计公司会满足天线空间的基本要求,而绝大部分的设计公司会以手机完全、功能的名义尽可能的压缩天线的空间,后果是单款案件会频繁的更换天线设计公司,结果还是天线的性能达不到一定的要求、案目流产,怪恨天线设计公司的能力太差,等等。 我们都知道现在的手机天线都是偶极子天线发展演变而来的,天线不可能在无穷小的空间实现功能,天线一定需要一个相对开放宽阔的空间,可以这么的说,还没有一个人可以完成“手机天线零空间”这个课题。 EMI EMI(Electro Magnetic Interference) 在电子行业是一个普遍的问题,很多的问题点都是因为相关的处理没有很好的执行,或者深入的考虑。在手机天线由外置天线过度到内置天线的初期,很多的手机设计公司普遍遇到了手机的动态接收灵敏度的问题,可能设计的原理图与以前外置天线之PCB的原理图是一致的,但是内置天线遇到了与灵敏度的问题,因为什么? 当时一般的公司都认为是天线的问题,很少有人怀疑是自己设计的方案的问题。问题点是电路或其它的元器件对天线辐射的相互干扰,该干扰在手机动态接收过程中会影响手机的接受质量。 在误码率的参考下,导致动态灵敏度偏低。EMI的问题一般不会影响天线的辐射功率,同理不会影响天线的辐射效率,但是对天线的接收性能存在很大的隐患,因此做好电路的

天线原理与设计期中考试资料

西南交通大学2012-2013 学年第( 2 )学期期 中考试试卷 课程代码 3143373 课程名称 天线原理与设计 考试时间 90分钟 阅卷教师签字: 一. 判断题:(20分)(正确标√,错误标?,每题2分) 1. 元天线的方向性系数为1.5。(√) 2. 元天线的远区辐射场是平面波。(?) 3. 在功率方向图中,功率为主瓣最大值一半对应两点所张的 夹角就是主瓣宽度。(√ ) 4. 侧射式天线阵须满足各单元馈电幅度和相位均相等。(√ ) 5. 坡印亭矢量法可以求出天线的辐射阻抗。(? ) 6. 对称振子的平均特性阻抗愈小,其频率特性就愈好。(√ ) 7. 对称振子的谐振长度总是略大于0.25和0.5。(? ) 8. 右旋圆极化天线可以接收左旋圆极化天线发射的信号。 (? ) 9. 要使接收天线接收到的功率达到最大,需满足阻抗匹配和 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

极化匹配。(√ ) 10.笼形天线设计增加了阻抗频带宽度。(√ ) 二. 填空题:(30分,每空2分) 1.在场强方向图中,主瓣宽度是指场强大小下降到最大值的( 0.707 )倍处对应的两点之间的夹角。 2. 在功率方向图中,主瓣宽度是指功率大小下降到最大值的( 0.5 )倍处对应的两点之间的夹角。 3. 在分贝方向图中,主瓣宽度是指场强的分贝值下降到(-3 )dB 处对应的两点之间的夹角。 4.当2/(1.44)l λ≤时,对称阵子的最大辐射方向在0 90m θ=。 5.当2/ 1.44l λ≤时,对称阵子的最大辐射方向在 (90)m θ=。 6.半波天线的归一化方向图()cos cos 2( )sin F πθθθ ?? ???=, 方向性系数(1.64)D =,输入阻抗(73.142.5)Z j =+Ω。 7.间距为 d 的二元等幅同相(1,0)m α==阵因子 ()cos ,(2cos )a d f πθ θ?λ =。 8.间距为d 的二元等幅反相(1,)m απ==阵因子 ()cos ,(2sin )a d f πθ θ?λ =。 9. 间距为d 的均匀直线式N 元天线阵的阵因子

