当前位置:文档之家› 基于Matlab的钛合金TC4搅拌摩擦焊温度场数值模型

基于Matlab的钛合金TC4搅拌摩擦焊温度场数值模型

基于Matlab的钛合金TC4搅拌摩擦焊温度场数值模型
基于Matlab的钛合金TC4搅拌摩擦焊温度场数值模型

搅拌摩擦焊热源分析

搅拌摩擦焊接(FSW)是由英国焊接研究所TwI 针对铝合金、镁合金等轻型有色金属开发的一种高效率、高质量的“绿色”焊接技术,被誉为“继激光焊后又一个革命性的焊接技术”。该方法的问世,使得以往采用传统熔焊方法无法连接的材料通过搅拌摩擦焊技术实现高质量的焊接。目前,搅拌摩擦焊技术已在飞机制造、机车车辆和船舶制造等领域得到广泛的应用。搅拌摩擦焊过程中产生了大量的热,这些热量主要来源于搅拌头与焊件材料接合面间的摩擦热、搅拌头附近材料的塑性变形产生的热,其中摩擦热是焊接产热的主体。这些热量对焊缝及其附近的母材施以热循环作用,对接头性能和焊接质量起关键作用。因此,研究搅拌摩擦焊的产热机制,建立热源解析的数学模型,可以从理论上预测材料在一定的焊接参数下所经历的热过程,对优化焊接参数、获得高质量的接头具有重要作用 [1]. 搅拌摩擦焊过程中,输入热量的大小和分布直接影响到焊接质量。热输入主要来自3个方面:轴肩与焊接材料表面的摩擦热;搅拌针与焊件接触面处的摩擦热;搅拌针附近焊缝金属的塑性变形热。。试验中发现,若焊接参数选择不当,会造成焊接过程中的热输入不合理,将直接影响到焊缝的表面形貌和力学性能。所以,研究搅拌摩擦焊接过程中温度场的变化规律对研究焊缝金属流动、分析焊接应力及变形、深入了解搅拌摩擦焊机理、制定合理焊接工艺具有十分重要的现实意义[2]。 3.Sato 、Tang 、Kwon 、Hashimoto 、Arbegast 和苏晓莉等人研究了焊接速度和搅拌头转速对焊接过程温度场的影响,得出以下结论: (1)当焊接过程达到稳定状态,焊核区峰值温度低于材料的熔点,一般介于被焊材料熔点的60%一90%之间,但不排除非稳态下局部熔化的产生。 (2)焊接过程温度场在焊缝前进侧和后退侧是不对称分布的,前进侧温度略微高于后退侧的。 (3)峰值温度随着搅拌头转速的提高而上升。随着焊接速度的提高而略微降低。当焊接过程温度较低时。峰值温度对搅拌头转速的变化比较敏感,略微挺高搅拌头转速峰值温度就会有很大的上升。而当焊接过程温度较高时。提高搅拌头转速时峰值温度的影响相对较小。 (4)峰值温度随着转速/焊速比的提高而上升。 另外,轴间压力、搅拌头形状和倾角、时间尺寸和性能等许多因素都可以对焊接温度场造成影响。 1 摩擦搅拌焊接过程温度测量试验 1 l 试验材料与设备 试验材料选用传统熔化焊方法难以焊接的2024-T4硬铝合金板,其化学成分如表1。 1.2试验方法与过程 焊接试验中所用2024铝合金试件尺寸为250mm ×50mm ×5mm 板。由于本实验采用的焊接接头主要是对接的形式,所以每次焊接前需要将两个试件并排用夹具表1 2024 铝台金的化学成分(质量分数) %

交通流中的nasch模型及matlab代码元胞自动机

元胞自动机NaSch模型及其MATLAB代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: ●模型参数取值:Lroad=1000,p=0.3,Vmax=5。 ●边界条件:周期性边界。 ●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的 结果。 ●基本图(流量-密度关系):需整个密度范围内的。 ●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画 500个时间步即可)。 ●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思 路。 ●流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 ●在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 ●时间、空间和车辆速度都被整数离散化。

