当前位置:文档之家› 交大继电保护课程设计——线路距离保护的设计

交大继电保护课程设计——线路距离保护的设计

交大继电保护课程设计——线路距离保护的设计
交大继电保护课程设计——线路距离保护的设计

电力系统继电保护课程设计

题目:线路距离保护的设计班级:

姓名:

学号:

指导教师:

设计时间:

目录

1设计原始资料........................................................................................................................... - 1 - 1.1具体题目........................................................................................................................... - 1 -

1.2完成内容........................................................................................................................... - 1 - 2分析课题设计内容................................................................................................................... - 1 -

2.1设计规程........................................................................................................................... - 1 -

2.2保护配置........................................................................................................................... - 3 -

2.2.1主保护配置......................................................................................................... - 3 -

2.2.2后备保护配置..................................................................................................... - 3 - 3短路电流及残压计算............................................................................................................... - 4 -

3.1等效电路的建立............................................................................................................... - 4 -

3.2保护短路点的选取........................................................................................................... - 4 -

3.3短路电流的计算............................................................................................................... - 4 -

3.3.1最大运行方式短路电流计算............................................................................. - 4 -

3.3.2最小运行方式短路电流计算............................................................................. - 5 - 4保护的配合及整定计算........................................................................................................... - 6 -

4.1保护1距离保护的整定与校验....................................................................................... - 6 -

4.1.1保护1距离保护第I段整定.............................................................................. - 6 -

4.1.2保护1距离保护第II段整定 ............................................................................ - 6 -

4.1.3保护1距离保护第III段整定........................................................................... - 7 - 4.2保护2距离保护的整定与校验....................................................................................... - 9 -

4.2.1保护2距离保护第I段整定.............................................................................. - 9 - 4.3保护3距离保护的整定与校验....................................................................................... - 9 -

4.3.1保护3距离保护第I段整定.............................................................................. - 9 - 4.4保护4距离保护的整定与校验....................................................................................... - 9 -

4.4.1保护4距离保护第I段整定.............................................................................. - 9 -

4.4.2保护4距离保护第II段整定 .......................................................................... - 10 -

4.4.3保护4距离保护第III段整定:..................................................................... - 10 - 5继电保护设备选择................................................................................................................. - 11 -

5.1互感器的选择................................................................................................................. - 11 -

5.1.1电流互感器的选择........................................................................................... - 12 -

5.1.2电压互感器的选择........................................................................................... - 13 - 5.2继电器的选择................................................................................................................. - 14 -

5.2.1按使用环境选型............................................................................................... - 14 -

5.2.3输入参量的选定............................................................................................... - 15 -

5.2.4根据负载情况选择继电器触点的种类和容量 ............................................... - 15 - 6二次展开图的绘制................................................................................................................. - 16 -

6.1保护测量回路................................................................................................................. - 16 -

6.1.1 绝对值比较原理的实现.................................................................................. - 16 -

6.1.2 相位比较原理的实现...................................................................................... - 17 - 6.2保护跳闸回路................................................................................................................. - 17 -

6.2.1 起动回路.......................................................................................................... - 18 -

6.2.2 测量回路.......................................................................................................... - 18 -

6.2.3 逻辑回路.......................................................................................................... - 18 - 7对距离保护的评价................................................................................................................. - 18 - 参考文献.................................................................................................................................... - 20 -

1设计原始资料

1.1具体题目

如图1.1所示系统中,发电机以发电机-变压器组方式接入系统,最大开机方式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台也可能1台运行。参数为:

E ?=, 1.1 2.1 1.2 2.215G G G G X X X X ====Ω, 1.1 1.410T T X X =Ω ,0.10.430T T X X =Ω , 1.3 2.3 1.4 2.410G G G G X X X X ====Ω, 1.5 1.620T T X X ==Ω, 0.50.640T T X X ==Ω,60km A B L -=,40km B C L -=,线路阻抗120.4Ωkm Z Z ==, 0 1.2km Z =Ω,线路阻抗角均为75°,max max ..300A A B L C B L I I --==,负荷功率因

数角为30°; 1.2SS K =, 1.2re K =,0.85I rel K =,0.75II rel K =,变压器均装有快

速差动保护。

图1.1 系统网路连接图

试对1、2、3、4进行距离保护的设计。

1.2完成内容

我们要完成的内容是实现对线路的距离保护。距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。

2分析课题设计内容

2.1设计规程

在距离保护中应满足一下四个要求,即可靠性、选择性、速动性和灵敏性。这几个之间,紧密联系,既矛盾又统一,必须根据具体电力系统运行的主要矛盾和矛盾的主要方面,配置、配合、整定每个电力原件的继电保护。充分发挥和利

用继电保护的科学性、工程技术性,使继电保护为提高电力系统运行的安全性、稳定性和经济性发挥最大效能。

可靠性包括安全性和信赖性,是对继电保护性能的最根本要求。所谓安全性,是要求继电保护在不需要它动作时可靠不动作,即不发生误动作。所谓信赖性,是要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不发生拒绝动作。安全性和信赖性主要取决于保护装置本身的制造质量、保护回路的连接和运行维护的水平。一般而言,保护装置的组成原件质量越高、回路接线越简单,保护的工作就越可靠。同时,正确的调试、整定,良好的运行维护以及丰富的运行经验,对于提高保护的可靠性具有重要作用。

继电保护的选择性是指保护装置动作时,在可能最小的区间内将故障从电力系统中断开,最大限度的保证系统中无故障部分仍能继续安全运行。它包含两种意思:其一是只应有装在故障元件上的保护装置动作切除故障;其二是要力争相邻原件的保护装置对它起后备保护作用。

继电保护的速动性是指尽可能快的切出故障,以减少设备及用户在大短路电流、低电压下运行的时间,降低设备的损坏程度,提高电力系统并列运行的稳定性。动作迅速而又能满足选择性要求的保护装置,一般结构都比较复杂,价格比较昂贵,对大量的中、低压电力原件,不一定都采用高速动作的保护。对保护速动性要求的保护装置,一般结构都比较复杂,价格比较昂贵,对大量的中、低压电力原件的具体情况,经技术经济比较后确定。

继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的能力。满足灵敏性要求的保护装置应该是在规定的保护范围内部故障时,在系统任意的运行条件下,无论短路点的位置、短路的类型如何以及短路点是否有过渡电阻,当发生短路时都能敏锐感觉、正确反应。灵敏性通常用灵敏系数或灵敏度来衡量,增大灵敏度,增加了保护动作的信赖性,但有时与安全性相矛盾。对各类保护的的灵敏系数的要求都作了具体规定,一般要求灵敏系数在1.2~2之间。

以上四个基本要求是评价和研究继电保护性能的基础,在它们之间,既有矛盾的一面,又要根据被保护原件在电力系统中的作用,使以上四个基本要求在所配置的保护中得到统一。继电保护的科学研究、设计、制造和运行的大部分工作也是围绕如何处理好这四者的辩证统一关系进行的。相同原理的保护装置在电力系统不同位置安装时如何配置相应的继电保护,才能最大限度地发挥被保护电力系统的运行效能,充分体现着继电保护工作的科学性和继电保护工程实践的技术性。

2.2保护配置

2.2.1主保护配置

距离保护的主保护是距离保护Ⅰ段和距离保护Ⅱ段。

(1)距离保护第Ⅰ段

距离保护的第Ⅰ段是瞬时动作的,是保护本身的固有动作时间。以保护2为例,其第Ⅰ段保护本应保护线路A-B 全长,即保护范围为全长的100%,然而实际上却是不可能的,因为当线路B-C 出口处短路时,保护2第Ⅰ段不应动作,为此,其启动阻抗的整定值必须躲开这一点短路时所测量到的阻抗AB Z ,整定阻抗set Z

(0.8~0.85)set AB Z Z = (2.1) 同理对保护1的第Ⅰ段整定值应为

'10.80.85dZ BC Z Z =(~) (2.2)

如此整定后,距离Ⅰ段就只能保护本线路全长的80%~85%,这是一个严重缺点。为了切除本线路末端15%~20%范围以内的故障,就需设置距离保护第Ⅱ段。

(2)距离保护第Ⅱ段

距离Ⅱ段整定值的选择是类似于限时电流速断的,即应使其不超出下一条线路距离Ⅰ段的保护范围,同时带有高出一个△t 的时限,以保证选择性。例如在图1-1单侧电源网咯中,当保护1第Ⅰ段末端短路时,保护2的测量阻抗2Z 为 '21AB dZ Z Z Z =+ (2.3) 引入可靠系数k K ,保护2的启动阻抗为

''21()0.80.80.85dZ k AB dZ AB BC Z K Z Z Z Z =+=+[(~)] (2.4) 距离Ⅰ段与Ⅱ段联合工作构成本线路的主保护。