GSM手机外置天线的原理及制做

GS M 手机外置天线的原理及制做 班万荣 (华宇科技(南京)有限公司 江苏南京 210003) 摘 要:手机在人们的生活中起着越来越重要的作用,而手机在发送接收信号时性能的好坏,一定成度上取决于射频电路天线部分的设计。介绍了GS M 频段手机外置天线的原理和电气特性要求,及依据天线工作原理工厂对手机天线的检验方法。 关键词:外置天线;EGS M ;DCS 中图分类号:TN 929153 文献标识码:B 文章编号:1004373X (2005)0110503 Pr i nc iple and M ak i ng of GS M M ob ile Phone Exposed An tenna BAN W an rong (A ri m a Techno l ogy (N anjing )Co 1L td 1,N anjing ,210003,Ch ina ) Abs tra c t :M ob ile phone is mo re and mo re i m po rtan t in peop le ′s living ,and the perfo rm ance of mob ile phone tran s m itting and receiving signal is determ ined by design of an tenna part of R F circu it in som e respects 1In th is paper p rinci p le and electric characteristic dem and of GS M mob ile phone expo sed an tenna is in troduced ,and in specti on of mob ile phone an tenna acco rding its w o rk p rinci p le is also to ld 1 Ke yw o rds :expo sed an tenna ;EGS M ;DCS 收稿日期:20040920 1 GS M 手机外置天线的原理 手机天线对整个手机来说是一颗机构电子料,他的外观同工业设计有关系。这里着重讲述手机外置(expo sed )天线电气方面的原理及制做。 当电能量加到并联谐振网络上时,并联谐振网络就会向外发射一定频率F =1 2ΠL C 的电磁波。当并联谐振网络处在电磁场中,他会产生一定频率F =1 2ΠL C 的电能量,且频率F 与电磁波频率一致时,产生电能量相对最大。手机天线就是运用这样的电气原理,为了更好地发送和接收电磁波,将并联谐振回路中的电容两个板极打开,以电感为振子。电容性以分布容性实现,因中国的全球通波段和欧洲一致,EGS M (低发高收880 ~915M H z 及925~960M H z )加DCS (发1710~1785M H z ,收1805~1885M H z ),总对天线来说要求D ual Band (880~960 M H z ,1710 ~1880M H z )。故电感为一个有两种疏密度的线圈,以满足两波段频率发送接收的需要。 图1  若是做三频天线,因PCS 频段与DCS 频段接近,只需在DCS 频段上扩展就可以。调节手机天线电气性能时, 需要一只最终定型的手机(所有其他部件不再会改变)制作手机天线测试工具,在其天线连接的部位引1根钢管线出来安装S M A 头。通过接校准过单端口S 11参数的矢量网络分析仪A ginlent 8753来显示天线在两个频段的S 11特性,应该在有用频段内小于-10dB ,测试时周围不应该有金属反射面,有些厂商EGS M 频段做不到小于-10dB ,那最低要求也要做到小于-8dB 。 若满足不了S 11特性,就要通过改变线圈的长度和疏密度及手机内部PCB 板匹配网络来满足S 11参数特性。参数达标后,将线圈固定并拍照记录下线圈的长度和疏密度,使之可用以大量生产,并记录下匹配网络各被动器件参数用于手机内部PCB 板匹配网络制作。若是翻盖手机, S 11在闭合和打开时都满足所测标准,主要考察打开时的S 11。S 11与V S W R 有对应换算关系。调好S 11后,还要 测其增益与方向性,这就要求在3D 或2D cham ber 里测试,绘出图形,再换算成理论要求平均增益,接近于0dB 。但实际做不到,一般要求EGS M 频段不小于-1dB ,DCS 频段不小于-2dB 。内置天线更低为-4dB ,另外SA R 测试也要达标,这要求在专用的SA R 实验室测试(实验室必须具有国际认证资格)目前国家并没有做强制要求。 因为要做到电气性能达标,线圈必须大于一定长度,所以天线外露出机壳的部分必须大于1614mm ,但是把线圈缩入机壳内的除外。除装配合格外,手机外置天线要做落甩实验,直板机从高度为115m 落下,折叠机为112m 。经落甩后机构电气性能都不能改变。 5 01《现代电子技术》2005年第1期总第192期 电子技术应用