● 道路被划分为等距离的离散的格子,即元胞。 ● 每个元胞或者是空的,或者被一辆车所占据。 ● 车辆的速度可以在(0~Vmax )之间取值。 2、NaSch 模型运行规则 在时刻t 到时刻t+1的过程中按照下面的规则进行更新: (1)加速:),1min(max v v v n n +→ 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:),min(n n n d v v → 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化: 以随机概率p 进行慢化,令:)0, 1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为, 又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。 其中n v ,n x 分别表示第n 辆车位置和速度;l (l ≥1)为车辆长度; 11--=+n n n x x d 表示n 车和前车n+1之间空的元胞数;p 表示随机慢化概率;max v 为最大速度。 3、NaSch 模型实例 根据题目要求,模型参数取值:L=1000,p=0.3,Vmax=5,用matlab 软件进行编程,扔掉前11000个时间步,统计了之后500个时间步数据,得到如下基本图和时空图。 3.1程序简介 初始化:在路段上,随机分配200个车辆,且随机速度为1-5之间。 图3.1.1是程序的运行图,图3.1.2中,白色表示有车,黑色是元胞。

摩擦焊

摩擦焊原理简介

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在 氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力 的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~ 300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高 的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性 变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材 也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心 圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升 高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金 属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化 膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速 度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分 布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。 在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方 首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段, 该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值 的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表 面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所 降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。 这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面 的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功 率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点 呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升 高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械 挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑 性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。 随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气 隔开。 (3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围 从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里

matlab绘制温度场

通过在室内的某些位置布置适当的节点,采集回来室内的温湿度以及空气质量等实际参数。首先对室内空间建模,用一个无限细化的三维矩阵来模拟出室内的温度分布情况,针对采集回来的数据,采用插值法和适当次数的拟合函数的拟合,得出三维矩阵的实际值的分布,最后结合matlab软件绘制出计算出的温度场的三维图像。 一.数据的采集与处理 因为影响人的舒适感的温度层只是室内的某一高度范围内的温度,而温度传感器虽然是布置在一个平面内,但是采用插值法和拟合函数法是可以大致再现出影响人的舒适感的温度层的温度变化的。同时,在构建出的三维模型中,用第三维表示传感器层面的温度。 在传感器层面,传感器分布矩阵如下: X=【7.5 36.5 65.5】(模型内单位为cm) Y=【5.5 32.5 59.5】 Z=【z1 z2 z3; z4 z5 z6; z7 z8 z9;】(传感器采集到的实时参数) 采用meshgrid(xi,yi,zi,…)产生网格矩阵; 首先按照人的最小温度分辨值,将室内的分布矩阵按照同样的比例细化,均分,使取值点在坐标一定程度上也是接近于连续变化的,从而才能最大程度上使处理数据得来的分布值按最小分辨值连续变化! 根据人体散热量计算公式:C=hc(tb-Ta) 其中hc为对流交换系数; 结合Gagge教授提出的TSENS热感觉指标可以计算出不同环境下人的对环境温度变化时人体温度感知分辨率,作为插值法的一个参考量,能使绘制出的温度场更加的符合人体的温度变化模式。 例如按照10cm的均差产生网格矩阵(实际上人对温度的分辨率是远远10cm大于这个值的,但是那样产生的网格矩阵也是异常庞大的,例如以0.5cm为例,那么就可以获得116*108=12528个元素,为方便说明现已10cm为例): [xi yi]=meshgrid(7.5:10:65.5,5.5:10:59.5) xi = 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000

西安交通大学——温度场数值模拟(matlab)

温度场模拟matlab代码: clear,clc,clf L1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子 T0=500;Tw=100; % 初始和稳态温度 a=0.05; % 导温系数 tmax=600;dt=0.2; % 时间限10min和时间步长0.2s dx=L1/(M-1);dy=L2/(N-1); M1=a*dt/(dx^2);M2=a*dt/(dy^2); T=T0*ones(M,N); T1=T0*ones(M,N); t=0;l=0;k=0; Tc=zeros(1,600);% 中心点温度,每一秒采集一个点 for i=1:9 for j=1:9 if(i==1|i==9|j==1|j==9) T(i,j)=Tw;% 边界点温度为100℃ else T(i,j)=T0; end end end if(2*M1+2*M2<=1) % 判断是否满足稳定性条件 while(t

end i=1:9;j=1:9; [x,y]=meshgrid(i); figure(1); subplot(1,2,1); mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight; xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2); [C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square; xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600; plot(xx,Tc,'k-','linewidth',2) xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18) else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end 实验结果: 时间/s 温度/℃ 中心点的冷却曲线