2.2.2后备保护配置

距离保护第Ⅲ段,装设距离保护第Ⅲ段是为了作为相邻线路保护装置和断路器拒绝动作的后备保护,同时也作为Ⅰ、Ⅱ段的后备保护。

对距离Ⅲ段整定值的考虑是与过电流保护相似的,其启动阻抗要按躲开正常运行时的最小负荷阻抗来选择,而动作时限应使其比距离Ⅲ段保护范围内其他各保护的最大动作时限高出一个△t 。

3短路电流及残压计算

3.1等效电路的建立

由于短路电流计算是电网继电保护配置设计的基础,因此分别考虑最大运行方式下各线路未端短路的情况,最小运行方式下各线路未端短路的情况。

3.2保护短路点的选取

本设计中主要考虑母线、线路末端的短路故障。

3.3短路电流的计算

电力系统运行方式的变化,直接影响保护的性能,因此,在对继电保护进行整定计算之前,首先应该分析运行方式。在相同地点发生相同类型的短路时流过保护安装处的电流最大,对继电保护而言称为最大运行方式,对应的系统等值阻抗最小;在相同地点发生相同类型的短路时流过保护安装处的电流最小,对继电保护而言称为最小运行方式,对应的系统等值阻抗最大。需要着重说明的是,继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指电网在某种连接情况下通过保护的电流值最小。

3.3.1最大运行方式短路电流计算

(1)保护1的最大运行方式分析。保护1的最大运行方式就是指流过保护1的电流最大即两个发电机共同运行,而变压器T1、T2两个都同时运行的运行方式,则 .min 1.1 1.111()(1510)12.5()22s G T Z X X =?+=?+=Ω (3.1) 式中.min s Z 为保护安装处到系统等效电源之间的最小阻抗。

.1.max .min 1.819(kA)k s AB E I Z Z ?

===+ (3.2)

式中.1.max k I 为流过保护1的最大短路电流。

(2)保护2的最大运行方式分析。保护2最大运行方式就是指流过保护2的电流最大即两个发电机共同运行,则 .min 1.3 1.311()(1010)10()22s G T Z X X =?+=?+=Ω (3.3)

.2.max .min 1.328(kA)k s AB BC E I Z Z Z ?

===++ (3.4)

式中.2.max k I 为流过保护2的最大短路电流。

(3)保护3的最大运行方式分析。保护3的最大运行方式就是指流过保护3的电流最大即两个发电机共同运行,则 .min 1.1 1.111()(1510)12.5()22

s G T Z X X =?+=?+=Ω (3.5)

.3.max .min 115/ 1.265(kA)12.52416k s AB BC E I Z Z Z ?

===++++ (3.6)

式中.3.max k I 为流过保护3的最大短路电流。

(4)保护4的最大运行方式分析。保护4的最大运行方式就是指流过保护4的电流最大即两个发电机共同运行,而变压器T5、T6两个都同时运行的运行方式,则 .min 1.3 1.311()(1010)10()22

s G T Z X X =?+=?+=Ω (3.7)

.4.max .min 2.554(kA)k s BC E I Z Z ?

===+ (3.8)

式中.4.max k I 为流过保护3的最大短路电流。

3.3.2最小运行方式短路电流计算

(1)保护1的最小运行方式分析。保护1的最小运行方式就是指流过保护1的电流最小即是在G1和G2只有一个工作,变压器T1、T2两个中有一个工作时的运行方式,则

.max 1.1 1.1()(1510)25()s G T Z X X =+=+=Ω (3.9) 式中.max s Z 为保护安装处到系统等效电源之间的最大阻抗。

.1.min .max 115 1.173(kA)222524k s AB E I Z Z ?===++ (3.10) 式中.1.min k I 为流过保护1的最小短路电流。

(2)保护2的最小运行方式分析。保护2的最小运行方式就是指流过保护2的电流最小即是在G3和G4只有一个工作时运行方式,则

.max 1.3 1.3()(1010)20()s G T Z X X =+=+=Ω (3.11)

.2.min .max 0.958(kA)k s AB BC E I Z Z Z ?===++(3.12) 式中.2.min k I 为流过保护2的最小短路电流。

(3)保护3的最小运行方式分析。保护3的最小运行方式就是指流过保护3的电流最小即是在G1和G2只有一个工作时的运行方式,则

.max 1.1 1.1()(1510)25()s G T Z X X =+=+=Ω (3.13)

.3.min .max 0.885(kA)k s AB BC E I Z Z Z ?===++ (3.14) 式中.3.min k I 为流过保护2的最小短路电流。

(4)保护4的最小运行方式分析。保护4的最小运行方式就是指流过保护4的电流最小即是在G3和G4只有一个工作,变压器T3、T4两个中有一个工作时的运行方式,则

.max 1.3 1.3()(1010)20()s G T Z X X =+=+=Ω (3.15)

.4.min .max 1.042(kA)k s BC E I Z Z ?===+ (3.16) 式中.4.min k I 为流过保护4的最小短路电流。

4保护的配合及整定计算

4.1保护1距离保护的整定与校验

4.1.1保护1距离保护第I 段整定

(1)保护1的I 段的整定阻抗为

.110.850.46020.4()I I set rel A B Z K z L -==??=Ω (4.1) 式中set.1I Z 为保护1距离的I 段的整定阻抗;A B L -为被保护线路A B L -的长度;1z 为被保护线路单位长度的正序阻抗;e I

r l K 为可靠系数。

(2)动作时间

1t 0(s)I = 第I 段实际动作时间为保护装置固有的动作时间。

4.1.2保护1距离保护第II 段整定

(1)整定阻抗:按下面两个条件选择。

①当与相邻下级线路距离保护I 段相配合时,有1.max 2.88b K =,1.min 1.59b K =,则

.310.850.44013.6()I I set rel B C Z K z L -==??=Ω (4.2)

式中set.3I Z 为保护3距离I 段的整定阻抗;B C L -为被保护线路B C L -的长度。

.11.min .3()0.75(24 1.5913.6)34.218()II II I set rel AB b set Z K Z K Z =+=+?=Ω (4.3)

式中set.1II Z 为保护1距离II 段的整定阻抗;II K rel 为可靠系数。

②当与相邻变压器的快速保护相配合时,有1.max 2.88b K =, 1.min 2.01b K =,20t Z =Ω有

.11.min ()0.75(24 2.0120)48.15()II II set rel AB b t Z K Z K Z =+=+?=Ω (4.4)

(2)灵敏度校验

.134.218 1.43 1.2524

II set sen AB Z K Z ===> 满足灵敏度要求。

(3)动作时限

1300.50.5(s)II I t t t =+?=+= 与相邻线路保护3的I 段保护配合,它能同时满足与相邻保护以及与相邻变压器保护配合的要求。

4.1.3保护1距离保护第III 段整定

(1)整定阻抗:按躲过正常运行时的最小负荷阻抗整定,有

.min min

.max 190.53()L L L U Z I ?===Ω (4.5) 式中.min L Z 最小负荷阻抗..min L U 为正常运行母线电压的最低值,..max L I 为被保护

线路最大负荷电流。

.min .1cos()III L set rel ss re set L Z Z K K K ??=- (4.6)

式中set.1III Z 为保护1距离III 段的整定阻抗;rel K 为可靠系数。

取2.1=rel K , 1.2ss K =, 1.2re K =和75o set ?=,30o L ?=,于是

1190.53

155.93()1.2*1.2*1.2*cos(7530)III set Z ?==Ω- (4.7)

(2)灵敏度校验

①本线路末端短路时灵敏系数:

.1(1)155.93 6.50 1.524III set sen AB Z K Z ===> 满足灵敏度要求。

②相邻线路末端短路时灵敏系数。只要令,0BK BC CK X X X ==即

1

156.056.0056.012.112.0034.034.012.0034.1

1

121[(1)(1)]31AC b BC X AB AB K X X X X X X X X X X X X +=++??++++++当X 34.1、X 56.0分别取最小值,而X 12.1、X 34.0、X 12.0分别取最大值时,K 1b 就取最大值。

即当34.1min 56.0min 12.1max 34.0max 12.0max 10,20,25,30,30X X X X X =Ω=Ω=Ω=Ω=Ω,16next BC Z Z ==Ω时,有 1.max 1

1 2.882021204820[(1)(1)]25403072330303072

110

b K =+=+??+++++++(4.8) .1(2)

1max 155.93 2.23 1.224 2.8816III set sen AB b next Z K Z K Z ?===>++? ③相邻变压器末端短路时灵敏系数,1.max 2.88b K =,20next t Z Z ==Ω,有 .1(2)1max 155.93 1.91 1.224 2.8820