天线基本原理

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

天线原理与设计 讲义

第八章 口径天线理论基础 在第七章以前我们讨论的是线状天线,其特点是天线呈直线、折线或曲线状,且天线的尺寸为波长的几分之一或数个波长。所构成的基本理论称之为线天线理论。既使是第七章的开槽缝隙天线,在分析时也是借助了缝隙天线的互补天线—金属线天线来分析。 在实际工作中,还将遇到金属导体构成的口径天线和反射面天线。有时我们统称为口面天线。它们包括:喇叭天线、透镜天线、抛物面天线、双反射面的卡塞格伦天线等。见P169图8-1。它们的尺寸可以是波长的十几到几十倍以上。 口面天线的分析模型如图8-1所示: 图8-1 口面天线的分析模型 S ′为天线金属导体面,为开口面,S S ′+构成一个封闭面,封闭面内有一源。 S 对这样一个分析模型,要求解空间某点p 处的电磁场E P 、H P 。它们可描述为由两部分组成:一部分是源的直达波,一部分是由天线导体面上感应电流产生的散射场。这种分析方法我们称之为面电流法。面电流法对反射面天线有效,它是分析反射面天线的方法之一。但是,面电流法对喇叭天线、波导口天线一类的口径天线无效,或者说处理很难。我们可采用口径场法。 口径场法步骤: 1、解内问题,即由场源求得口面上的场分布; 2、解外问题,即由口面上场分布求解远区辐射场。 由此可见,反射面天线也可用口径场法分析。 喇叭天线一类:口径场法; 反射面天线一类:口经场法,面电流法。(近似方法) 有的反射面天线如抛物环面,由于口径场不易确定,还只得用面电流法。 口径场法和面电流法都是近似的方法,它们只能求出口径面前方半空间的辐射场,口面后方半空间的场无法求得。实际上口面天线的外表面及口径边缘L 上均有感应电流。这部分电流就是对口面天线后向辐射的主要贡献。但通常的做法是采用几何绕射理论,求由边缘L 产生的绕射。 值得说明的是,口面天线的边缘绕射场与前方半空间的场相比是微不足道的。 如果采用口径场法,那么,现在的问题是:能否用口径天线口面上的场分布来确定天线辐射场?回答是肯定的,这就须由惠更斯—菲涅尔原理来说明。

iPhone 6 6+天线设计

iPhone6 6+的天线设计 2014/11 iPhone 6/6+相较前代手机,多了NFC支持,LTE支持更多频段。 天线结构前所未有的复杂。 支持的无线通信标准: Cellular: CDMA EV-DO Rev. A (800, 1700/2100, 1900, 2100 MHz) UMTS (WCDMA)/HSPA+/DC-HSDPA (850, 900, 1700/2100, 1900, 2100 MHz) TD-SCDMA 1900 (F), 2000 (A) GSM/EDGE (850, 900, 1800, 1900 MHz) FDD-LTE (频段1, 2, 3, 4, 5, 7, 8, 13, 17, 18, 19, 20, 25, 26, 28, 29) TD-LTE (频段38, 39, 40, 41) 总结一下,全部频段: Bands 1, 2, 3, 4, 5, 7, 8, 13, 17, 18, 19, 20, 25, 26, 28, 29 ;Bands 34,38, 39, 40, 41 。 进一步整合一下:(B38/B40差距较大,一般不整合) TX:Bands 1, 3, 4, 7, 8, 13, 17, 20, 25(2), 26(5、18、19),28;34, 38,39,40, 41 。 RX:Bands 1, 3, 4, 7, 8, 13/17, 20, 25(2), 26(5、18、19),28, 29;34, 38,39,40, 41。 RX又可分为: PRX:Bands 1, 3, 4, 7, 8, 13,17, 20, 25(2), 26(5、18、19),28;34, 38,39,40, 41。DRX:Bands 1, 3, 4, 7, 8, 13/17, 20, 25(2), 26(5、18、19),28, 29;38,39,40, 41。 即发射TX 16个通道(11 FD + 5 TD)加上GSM HB/LB的2个通道,共18通道。 接收PRX、DRX分别为16和15通道,频段并非完全相同。B34由于不支持LTE仅存在于PRX,B29为B2/4/23的CA仅存在于DRX,B13/17的DRX由于频率接近可合成为一个。(GSM 4个接收通道均包含在PRX/DRX内,B2,3,5,8) 这些频段按照射频元件的工作频率划分为低、中、高三个频段: 低频段:【700MHz~1GHz】B13,17,8,20,26(5、18、19),28,29。 中频段:【1.7GHz~2.2GHz】B1,25(2),3,4;34,39。 高频段:【2.3~2.7GHz扣除2.4~2.5GHz】B7,38,40,41。 其中,仅B34不支持LTE。 主天线开关至少为DP15T,TD天线开关至少为SP9T。【DP16T+SP10T?】 (硬件管脚数目限制,最大为DP19T+SP10T)

相关主题
文本预览
相关文档 最新文档