摩擦焊工艺

1.接头设计 1)接头设计原则 (1)对旋转式摩擦焊,至少有一个圆形截面。 (2)为了夹持方便、牢固,保证焊接过程不失稳,应尽量避免设计薄管、薄板接头。 (3)一般倾斜接头应与中心线成30°~45°的斜面。 (4)对锻压温度或热导率相差较大的材料,为了使两个零件的锻压和顶锻相对平衡,应调整界面的相对尺寸。 (5)对大截面接头,为了降低摩擦加热时的扭矩和功率峰值,采用端面导角的办法可使焊接时接触面积逐渐增加。 (6)如要限制飞边流出(如不能切除飞或不允许飞边暴露时),应预留飞边槽。 (7)对于棒-棒、和棒-板接头,中心部位材料被挤出形成飞边时,要消耗更多的能量,而焊缝中心部位对扭矩和弯曲应力的承担又很少,所 以,如果工作条件允许,可将一个或两个零件加工成具有中心孔洞, 这样既可用较小功率的焊机,又可提高生产率。 (8)采用中心部位突起的接头,见图1,可有效地避免中心未焊合。 (9)摩擦面要避免采用渗碳、渗氮等。 (10)为了防止由于轴向力(摩擦力、顶锻力)引起的滑退,通常在工件后面设置挡块。 (11)工件伸出夹头的尺寸要适当,被焊工件应尽可能有相同的伸出长度。

图1 接头表面突起设计标准 2)摩擦焊接头的形式 表1是摩擦焊接头的基本形式。 表1 摩擦焊接头的基本形式 2. 连续驱动摩擦焊的焊接参数 1)主要的焊接参数 可以控制的主要焊接参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻延时、顶锻时间、顶锻力、顶锻变形量。其中,摩擦变形量和顶锻变形量(总和为缩短量)是其它参数的综合反映。

(1)转速和摩擦压力 转速和摩擦压力直接影响摩擦扭矩、摩擦加热功率、接头温度场、塑性层厚度以及摩擦变形速度等。 工件直径一定时,转速代表摩擦速度。实心圆截面工件摩擦界面上的平均摩擦速度是距圆心为2/3半径处的摩擦线速度。稳定摩擦扭矩与平均摩擦速度、摩擦压力的关系见图2。摩擦变形速度与平均摩擦速度、摩擦压力的关系见图3。转速对热影响区和飞边形状的影响见图4。 图2 摩擦扭矩与平均摩擦速度、摩擦压力的关系曲线 (低碳钢管φ19mm×3.15mm)

实验一 用MATLAB处理系统数学模型

实验一用MATLAB处理系统数学模型 一、实验原理 表述线性定常系统的数学模型主要有微分方程、传递函数、动态结构图等.求拉氏变换可用函数laplace(ft,t,s),求拉式反变换可用函数illaplace(Fs,s,t);有关多项式计算的函数主要有roots(p),ploy(r),conv(p,q),ployval(n,s);求解微分方程可采用指令 s=dslove(‘a_1’,’a_2’,’···,’a_n’);建立传递函数时,将传递函数的分子、分母多项式的系数写成两个向量,然后用tf()函数来给出,还可以建立零、极点形式的传递函数,采用的函数为zpk(z,p,k);可用函数sys=series(sys1,sys2)来实现串联,用 sys=parallel(sys1,sys2)来实现并联,可用函数sys=feedback(sys1,sys2,sign)来实现系统的反馈连接,其中sign用来定义反馈形式,如果为正反馈,则sign=+1,如果为负反馈,则sign=-1。 二、实验目的 通过MATLAB软件对微分方程、传递函数和动态结构图等进行处理,观察并分析实验结果。 三、实验环境 MATLAB2012b 四、实验步骤 1、拉氏变换 syms s t; ft=t^2+2*t+2; st=laplace(ft,t,s) 2、拉式反变换 syms s t; Fs=(s+6)/(s^2+4*s+3)/(s+2); ft=ilaplace(Fs,s,t) 3、多项式求根 p=[1 3 0 4]; r=roots(p) p=poly(r) 4、多项式相乘 p=[ 3 2 1 ];q=[ 1 4];