III set sen AB b next Z K Z K Z ?===>++? 灵敏度校验满足要求。

(3)动作时限

130.50.51(s)III III t t t =+?=+=

与相邻设备保护配合,它能同时满足与相邻线路保护和相邻变压器保护的配合要求。

4.2保护2距离保护的整定与校验

4.2.1保护2距离保护第I 段整定

(1)保护2的I 段的整定阻抗为

.210.850.46020.4()I I set rel A B Z K z L -==??=Ω (4.9)

式中set.2I Z 为保护2距离的I 段的整定阻抗。

(2)动作时限

20(s)I t =

第I 段实际动作时间为保护装置固有的动作时间。

4.3保护3距离保护的整定与校验

4.3.1保护3距离保护第I 段整定

(1)保护3的I 段的整定阻抗为

.310.850.44013.6()I I set rel B C Z K z L -==??=Ω (4.10)

式中set.3I Z 为保护3距离I 段的整定阻抗;B C L -为被保护线路B C L -的长度。

(2)动作时间

30(s)I t =

第I 段实际动作时间为保护装置固有的动作时间。

4.4保护4距离保护的整定与校验

4.4.1保护4距离保护第I 段整定

(1)保护4的I 段的整定阻抗为

.410.850.44013.6()I I set rel B C Z K z L -==??=Ω (4.11)

式中set.4I Z 为保护4距离I 段的整定阻抗。

(2)动作时间

40(s)I t =

第I 段实际动作时间为保护装置固有的动作时间。

4.4.2保护4距离保护第II 段整定

(1)整定阻抗:按下面两个条件选择。

①当与相邻下级线路距离保护I 段配合时,4.max 2.26b K =,4.min 1.41b K =,有

.44min .2()0.75(16 1.4120.4)33.573()II II I set rel BC b set Z K Z K Z ?=+=+?=Ω (4.12)

式中set.4II Z 为保护4距离II 段的整定阻抗。

②当与相邻变压器的快速保护相配合时,4.max 1.99b K =,4.min 1.53b K =,20t Z =Ω,有

.44min ()0.75(16 1.5320)34.95()II II set rel BC b t Z K Z K Z ?=+=+?=Ω (4.13)

所以取.433.573II set Z =Ω。

(2)灵敏度校验

.433.573 2.1 1.2516

II set sen BC Z K Z ===> 满足灵敏度要求。

(3)动作时限

420.5(s)II I t t t =+?= 与相邻保护2的I 段配合,它能同时满足与相邻线路保护以及相邻变压器保护配合的要求。

4.4.3保护4距离保护第III 段整定:

(1)整定阻抗:按躲过正常运行时的最小负荷阻抗整定,有

.min min .max

190.53()L L L U Z I ?===Ω (4.14) .min .4cos()III L set rel ss re set L Z Z K K K ??=- (4.15)

式中set.4III Z 为保护4距离III 段的整定阻抗。

取0.83rel K =,2.1=rel K , 1.2re K =和75o set ?=,30o L ?=,于是

.4190.53155.93()1.2*1.2*1.2*cos(7530)III set Z ==Ω- (4.16)

(2)灵敏度校验

①本线路末端短路时灵敏系数为

.4(1)155.939.74 1.516

III set sen BC Z K Z ===> 满足灵敏度要求。

②相邻线路末端短路时灵敏系数。经分析可得

456.056.0056.034.1134.0012.012.034.0012.11

121[(1)(1)31b AB AC BC BC K X X X X X X X X X X X X X =++??+++++++当12.1X 、56.0X 、分别取最小值,而34.1X 、12.0X 、34.0X 分别取最大值时,4b K 就取最大值,即当12.1min 12.5X =Ω,56.0min 20X =Ω,34.1max 20X =Ω,12.0max 30X =Ω,34.0max 30X =Ω,24next AB Z Z ==,有 4.max 1

1 2.212021207220[(1)(1)3048330303048

112.5

b K =+=+??++++++(4.17) .4(2)

4.max 15

5.93 2.26 1.216 2.2124III set sen BC b next Z K Z K Z ===>++? 灵敏度校验满足要求。

③相邻变压器末端短路时灵敏系数。此时20next Z =Ω,有 .4(2)4.max 155.93 2.79 1.216 1.9920

III set sen BC b next Z K Z K Z ===>++? 灵敏度校验满足要求。

(3)动作时限

420.50.51(s)III III t t t =+?=+=

与相邻设备保护配合有它能同时满足与相邻线路保护和相邻变压器保护的配合要求。

5继电保护设备选择

5.1互感器的选择

互感器分为电流互感器TA 和电压互感器TV ,它们既是电力系统中一次系统与二次系统间的联络元件,同时也是一次系统与二次系统的隔离元件。它们将

一次系统的高电压、大电流,转变成二次系统的低电压、小电流,供测量、监视、控制及继电保护使用。互感器的具体作用是:(1)将一次系统各级电压均变成100以下的低电压,将一次系统各回路电流变成5A 以下的小电流,以便于测量仪表及继电器的小型化、系列化、标准化。(2)讲一次系统与二次系统在电气方

面隔离,同时互感器二次侧有一点可靠接地,从而保证了二次设备及人员安全。

5.1.1电流互感器的选择

(1)电流互感器的选择

① 电流互感器一次回路额定电压和电流选择。电流互感器一次回路额定电压和电流选择应满足:

N S N U U ≥1 (5.1) max .1I I N ≥ (5.2)

式中N1/U 、1N I —电流互感器一次额定电压和电流。

为了确保所供仪表的准确度,互感器的一次侧额定电流应尽可能与最大工作电流接近。

② 二次额定电流的选择

电流互感器的二次额定电流有5A 和1A 两种,一般强电系统用5A , 弱电系统用1A 。

③ 电流互感器种类和型式的选择

在选择互感器时,应根据安装地点(如屋内、屋外)和安装方式(如穿墙式、支持式、装入式等)选择相适应的类别和型式。选用母线型电流互感器时,应注意校核窗口尺寸。

④ 电流互感器准确级的选择

为保证测量仪表的准确度,互感器的准确级不得低于所供测量仪表的准确级。例如:装于重要回路(如发电机、调相机、变压器、厂用馈线、出线等)中的电能表和计费的电能表一般采用0.5~1级表,相应的互感器的准确级不应低于0.5级;对测量精度要求较高的大容量发电机、变压器、系统干线和500kV 级宜用0.2级。供运行监视、估算电能的电能表和控制盘上仪表一般皆用1~1.5级的,相应的电流互感器应为0.5~1级。供只需估计电参数仪表的互感器可用3级的。

当所供仪表要求不同准确级时,应按相应最高级别来确定电流互感器的准确级。

⑤ 二次容量或二次负载的校验

为了保证互感器的准确级,互感器二次侧所接实际负载Z 2l 或所消耗的实际容量荷S 2应不大于该准确级所规定的额定负载Z N2或额定容量S N2(Z N2及S N2均可从产品样本查到),即

212222Z I S S N N =≥ 或r m tou i 212R R R R Z Z W N +++≈≥ (5.3)

式中r m R R 、—电流互感器二次回路中所接仪表内阻的总和与所接继电器内阻的

总和,可由产品样本中查得;i W R —电流互感器二次联接导线的电阻;tou R —电流互感器二次连线的接触电阻,一般取为0.1Ω。

≤i W R 22222)(N r m tou N N I R R R I S ++- (5.4)

因为A=wi ca R l γ,所以A ≥)

(2r m tou N ca R R R Z l ---γ,式中A ,ca l 一电流互感器二次回路连接导线截面积(mm 2)及计算长度(mm )。

按规程要求联接导线应采用不得小于 1.5mm 2的铜线,实际工作中常取

2.5mm 2的铜线。当截面选定之后,即可计算出联接导线的电阻R wi 。有时也可先初选电流互感器,在已知其二次侧连接的仪表及继电器型号的情况下,确定连接导线的截面积。但须指出,只用一只电流互感器时电阻的计算长度应取连接长度2倍,如用三只电流互感器接成完全星形接线时,由于中线电流近于零,则只取连接长度为电阻的计算长度。若用两只电流互感器接成不完全星形结线时,其二次公用线中的电流为两相电流之向量和,其值与相电流相等,但相位差为60,

所以本题中电流互感器的型号为LCWB6-110B 。

5.1.2电压互感器的选择

(1)电压互感器一次回路额定电压选择

为了确保电压互感器安全和在规定的准确级下运行,电压互感器一次绕组所接电力网电压应在(1.1-0.9)i N U 范围内变动,即满足下列条件

i 1.1N U >s N U >i 0.9N U (5.5) 式中i N U —电压互感器一次侧额定电压。选择时,满足i s N N U U =即可。

(2)电压互感器二次侧额定电压的选择

电压互感器二次侧额定线间电压为100V ,要和所接用的仪表或继电器相适应。

(3)电压互感器种类和型式的选择

电压互感器的种类和型式应根据装设地点和使用条件进行选择,例如:在6-35kV 屋内配电装置中,一般采用油浸式或浇注式;

110-220kV 配电装置通常采用串级式电磁式电压互感器;220kV 及其以上配电装置,当容量和准确级满足要

求时,也可采用电容式电压互感器。

(4)准确级选择

和电流互感器一样,供功率测量、电能测量以及功率方向保护用的电压互感器应选择0.5级或1级的,只供估计被测值的仪表和一般电压继电器的选用3级电压互感器为宜。

(5)按准确级和额定二次容量选择

首先根据仪表和继电器接线要求选择电压互感器接线方式,并尽可能将负荷均匀分布在各相上,然后计算各相负荷大小,按照所接仪表的准确级和容量选择互感器的准确级额定容量。有关电压互感器准确级的选择原则,可参照电流互感器准确级选择。一般供功率测量、电能测量以及功率方向保护用的电压互感器应选择0.5级或1级的,只供估计被测值的仪表和一般电压继电器的选用3级电压互感器为宜。

电压互感器的额定二次容量(对应于所要求的准确级)2N S ,应不小于电压

互感器的二次负荷2S ,即22S S N ≥。

=2S ∑∑∑∑+=+20202020)()()sin ()cos (Q P S S ?? (5.6) 式中00/0Q P S 、、—各仪表的视在功率、有功功率和无功功率。cos ?—各仪表的

功率因数。

如果各仪表和继电器的功率因数相近,或为了简化计算起见,也可以将各仪表和继电器的视在功率直接相加,得出2S 大于的近似值,它若不超过2N S ,则实际值更能满足式子的要求。

由于电压互感器三相负荷常不相等,为了满足准确级要求,通常以最大相负

荷进行比较。计算电压互感器各相的负荷时,必须注意互感器和负荷的接线方式。

所以本题中的电压互感器的型号为JDZJ-3。

5.2继电器的选择

5.2.1按使用环境选型

使用环境条件主要指温度(最大与最小)、湿度(一般指40摄氏度下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方法、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用,有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。

对电磁干扰或射频干扰比较敏感的装置周围,最好不要选用交流电激励的继电器。选用直流继电器要选用带线圈瞬态抑制电路的产品。那些用固态器件或电

路提供激励及对尖峰信号比较敏感地地方,也要选择有瞬态抑制电路的产品。

5.2.2按输入信号不同确定继电器种类

按输入信号是电、温度、时间、光信号确定选用电磁、温度、时间、光电继电器,这是没有问题的。这里特别说明电压、电流继电器的选用。若整机供给继电器线圈是恒定的电流应选用电流继电器,是恒定电压值则选用电压继电器。

5.2.3输入参量的选定

与用户密切相关的输入量是线圈工作电压(或电流),而吸合电压(或电流)则是继电器制造厂控制继电器灵敏度并对其进行判断、考核的参数。对用户来讲,它只是一个工作下极限参数值。控制安全系数是工作电压(电流)/吸合电压(电流),如果在吸合值下使用继电器,是不可靠的、不安全的,环境温度升高或处于振动、冲击条件下,将使继电器工作不可靠。整机设计时,不能以空载电压作为继电器工作电压依据,而应将线圈接入作为负载来计算实际电压,特别是电源内阻大时更是如此。当用三极管作为开关元件控制线圈通断时,三极管必须处于开关状态,对6VDC以下工作电压的继电器来讲,还应扣除三极管饱和压降。当然,并非工作值加得愈高愈好,超过额定工作值太高会增加衔铁的冲击磨损,增加触点回跳次数,缩短电气寿命,一般,工作值为吸合值的1.5倍,工作值的误差一般为±10%。

5.2.4根据负载情况选择继电器触点的种类和容量

国内外长期实践证明,约70%的故障发生在触点上,这足见正确选择和使用继电器触点非常重要。

触点组合形式和触点组数应根据被控回路实际情况确定。动合触点组和转换触点组中的动合触点对,由于接通时触点回跳次数少和触点烧蚀后补偿量大,其负载能力和接触可靠性较动断触点组和转换触点组中的动断触点对要高,整机线路可通过对触点位置适当调整,尽量多用动合触点。

根据负载容量大小和负载性质(阻性、感性、容性、灯载及马达负载)确定参数十分重要。认为触点切换负荷小一定比切换负荷大可靠是不正确的,一般说,继电器切换负荷在额定电压下,电流大于100mA、小于额定电流的75%最好。电流小于100mA会使触点积碳增加,可靠性下降,故100mA称作试验电流,是国内外专业标准对继电器生产厂工艺条件和水平的考核内容。由于一般继电器不具备低电平切换能力,用于切换50mV、50μA以下负荷的继电器订货,用户需注明,必要时应请继电器生产厂协助选型。

继电器的触点额定负载与寿命是指在额定电压、电流下,负载为阻性的动作次数,当超出额定电压时,可参照触点负载曲线选用。当负载性质改变时,其触点负载能力将发生变动。

6二次展开图的绘制

6.1保护测量回路

对于动作于跳闸的继电保护功能来说,最为重要的是判断出故障处于规定的保护区内还是保护区外,至于区内或区外的具体位置,一般并不需要确切的知道。可以用两种方法来实现距离保护。一种是首先精确地测量出m Z ,然后再将它与

事先确定的动作进行比较。当m Z 落在动作区之内时,判为区内故障,给出动作

信号;当m Z 落在动作区之外时,继电器不动作。另一种方法不需要精确的测出

m Z ,只需间接地判断它是处在动作边界之外还是处在动作边界之内,即可确定

继电器动作或不动作。

6.1.1 绝对值比较原理的实现 如前所述,绝对值比较的一般动作表达式如式A B Z Z ≤所示。绝对值比较

式的阻抗元件,既可以用阻抗比较的方式实现,也可以用电压比较的方式实现。

该式两端同乘以测量电流m I ?,并令A A U Z I ??=m ,B B U Z I ??=m ,则绝对值比较

的动作条件又可以表示为 A B U U ??≤ (6.1)

式(6.1)称为电压形式的绝对值比较方程。电路图如图6.1所示。

图6.1 绝对值比较的电压形成

6.1.2 相位比较原理的实现 相位比较原理的阻抗元件动作条件的一般表达式如式o o 90arg 90-≤≤D

C Z Z 所示,相角表达式的分子、分母同乘以m I ?,并令C U Z I C ??=m ,

D U Z I D ??=m ,则相位

比较的动作条件又可以表示为 o o 90arg 90-≤≤??D C

U U (6.2)

式(6.2)称为电压形式相位比较方程。电路图如图6.2所示。

图6.2 相位比较的电压形成

6.2保护跳闸回路

三段式距离保护主要由测量回路、起动回路和逻辑回路三部分组成,如图

6.3所示。

电力系统继电保护课程设计三段式距离保护

电力系统继电保护课程设计三段式距离保护集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

电力系统继电保护课程设计选题标号:三段式距离保护 班级: 14电气 姓名: 学号: 指导教师:谷宇航 日期: 2017年11月8日 天津理工大学 电力系统继电保护课程设计

天津理工大学 目录

一、选题背景 选题意义 随着电力系统的发展,出现了容量大,电压高,距离长,负荷重,结构复杂的网络,这时简单的电流,电压保护已不能满足电网对保护的要求。 在高压长距离重负荷线路上,线路的最大负荷电流有时可能接近于线路末端的短路电流,所以在这种线路上过电流保护是不能满足灵敏系数要求的。另外对于电流速断保护,其保护范围受电网运行方式改变的影响,保护范围不稳定,有时甚至没有保护区,过电流保护的动 作时限按阶梯原则来整定,往往具有较长时限,因此,满足不了系统快速切除故障的要求。对于多电源的复杂网络,方向过电流保护的动作时限往往不能按选择性要求来整定,而且动作时限长,不能满足电力系统对保护快速性的要求。 设计原始资料 ?=E ,112G Z =Ω、220G Z =Ω、315G Z =Ω,12125L L km ==、370L km =, 42B C L km -=,25C D L km -=,20D E L km -=,线路阻抗0.4/km Ω,' 1.2rel K = 、''''' 1.15rel rel K K ==,.max 150B C I A -= ,.max 250C D I A -=,.max 200D E I A -=, 1.5ss K = , 0.85re K =

继电保护课程设计(完整版)

继电保护原理课程设计报告评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I m ax C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = G1 G3 98 4 51 2 3 A B C D E L1L3 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置