摩擦焊知识

摩擦焊 ?摩擦焊原理与分类 ?惯性摩擦焊 ?搅拌摩擦焊 ?摩擦焊设备 定义:摩擦焊是利用焊件相对摩擦运动产生的热量来实现材料可靠连接的一种压力焊方法。其焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及其附近温度升高并达到热塑性状态,随着顶锻力的作用界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头 一、摩擦焊原理及分类 ?1.1 摩擦焊的分类 ?摩擦焊的方法很多,一般根据焊件的相对运动和工艺特点进行分类,主要方法如图1所示。在实 际生产中,连续驱动摩擦焊、相位控制摩擦焊、惯性摩擦焊和搅拌摩擦焊应用的比较普遍。 ?通常所说的摩擦焊主要是指连续驱动摩擦焊、相位控制摩擦焊、惯性摩擦焊和轨道摩擦焊,统称 为传统摩擦焊,它们的共同特点是靠两个待焊件之间的相对摩擦运动产生热能。而搅拌摩擦焊、嵌入摩擦焊、第三体摩擦焊和摩擦堆焊,是靠搅拌头与待焊件之间的相对摩擦运动产生热量而实现焊接。 1.2 摩擦焊原理 ?同种材质焊接时,最初界面接触点上产生犁削-粘合现象。由于单位压力很大,粘合区增多。继续 摩擦使这些粘合点产生剪切撕裂,金属从一个表面迁移到另一个表面。界面上的犁削-粘合-撕裂过程进行时,摩擦力矩增加时界面温度增高。当整个界面上形成一个连续塑性状态薄层后,摩擦力矩降低到一最小值。界面金属成为塑性状态并在压力作用下不断被挤出形成飞边,工件轴向长度也不断缩短 ?异种金属的机理比较复杂,除了犁削-粘合-剪切撕裂无力现象外,金属的物理与力学性能、相互 间固溶度及金属间化和物等,在结合机理中都会起作用,焊接时由于机械混合和扩散作用,在结合面附近很窄的区域内有可能发生一定程度的合金化,这一薄层的性能会对整个接头的性能有重要影响。机械混合和相互镶嵌对结合也会有一定作用。这种复杂性使得异种金属的摩擦焊接性很难预料。 1.2.1.连续驱动摩擦焊1.2.2 惯性摩擦焊1.2.3 相位摩擦焊1.2.4 径向摩擦焊1.2.5 摩擦堆焊1.2.6 线性摩擦焊1.2.7 搅拌摩擦焊 二、连续驱动摩擦焊 ?2.1 连续驱动摩擦焊基本原理 ? 2.1.1 焊接过程 ?连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后, 位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过

搅拌摩擦焊预备焊接工艺规程

Location: pWPS No. : 焊接方法: 坡口准备和清理: Welding process : preparation and cleaning : 接头类型: 焊接设备: Joint type : Welding equipment : 母材规格(㎜): 夹紧装置: Parent metal size(㎜): Clamping arrangement : 母材质保书: 焊接位置: Base metal specification : Welding positions : 搅拌头材料 : 焊工姓名: Tool Material: Welder , s name : Preheat temperature(℃): Other information : 预热维护温度(℃) : 基值电流/峰值电压: Preheat maintenance temperature (℃) : Base current/Peak voltage : 层间温度(℃): 脉冲频率(Hz): Interpass temperature(℃): Pulse frequency(Hz): 焊前热处理: 脉冲时间(ms): Pre-weld heat treatment : Pulse time(ms): 焊后热处理: 弧长/微调: Post-weld heat treatment : Arc length/Fine adjust : 时间、温度、方法: 摆动(焊道的最大宽度)(㎜): T im e 、tem perature 、m ethod : W e a v i n g (M a x i m u m w i d t h o f r u n ) (㎜): 加热和冷却速度(℃/h): 振动(振幅、频率、停留时间): Heating and cooling rates(℃/h): O s c i l l a t i o n (Am p l i t u d e , f r e q u e n cy , d w e l l t i m e ): 制造商: Manufacture :