继电保护课程设计_线路距离保护原理

继电保护原理课程设计报告 专业: 班级: 姓名: 学号: 指导教师: 交通大学自动化与电气工程学院 2014年 7月11日

1 设计原始资料 1.1 具体题目 如下图1所示网络,系统参数为 : E ?=、 X G1=15Ω、X G2=11Ω、X G3=11Ω、L 1=L 2=61km ,51=BC L km 、31=CD L km 、21=DE L km ,线路阻抗/4.0Ωkm ,85.0===I I I I I I rel rel rel K K K ,I BCmax =311A 、I CDmax =211A 、 I DEmax =151A 、5.1=ss K ,2.1=re K 。 A B 图1电力系统示意图 试对线路中保护8和保护1做距离保护。 1.2 要完成的容 本次课程设计要完成的容是熟悉线路的距离保护原理及对保护1和护保护8进行整定计算,并对所要用的互感器进行选择。 2 分析要设计的课题容 2.1 设计规程 在设计中要满足继电保护的四个基本要求:选择性、速动性、灵敏性、可靠性。各个保护之间要相互配合,保证每个保护都不会出现勿动和拒动现象。并且在各个保护的配合下,实现全线的有效保护,杜绝“死区”的存在。 2.2 本设计的保护配置 2.2.1 主保护配置 距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护。

(1) 距离保护的Ⅰ段 A B C 图2距离保护网络接线图 瞬时动作,Ⅰt 是保护本身的固有动作时间,一般可以忽略。 保护1的整定值应满足:AB set Z Z

110KV线路继电保护课程设计15431汇编

第1章绪论 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。 随着计算机硬件的迅速发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。 继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。 这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。 1.1 继电保护 电力系统的运行中最常见也是最危险的故障是发生各种形式的各种短路。发生短路时可能会产生以下后果: 1、电力系统电压大幅度下降,广大用户负荷的正常工作遭到破坏。 2、故障处有很大的短路电流,产生的电弧会烧坏电气设备。 3、电气设备中流过强大的电流产生的发热和电动力,使设备的寿命减少,甚至遭到破坏。 4、破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。 因此在电力系统中要求采取各种措施消除或减少发生事故的可能性,一旦发生故障,必须迅速而有选择性的切除故障,且切除故障的时间常常要求在很短的时间内(十分之几或百分之几秒)。实践证明只有在每个元件上装设保护装置才有可能完成这个要求,而这种装置在目前使用的大多数是由单个继电器或继电器及其附属设备的组合构成的,因此称为继电保护装置,它能够反应电力系统中电气元件发生故障或不正常运行状

继电保护课程设计

目录 电力系统继电保护课程设计任务书 (1) 一、设计目的 (1) 二、课题选择 (1) 三、设计任务 (1) 四、整定计算 (1) 五、参考文献 (2) 输电线路三段式电流保护设计 (3) 一、摘要 (3) 二、继电保护基本任务 (3) 三、继电保护装置构成 (4) 四、继电保护装置的基本要求 (4) 五、三段式电流保护原理及接线图 (6) 六、继电保护设计 (7) 1.确定保护3在最大、最小运行方式下的等值电抗 (7) 2.相间短路的最大、最小短路电流的计算 (8) 3.整定保护1、2、3的最小保护范围计算 (8) 4.整定保护2、3的限时电流速断保护定值,并校验灵敏度 (9) 5.保护1、2、3的动作时限计算 (11) 参考文献: (12)

电力系统继电保护课程设计任务书 一、设计目的 1、巩固和加深对电力系统继电保护课程基础理论的理解。 2、对课程中某些章节的内容进行深入研究。 3、学习工程设计的基本方法。 4、学习设计型论文的写作方法。 二、课题选择 输电线路三段式电流保护设计 三、设计任务 1、设计要求 熟悉电力系统继电保护、电力系统分析等相关课程知识。 2、原理接线图 四、整定计算 ,20,3/1151Ω==G X kV E φ

,10,1032Ω=Ω=G G X X L1=L2=60km ,L3=40km, LB-C=30km,LC-D=30km, LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=300A, IC-D.Lmax=200A, ID-E.Lmax=150A, 电动机自启动系数Kss=1.5,电流继电器返回系数Kre=0.85。 最大运行方式:三台发电机及线路L1、L2、L3同时投入运行;最小运行方式:G2、L2退出运行。 五、参考文献 [1] 谷水清.电力系统继电保护(第二版)[M].北京:中国电力出版社,2013 [2] 贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3] 能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4] 方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5] 崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6] 卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7] 陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992

继电保护课程设计 实现对线路的距离保护利用短路时电压、电流同时变化的特征,比值反应故障点到保护处距离

电力系统继电保护课程设计 专业:电气工程及其自动化 班级:电气09 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2012 年 7月 7日

1 设计原始资料 1.1 具体题目 如图1.1所示系统中,发电机以发电机-变压器组方式接入系统,最大开机方式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台也可能1台运行。 参数为:E ?=, 1.1 2.1 1.2 2.215G G G G X X X X ====Ω,1.1 1.410T T X X =Ω ,0.10.430T T X X =Ω , 1.3 2.3 1.4 2.410G G G G X X X X ====Ω,1.5 1.620T T X X ==Ω, 0.50.640T T X X ==Ω,60km A B L -=,40km B C L -=,线路阻抗120.4Ωkm Z Z ==, 0 1.2km Z =Ω,线路阻抗角均为75°,m a x m a x ..300A A B L C B L I I --==,负荷功率因数角为30°; 1.2SS K =, 1.2re K =,0.85I rel K =,0.75II rel K =,变压器均装有快速差动保护。试对1、2、3、4进行距离保护的设计。 图1.1 系统网路连接图 1.2 完成内容 我们要完成的内容是实现对线路的距离保护。距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。 2 分析课题设计内容 2.1 保护配置 2.1.1 主保护配置 距离保护的主保护是距离保护Ⅰ段和距离保护Ⅱ段。 (1) 距离保护第Ⅰ段

电力系统继电保护课程设计

课程设计报告 课程名称电力系统继电保护 设计题目110kV线路距离保护的设计 设计时间2016-2017学年第一学期 专业年级电气134班 姓名王学成 学号 2013011983 提交时间 2016年12月19日 成绩 指导教师何自立许景辉 水利与建筑工程学院

第1章、概述 (2) 1.1距离保护配置 (2) 1.1.1主保护配置 (2) 1.1.2后备保护配置 (3) 1.2零序保护配置 (4) 1.2.1零序电流I段(速断)保护 (4) 1.2.2零序电流II段保护 (5) 第2章、系统分析 (5) 2.1故障分析 (5) 2.1.1故障引起原因 (5) 2.1.2故障状态及其危害 (5) 2.1.3 短路简介及类别 (6) 2.2输电线路保护主要形式 (7) (1)电流保护 (7) (2)低电压保护 (7) (3)距离保护 (7) (4)差动保护 (7) 2.3对该系统的具体分析 (8) 2.3.1对距离保护的分析 (8) 2.3.2对零序保护的分析 (8) 2.4整定计算 (8) 2.4.1距离保护的整定计算 (8) 2.4.2零序保护的整定计算 (14) 2.4.3结论 (20) 2.5原理图及动作分析 (20) 2.5.1原理图 (20) 2.5.2动作分析 (22) 第3章、总结 (22)

摘要 距离保护是以距离测量元件为基础构成的保护装置,又称阻抗保护。当系统正常运行时,保护装置安装处的电压为系统的额定电压,电流为负载电流,而发生短路故障时,其电压降低、电流增大。因此,电压和电流的比值,在正常状态下和故障状态下是有很大变化的。由于线路阻抗和距离成正比,保护安装处的电压与电流之比反映了保护安装处到短路点的阻抗,也反映了保护安装处到短路点的距离。所以可按照距离的远近来确定保护装置的动作时间,这样就能有选择地切除故障。 本设计为输电线路的距离保护,简述了输电线路距离保护的原理具体整定方法和有关注意细节,对输电网络距离保护做了详细的描述,同时介绍了距离保护的接线方式及阻抗继电器的分类,分析了系统振荡系统时各发电机电势间的相角差随时间周期性变化和短路过渡电阻影响。最后通过MATLAB建模仿真分析本设计的合理性,及是否满足要求。 关键词:距离保护;整定计算;

继电保护及课程设计_第二次作业

继电保护及课程设计_第二次作业 36. 电力系统发生故障时,继电保护装置应将故障部分切除 ,电力系统出现不正常工作时,继电保护装置一般应发出信号。 37. 继电保护的可靠性是指保护在应动作时不拒动 ,不应动作时不误动。 38. 本线路限时电流速断保护的保护范围一般不超出相邻下一线路电流速 断保护的保护范围,故只需带0.5s 延时即可保证选择性。 39. 检验电流保护灵敏系数时,最小短路电流I d.min是指在被保护范围末端,在最小运行方式下的两相短路电流。40. 为保证选择性,过电流保护的动作时限应按阶梯原则整定,越靠近电源处的保护,时限越长。 41. 电流继电器的返回系数过低,将使过电流保护的动作电流增 大,保护的灵敏系数降低。 42. 电流保护的接线系数定义为流过继电器的电流与电流互感器二次电 流之比,故两相不完全星形接线的接线系数 为 1 。 43. 中性点不接地电网发生单相接地后,将出现零序电压U0,其值为故障前相电压 值,且电网各处零序电压相等。44. 绝缘监视装置给出信号后,用依次断开线路方法查找故障线路,因此该装置适用于出线较少的情况。 45. 阻抗继电器根据比较原理的不同分为幅值比较式和相位比较式两类。 46. 当保护范围不变时,分支系数越大(小),使保护范围越小(大),导致灵敏性越低(高)。 47. 阻抗继电器的执行元件越灵敏,其精确工作电流越小。 48. 三种圆特性的阻抗继电器中,方向阻抗继电器受过渡电阻的影响最大,全阻抗继电器受过

渡电阻的影响最小。 49. 阻抗继电器受系统振荡影响的程度取决于两个因素,即保护的安装地点和阻抗继电器的特性。 50. 闭锁式高频方向保护在故障时启动发信,而正向元件动 作时停止发信,其动作跳闸的基本条件是正向元件动作且收不到闭锁信号。 51. 方向高频保护是比较线路两侧端功率方向,当满足功率方向同时指向线路条件时,方向高频保护动作。 52. 线路纵联保护载波通道的构成部件包括输电线 路、高频阻波器、耦合电容器、结合滤波器、高频电缆、保护间隙、接地刀闸和收发信机。 53. 相差高频保护是比较线路两端电流的相位,当满足电流相位同相条件时,相差高频保护动作。54. 高频保护启动发信方式有保护启 动、远方启动和手动启动。 55. 具有同步检定和无电压检定的重合闸,在线路一侧,当线路无电压时,允许该端线路的重合闸重合;而在另一侧,需检测母线电压和线路电压满足同期 条件时允许重合闸重合。 56. 在变压器的励磁涌流中,除有大量的直流分量外,还有大量的高次谐波分量,其中以二次谐波为主。 57. 对于变压器纵差动保护,在正常运行和外部故障时,流入差动继电器的电流为零(理论值)。 58.名词解释:选择性 答:选择性——是指首先由故障设备的保护切除故障,系统中非故障部分仍继续运行,以尽量缩小停电范围。当保护或断路器拒动时,才由相邻设备的保护或断路器失灵保护切除故障。 59.名词解释:速动性 答:速动性——是指保护装置应尽可能快的切除短路故障。 60.名词解释:灵敏性 答:灵敏性——是指在设备的被保护范围内发生金属性短路时,保护装置应具有的反应能力。 61.名词解释:系统最大(小)运行方式

继保整定计算课程设计报告()(1)

$ 课程设计报告 ( 2015 -- 2016 年度第 1 学期) < 名称:继电保护整定计算 院系:电气与电子工程学院 班级: 学号: 学生姓名: 指导教师:肖仕武、薛安成 \ 设计周数:两周 成绩: 日期:2016年 1 月 7 日

一、课程设计的目的与要求 1.课程设计的目的 1.1巩固《电力系统继电保护原理》课程的理论知识,掌握运用所学知识分析和解决生产实际问题的 能力。 1.2通过对国家行业颁布的有关技术规程、规范和标准学习,建立正确的设计思想,理解我国现行的 技术政策。 1.3初步掌握继电保护设计的内容、步骤和方法。 1.4提高计算、制图和编写技术文件的技能。 2.课程设计的要求 2.1理论联系实际。对书本理论知识的运用和对规程、规范的执行必须考虑到任务书所规定的实际情 况,切忌机械地搬套。 2.2独立思考。在课程设计过程中,既要尽可能参考有关资料和主动争取教师的指导,也可以在同学 之间展开讨论,但必须坚持独立思考,独自完成设计成果。 2.3认真细致。在课程设计中应养成认真细致的工作作风,克服马虎潦草不负责的弊病,为今后的工 作岗位上担当建设任务打好基础。 2.4按照任务书规定的内容和进度完成。 二、设计正文 1.某一水电站网络如图所示。 已知: (1)发电机为水轮立式机组,功率因数为、额定电压、次暂态电抗为、负序阻抗为; (2)水电站的最大发电容量为2×5000kW,最小发电容量为5000kW,正常运行方式发电容量为2×5000kW;(3)平行线路L1、L2同时运行为正常运行方式; (4)变压器的短路电压均为10%,接线方式为Yd-11,变比为。 (5)负荷自起动系数为; (6)保护动作时限级差△t =; (7)线路正序电抗每公里均为Ω,零序电抗为3倍正序电抗; 试求: (1)确定水电站发电机、变压器相间短路主保护、后备保护的配置方式; (2)确定6QF断路器的保护配置方式,计算它们的动作定值、动作时限,并进行灵敏度校验; (3)确定平行线路L1、L2的1QF、3QF相间短路主保护和后备保护,计算它们的动作定值、动作时限,并进行灵敏度校验; (4)假设平行线路L1、L2两侧配置有三相重合闸,计算三相重合闸装置的整定值。 (5)继电保护6QF的接线图及展开图。

220kV输电线路距离保护设计课程设计(论文)

辽宁工业大学 电力系统继电保护课程设计(论文)题目:220kV输电线路距离保护设计(3) 院(系):电气工程学院 专业班级:电气1 学号: 学生姓名: 指导教师:(签字) 起止时间: 2013.12.30-2014.1.10

课程设计(论文)任务及评语

续表 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 对于如今现代电网环境,对输电线路的电流电压保护构成简单,对没有特殊要求的中低压电网,都能满足保护要求。但是随着对电网质量的日益提高,灵敏度受系统运行方式的影响有时保护范围很小,再者,该保护的整定计算比较麻烦,这使得其在35KV及以上的复杂网络中很难适用,为此研究了性能更好的保护原理和方案距离保护。 本文主要设计对220kV输电线路距离保护,按照躲开下一条线路出口处短路的原则计算保护1距离保护第Ⅰ段,第Ⅱ段,第Ⅲ段的整定值和灵敏度。分析系统在最小运行方式下振荡时,保护1各段距离保护的动作情况。并且分析在具体故障点给定后,保护1的三段式距离保护的反应。最后绘制三段式距离保护的原理框图,分析其动作过程,并采用MATLAB建立简单电力系统三段式距离保护的模型,进行仿真分析。 关键词:三段式距离保护;MATLAB仿真;系统振荡;

目录 第1章绪论 (1) 1.1继电保护概述 (1) 1.2本文研究内容 (1) 第2章输电线路距离保护整定计算 (2) 2.1 距离Ι段整定计算 (2) 2.2距离Ⅱ段整定计算 (2) 2.3距离Ⅲ段整定计算 (3) 2.4系统振荡和短路过渡电阻影响分析 (4) 第3章距离保护原理图的绘制与动作过程分析 (5) 3.1距离保护原理图 (5) 3.2距离保护原理说明 (5) 第4章 MATLAB建模仿真分析 (7) 4.1距离保护的MATLAB仿真 (7) 4.2距离保护仿真波形及分析 (8) 第5章课程设计总结 (10) 参考文献 (11)

继电保护课程设计

1. 前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次110kv电网继电保护设计的任务主要包括了五大部分,运行方式的分析,电路保护的配置和整定,零序电流保护的配置和整定,距离保护的配置和整定,原理接线图及展开图。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

2. 运行方式分析 电力系统运行方式的变化,直接影响保护的性能,因此,在对继电保护进行整定计算之前,首先应该分析运行方式。需要着重说明的是,继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指网在某种连接情况下通过保护的电流值最小。 图1 110kV电网系统接线图 系统接线图如图1所示,发电机以发电机—变压器组方式接入系统,最大开机方 式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台 也可能1台运行。参数如下: 电动势:E = 115/3kv; 发电机:= = = = 5 + (15 5)/14=, = = = = 8 + (9 8)/14=; 变压器:~ = 5 + (10 5)/14=, ~ = 15 + (30 15)/14=., = = 15 + (20 15)/14=, = = 20 + (40 20)/14=; 线路:L A-B = 60km,L B-C = 40km,线路阻抗z1 = z2 = /km,z0 = /km, =60km× /km=24,=40km×/km=16; =60km×/km=72,=40km×/km=48; = = 300A; K ss = ,K re = ; 电流保护:K I rel = ,K II rel = , 距离保护:K I rel = ,K II rel = 负荷功率因数角为30,线路阻抗角均为75,变压器均装有快速差动保护。