搅拌摩擦焊

目录 1绪论 (2) 2搅拌头的设计 (4) 2.1搅拌头材料的选择 (4) 2.2搅拌头结构尺寸设计 (5) 2.2.1轴肩 (5) 2.2.1搅拌针 (6) 3搅拌头的具体设计 (7) 3.1搅拌头的材料选择 (7) 3.2轴肩及搅拌针的具体设计尺寸 (7) 3.3轴肩及搅拌针的几何形状设计 (8) 3.3.1设计原理 (8) 3.3.2形状设计 (9) 参考文献 (10)

1绪论 搅拌摩擦焊( Friction Stir Welding,简称 FSW) 是由英国焊接研究所(The Welding Institute,简称 TWI)于1991年研究发明的一种先进的固相连接技术,被认为是自激光焊接问世以来最引人注目和最具潜力的连接技术[1]。其焊接工作原理如图1-1 所示,高速旋转的搅拌头扎入工件后沿焊接方向运动,在搅拌头与工件接触部位产生摩擦热,使其周围金属形成塑性软化层,软化金属在搅拌头的旋转作用下填充后方空腔并在轴肩与搅拌针的搅拌及挤压作用下实现材料连接。 图1.1 搅拌摩擦焊工作原理 FSW与弧焊、激光焊、电子束焊、钎焊和扩散连接等传统焊接方法相比,FSW具有高效低耗、焊接温度低、接头残余应力小、焊接工件变形小、环境友好等特点,特别在大规格薄板焊接中是其他焊接方法远不可相比的。经过20多年的发展,搅拌摩擦焊已经从技术研究迈向高层次的工程化和工业化应用阶段。被焊材料也已从铝合金逐渐扩展到镁合金、铅合金、铜合金、钢、钛合金以及复合材料等。目前,搅拌摩擦焊设备的制造和产品的加工在国内外已经成为一类高技术新兴产业。搅拌摩擦焊不仅具备普通摩擦焊技术的优点,由于搅拌头的灵活性还可以适应不同接头形式和位置的焊接。由于焊接过程中的热量仅仅能使被焊金属达到塑性状态,故焊接过程焊件的变形量小,焊接无需添料,焊接过程绿色环保、耗材少。应用方面,因为搅拌摩擦焊焊接过程操作简便,焊接缺陷少接头性能好,自动化程度高且生产周期短,现已被广泛用于造船业、车辆制造、飞机制造、航天制造等工业领域。

用matlab实现碰撞模型程序代码

用m a t l a b实现碰撞模型程序代码 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

c l c; clear; fill([6,7,7,6],[5,5,0,0],[0,0.5,0]);%右边竖条的填充 holdon;%保持当前图形及轴系的所有特性 fill([2,6,6,2],[3,3,0,0],[0,0.5,0]);%左边竖条的填充 holdon;%保持当前图形及轴系的所有特性 t1=0:pi/60:pi; plot(4-2*sin(t1-pi/2),5-2*cos(t1-pi/2));%绘制中间的凹弧图形gridon;%添加网格线 axis([0,9,0,9]);%定义坐标轴的比例% axis('off');%关闭所有轴标注,标记,背景 fill([1,2,2,1],[5,5,0,0],[0,0.5,0]);%中间长方形的填充 holdon;%保持当前图形及轴系的所有特性 title('碰撞');%定义图题 x0=6; y0=5; head1=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marke rsize',30); head2=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marke rsize',50);%设置小球颜色,大小,线条的擦拭方式 t=0;%设置小球的初始值 dt=0.001;%设置运动周期 t1=0;%设置大球的初始值 dt1=0.001; while1%条件表达式 t=t+dt; x1=9-1*t; y1=5; x3=6; y3=5; ift>0 x2=6; y2=5;%设置小球的运动轨迹 end ift>2.8 t=t+dt; a=sin(t-3); x1=6.1; y1=5.1; x3=4-2*sin(1.5*a); y3=5-2*cos(1.5*a);%设置大球的运动轨迹 end

摩擦焊原理简介

连续驱动摩擦焊基本原理 1.焊接过程 连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。 对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。 (1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加

热功率显著增大的b点止。摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。 在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方首先开始。 (2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功率也迅速降低到稳定值d点。因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。高温塑性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气隔开。 (3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里的e点也是焊机主轴开始停车的时间点(可称为e′点),也是顶锻压力开始上升的点(图10的?点)以及顶锻变形量的开始点。在稳定摩擦阶段中,工件摩擦表面的温度继续升高,并达到1300℃左右。这时金属的粘结现象减少,分子作用现