电力系统继电保护课程设计

前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

1 所做设计要求 电网接线图 × × × ×cosφ=0.85X〃=0.129 X〃=0.132 cosφ=0.85cosφ=0.8cosφ=0.8cosφ=0.8 图示110kV 单电源环形网络:(将AB 线路长度改为45km,CD 长度改为20km ) (1)所有变压器和母线装有纵联差动保护,变压器均为Yn ,d11接线; (2)发电厂的最大发电容量为(2×25+50)MW,最小发电容量为2×25MW; (3)网络的正常运行方式为发电厂发电容量最大且闭环运行; (4)允许的最大故障切除时间为; (5)线路AC 、BC 、AB 、CD 的最大负荷电流分别为250、150、230和140A,负荷自起动系数5.1 ss K ;

继电保护原理课程设计--距离保护

继电保护原理课程设计--距离保护

1 设计原始资料 1.1具体题目 一台双绕组降压变压器的容量为25MV A ,电压比为%/38.5kA 5.22110?±,Y ,d11接线;采用BCH-2型继电器。求纵差动保护的动作电流。已知:38.5kV 外部短路的最大三相短路电流为9420A 、最小短路电流为8000A 。110kV 侧电流互感器变比为1000/5,38.5kV 侧电流互感器的变比为1500/5;可靠系数取3.1K rel =;灵敏度校验点发生三相金属性短路时,保护安装处感受到的最大残压 kV 5.17min .=k U 。试对变压器进行相关保护的设计。 1.2要完成的内容 求该变压器纵差动保护的动作电流,对该变压器进行相关保护的设计。 2设计课设的内容 2.1 设计规程 根据规程规定,变压器一般应装设下列保护: (1) 瓦斯保护。瓦斯保护是变压器内部故障的主保护,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,从油箱向油枕流动,其强烈程度随故障的严重程度不同而不同,反应这种气流与油流而动作的保护称为瓦斯保护,也叫气体保护。规程规定:对于容量为800kV A 及以上的油浸式变压器和400kV A 及以上的车间内油浸式变压器,应装设瓦斯保护。 (2) 纵差动保护或电流速断保护。对于容量为6300kV A 及以上的变压器,以及发电厂厂用变压器和并列运行的变压器,10000kV A 及以上的发电厂厂用备用变压器和单独运行的变压器,应装设纵差动保护。电流速断保护用于对于容量为10 000kV A 以下的变压器,当后备保护的动作时限大于0.5s 时,应装设电流速断保护。对2000kV A 以上的变压器,当电流速断保护的灵敏性不能满足要求时,也应装设纵差动保护。 (3) 外部相间短路和接地短路时的后备保护。除了主保护外,变压器还应装设

继电保护课程设计

继电保护课程设计

————————————————————————————————作者:————————————————————————————————日期:

电力系统继电保护原理 课程设计 班级:2008级生信1班 学号:20085097 姓名:曹学博 专业:电气工程及其自动化 指导老师:王牣 评分:A(优),B(良),C(中),D(合格),E(不合格) 项目学生自评指导老师评定 设计内容完整性 计算公式准确性 计算数据正确性 绘图质量 文档规范性 综合评定 教师签名(盖章): 日期:年月日

目录 第一节设计任务书 (1) 1、继电保护课程设计的目的 (1) 2、原始数据 (2) 2.1 基础数据 (2) 2.2 系统接线图 (3) 3、课程设计要求 (4) 3.1 需要完成的设计内容 (4) 3.2 设计文件内容 (5) 第二节馈线保护配置与整定计算 (6) 1、馈线保护配置 (6) 2、馈线保护整定计算 (6) 2.1 电流速断定值计算 (6) 2.2 阻抗I段定值计算 (6) 2.3 阻抗II段定值计算 (7) 2.4 过电流定值计算 (7) 第三节变压器保护配置与整定计算 (8) 1、变压器保护配置 (8) 2、变压器电量保护整定计算 (8) 2.1 差动速断保护 (8) 2.2 二次谐波制动的比率差动保护 (8) 2.3 三相低电压过电流保护 (9) 2.4 单相低电压过电流保护 (9) 2.5 零序过电流保护 (10) 2.6 过负荷保护 (10) 3、变压器非电量计算 (10) 3.1 瓦斯保护整定计算 (10) 3.2 主变过热整定计算 (10) 第四节并联电容补偿装置配置与整定计算 (11) 1、并联补偿装置保护配置 (11) 2、并联补偿装置整定计算 (11) 2.1 电流速断保护 (11) 2.2 差流保护 (11) 2.3 过电流保护 (12) 2.4 高次谐波过流保护 (12) 2.5 差压保护 (13) 2.6 低电压保护 (14) 2.7 过电压保护 (14) 第五节 B相馈线保护原理接线图和展开图 (15) 1、电流保护 (15) 2、阻抗保护 (16)

电力系统继电保护原理课程设计

电力系统继电保护原理课程设计 姓名:邓义茂 班级:电气1班 学号: 201028009 2013年12月

《电力系统继电保护原理课程设计》 任务书 一、课程设计的目的 课程设计是本课程的重要实践环节,安排在理论教学结束后进行。搞好课程设计,对巩固所学知识,提高实际工作能力具有重要作用。经过设计、使学生掌握电力系统继电保护的方案设计、整定计算、设备选型、资料整理查询和电气绘图等使用方法,安排在理论教学结束后进行。搞好课程设计,对巩固所学知识,提高实际工作能力具有重要作用。通过本课程设计,使学生掌握新型继电保护设计的内容,步骤和方法,提高学生编写技术文件的技能,锻炼学生独立思考,运用所学知识分析和解决生产实际问题的能力。 二、原始资料 某企业供电系统如图所示: 图1.1 某企业供电系统图 三、设计要求 1)AB段设三段式保护(速断、限时速断、过流),BC段设两段式保护(速断、 过流),CD段设过流保护; 2)计算出各保护的整定值,校验其保护范围和灵敏度系数是否符合要求,并完 成主要电气设备的型号选择。 3)画出A段和B段的保护接线原理图和展开图。 四、原始参数 1)速断可靠系数取1.2 2)限时速断可靠系数取1.1 3)过流可靠系数取1.2 4)接线系数取1 5)返回系数取0.85 6)自起动系数取1

7)线路均阻抗Km = z/ 4.0Ω 课程设计时间分为二周,合计共10个工作日,时间分配可参考如下; 参考文献: 〈1〉《电力系统继电保护和自动装置设计规范》GB50062—922; 〈2〉《电力工程设计手册》二册; 〈3〉《电力系统继电保护原理及新技术》第二版,李佑光主编,科学出版社; 〈4〉《电力系统分析》,于永源,杨绮雯,北京:中国电力出版社,2007 〈5〉《供变电工程》第二版,翁双安,北京:机械工业出版社,2012 五、设计效果评价与考核 设计成绩按学生在课程设计中的表现,对知识的掌握程度,分析问题和解决问题的能力及创新能力,完成任务的质量,课程设计成果及设计等综合评定,共分五级评定。设计成绩综合后按优秀(90- 100分),良好(80-90分),中等(70一79),及格(60~69分),不及格(60分以下)五级计分制评定。 六、备注 最终成绩按照平时表现和设计说明书为主要参考依据,最后总评以优、良、中、及格、不及格记。若发现有抄袭,取消参加考核的资格,成绩以零分记录。

电力系统继电保护课程设计---线路距离保护的设计 兰州交通大学

电力系统继电保护课程设计 题目:线路距离保护的设计 班级: 姓名: 学号: 指导教师: 设计时间:

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115=?E kV ,Ω=151G X 、Ω=102G X 、Ω=103G X ,6021==L L km 、403=L km ,50=-C B L km 、30=-D C L km 、30=-E D L km ,线路阻抗/4.0Ωkm ,2.1=Ⅰ rel K 、 15.1K ==ⅢⅡ rel rel K ,300max =-C B I A 、200max =-D C I A 、150max =-E C I A ,5.1=ss K ,85.0=re K 试对线路L1、L2、L3进行距离保护的设计。 1.2 要完成的内容 本文要完成的内容是对线路的距离保护原理和计算原则的简述,并对线路各参数进行分析及对线路L1、L2、L3进行距离保护的具体整定计算并注意有关细节。距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。 2 分析要设计的课题内容 2.1 设计规程 根据继电保护在电力系统中所担负的任务,一般情况下,对动作于跳闸的继电保护在技术上有四条基本要求:选择性、速动性、灵敏性、可靠性。这几个之间,紧密联系,既矛盾又统一,必须根据具体电力系统运行的主要矛盾和矛盾的主要方面,配置、配合、整定每个电力原件的继电保护。充分发挥和利用继电保护的科学性、工程技术性,使继电保护为提高电力系统运行的安全性、稳定性和经济性发挥最大效能。 (1)可靠性 可靠性是指保护该动作时应动作,不该动作时不动作。为保证可靠性,宜选用性

继电保护及课程设计-第一次作业

继电保护及课程设计 四、主观题(共26道小题) 32.继电保护的选择性是指继电保护动作时,只能把故障元件从系统中切除无故障部分继续运行。 33.电力系统切除故障的时间包括时间和的时间。 参考答案:电力系统切除故障的时间包括继电保护动作时间和断路器跳闸的时间。 34.继电保护装置一般是由、和组成。 参考答案: 继电保护装置一般是由测量比较元件、逻辑判断元件和执行输出元件组成。 35. 电流速断保护的动作电流按大于本线路末端整定,其灵敏性通常 用表示。 参考答案: 电流速断保护的动作电流按大于本线路末端最大短路电流整定,其灵敏性通常用保护范围的大小表示。 36.中性点直接接地电网发生接地短路时,零序电流的大小和分布主要取决于变压器接地中性点 的和。 参考答案:中性点直接接地电网发生接地短路时,零序电流的大小和分布主要取决于变压器接地中性点 的数目和分布。 37.中性点不接地电网发生单相接地后,可继续运行,故保护一般作用 于。 参考答案:中性点不接地电网发生单相接地后,可继续运行一段时间,故保护一般作用于发信号。 38.距离保护是反应的距离,并根据距离的远近确定 的一种保护。 参考答案:距离保护是反应故障点到保护安装处的距离,并根据距离的远近确定动作时间的一种保护。 39. I、II、III段阻抗元件中,段元件可不考虑受振荡的影响,其原因 是。 参考答案:I、II、III段阻抗元件中, III 段元件可不考虑受振荡的影响,其原因是靠时间整定躲过振荡周期。 40.纵联保护的通道主要有以下几种类 型、、和。参考答案: 纵联保护的通道主要有以下几种类型电力线载波、微波、光纤和导引线。 41.高频保护通道传送的信号按其作用不同,可分为信号、信号、

继电保护整定计算课程设计

名称:继电保护定值计算院系:电气与电子工程学院班级: 学号: 学生姓名: 指导教师: 设计周数:2周 成绩: 日期:年月日

一、课程设计(综合实验)的目的与要求 1.课程设计的目的 1.1巩固《电力系统继电保护原理》课程的理论知识,掌握运用所学知识分析和解决生产实际问 题的能力。 1.2通过对国家行业颁布的有关技术规程、规范和标准学习,建立正确的设计思想,理解我国现 行的技术政策。 1.3初步掌握继电保护设计的内容、步骤和方法。 1.4提高计算、制图和编写技术文件的技能。 2.对课程设计的要求 1.1理论联系实际。对书本理论知识的运用和对规程、规范的执行必须考虑到任务书所规定的实 际情况,切忌机械地搬套。 1.2独立思考。在课程设计过程中,既要尽可能参考有关资料和主动争取教师的指导,也可以在 同学之间展开讨论,但必须坚持独立思考,独自完成设计成果。 1.3认真细致。在课程设计中应养成认真细致的工作作风,克服马虎潦草不负责的弊病,为今后 的工作岗位上担当建设任务打好基础。

二、设计(实验)正文 1. 某一水电站网络如图4所示。 已知: a. 发电机为水轮立式机组,功率因数为0.8、额定电压6.3kV 、次暂态电抗为0.2,负序阻抗为0.24; b. 水电站的最大发电容量为2×5000kW ,最小发电容量为5000kW ,正常运行方式发电容量为2×5000kW ; c. 平行线路L1、L2同时运行为正常运行方式; d. 变压器的短路电压均为10%,接线方式为Yd-11,变比为38.5/6.3kV 。 e. 负荷自起动系数为1.3 ; f. 保护动作是限级差△t = 0.5s ; g. 线路正序电抗每公里均为 0.4 Ω,零序电抗为3倍正序电抗; 试求:(注:由于电压互感器和电流互感器的变比未知,计算结果均为一次值) a. 确定水电站发电机、变压器相间短路主保护、后备保护的配置方式; (一) 对于水电站发电机,相间短路保护的主保护采用纵联差动保护,后备保护应配置低电压启动的过 电流保护、复合电压启动的过电流保护、负序电流保护和阻抗保护。发电机主保护采用比率制动式纵联差动保护,整定计算如下: 1) 计算发电机额定电流 一次侧额定电流()kA U P I GN GN GN 573.08 .03.635cos 3=??= =? 2) 确定最小动作电流 ()()()A 9.171~3.57A 573.03.0~1.03.0~1.0min .=?==k I I G N set 取0.2倍额定电流,动作值为114.6A 3) 制动特性拐点电流 ()A I I G N res 4.4585738.08.0min .=?== 4) 确定制动特性曲线斜率K 机端保护区外三相短路时流过发电机的最大短路电流 ()()kA U P X I GN GN d k 864.28 .03.635 2.01cos 31"3max .=???=?= ? 差动回路最大不平衡电流() ()A I K K K I k T st unp unb 4.28628641.05.00.23max .max .=???==

继电保护课程设计报告--距离保护

继电保护课程设计报告一距离保护

继电保护原理课程设计报告 专业: ____________________ 班级: __________________ 姓名: ____________________ 学号: ____________________ 指导教师:

兰州交通大学自动化与电气工程学院 201年月曰

继电保护原理课程设计报告 1设计原始资料 1.1具体题目 如下图所示网络,系统参数为: E? =115/(3 kV, X GI=15C1、X G2=10Q . X(;3=10Q,Li=L2=60kiiix L3=40km, LB.c=50km, Lc.D=30km, Li).E=20km,线路阻抗0.4Q/km, =K "= Kj^O.85, lB- C.max=300A> IC- D.max=200A^ Il)- E.inax=150A, KsS=X.5> Kre=1.2o B G1 G2 L3 G3 图1线路网络图 试对线路LI、L2、L3进行距离保护的设计(说明:可让不同的学生做1、2、3、4、5、6、8、9处一至二处保护设计)。 1.2要完成的内容 对保护3和保护5进行距离保护设计。其中包括距离保护I段、II段和in段的整定计算,及设备选型。 2设计分析 2.1设计步骤 其中包括四个步,第一步:保护3和保护5的I段的整定计算及灵敏度校验; 第二步:保护3和保护5的II段的整定计算及灵敏度的校验;第三部:保护3和保护5的m段的整定计算及灵敏度的校验;第四步:继电保护设备的选择和原理的分析。

继电保护原理课程设计报告 2. 2本设计的保护配置 距离保护在作用上分为主保护和后备保护,主保护用于对线路进行保护主要作用的装置当线路故障时,主保护首先动作。当主保护由于故障拒动时就需要后备保护对线路起保护作用,后备保护用于对线路起后备保障作用。线路主保护有距离保护的I段和II段保护,线路的后备是距离保护m段保护。后备保护又分为近后备保护和远后备保护。 2. 2.1主保护配置 距离保护的主保护是距离保护I段和距离保护II段。 (1)距离保护I段保护 距离保护的第I段是瞬时动作的,它只反映本线路的故障,下级线路出口发生故障时,应可靠不动作。以保护3为例,其启动阻抗的整定值必须躲开本线路末端短路的测量阻抗来整定。同时,在考虑到阻抗继电器和电流、电压互感器的误差后,需要引入可靠系数Kk (一般取0.8?0.85)以满足要求。 如此整定后,距离I段就只能保护本线路全长的80%?85%,无法保证保护线路全长,这是一个缺点。为了切除本线路末端15%?20%范围以内的故障,就需设置距离保护第II段。 (2)距离保护的II段保护 距离段整定值的选择应使其不超出相邻下级保护I段的保护范围,同时带有高出一个的时限,以保证选择性。考虑到可能引起误差,需引入可靠系数K;:。距离I段与II段配合工作构成本线路的主保护。 2. 2. 2后备保护配置 距离保护的后备保护是距离保护的ni段保护,其可作为近后备保护也可作为远后备保护。 距离保护的m段保护当作为相邻线路保护装置和断路器拒绝动作时的后备保护时,即为远后备保护;当作为本线路I、u段的后备保护时,即为近后备保护。其作用是保证线路保护的完整性,防止出现线路全长没有保护到的现象。 3等效电路的建立及阻抗的计算 3.1等效电路的建立 3.1.1保护3等效电路建立 2

相关主题
文本预览
相关文档 最新文档