飞机碰撞模型

飞机碰撞模型 摘要 第六架在边长为160km的正方形区域内以的飞行角从坐标为(0,0)的点出发,在飞行过程中不与其它五架飞机发生碰撞,即在该区域内与其它任意飞机的距离大于8km,就要不断调整该飞机的飞行角度,使其任意时刻与其他飞机的距离大于8km,利用空间中点的距离定义,计算任意时刻该飞机与其他飞机的距离,找到调整角度的最小值为。 1、问题重述 在约10000km高空的某边长160km的正方形区域内,有5架飞机均以800km/h的速度作水平飞行,不碰撞的标准为在该区域内任意两架飞机的距离大于8km。现有5架飞机在区域内飞行且它们不会碰撞,其初始坐标和飞行方向由下表给出: 现有第6架飞机要进入该区域,坐标为(0,0),飞行角为,如果其与内部的5架飞机发生碰撞,就需要调整其飞行角度,请建立优化模型,确定其与内部5架飞机不碰撞的最小调整角。 2、基本假设 1、五架飞机在规定正方形区域飞行中不随意改变路线; 2、飞机在飞行中不考虑其他未知因素; 3、符号说明 :正方形区域的边长; :第i架飞机飞行的方向角度; :第六架飞机飞行过程中的调整角度; :第架、第架飞机的距离; :第架飞机在区域内飞行的路线长度; :第架飞机的飞行速度; :第架飞机在区域内的飞行时间; :第i架飞机的横坐标; :第i架飞机的纵坐标; 4、模型的建立与求解 1、模型的建立 先根据五架飞机起始点与终点坐标,在规定的网格区域内画出它们的飞行路线,再根据给出的区域长度与各架飞机飞行速度,计算出各架飞机在区域内的飞行时间, 再根据计算得出的时间,得出时刻各架飞机的坐标,求出在该时刻第六架飞机与其他五架飞机的距离 即 当<8时,此时就需要调整第六架飞机的飞行角度,使其与另外五架飞机

搅拌摩擦焊特点及应用

搅拌摩擦焊工艺特点及应用 火巧英胡伟 摘要: 本文主要讲述了搅拌摩擦焊的基本原理、工艺特点以及目前搅拌摩擦焊在铝合金车体上的应用。并对搅拌摩擦焊与弧焊工艺性进行对比分析,简要阐述了搅拌摩擦焊的发展趋势。 关键词: 搅拌摩擦焊; 基本原理; 金相;工艺 Friction stir welding characteristics and application Abstract :This paper describes the basic principles of friction stir welding, process characteristics and the application of FSW for the production of aluminium alloy carbody . And conducts a comparative analysis between friction stir welding and arc welding process .And has a brief description of the development trend of friction stir welding Keyword:FSW basic principles Metallographic Process 0 搅拌摩擦焊概述 搅拌摩擦焊(简称FSW)是一个涉及温度、力学、冶金及其相互作用的高度复杂过程,此过程中以摩擦界面处材料的塑性变形为主,界面处塑性金属流动的产生以及流动行为将会影响到热源的产生以及界面的扩散与动态回复再结晶,进而影响到焊接接头的质量。塑性金属层是否连续、完整和牢固地覆盖于摩擦界面,对能否形成无缺陷、优质的焊接接头具有重要影响。因此,研究搅拌摩擦焊工艺特点非常重要。通过对摩擦焊塑性连接工艺的研究,建立焊接参数对塑性流动的影响规律,对于确定焊接参数、优化焊接工艺、控制焊缝接头的组织和性能,进而提高焊接质量具有重要的实用价值。 1 搅拌摩擦焊工艺特点 搅拌摩擦焊的焊接过程如图1所示。搅拌针 伸进材料内部高速旋转进行摩擦和搅拌,搅拌头 的肩部与工件表面摩擦生热,并防止塑性状态材 料的溢出,同时可清除表面氧化膜的作用。搅拌 头高速旋转与工件间发生搅拌摩擦,利用摩擦所 产生的热,使工件达到热塑性状态,此时,搅拌 头沿着焊板进行接缝运动,由此形成了搅拌摩擦 焊的焊缝。图1 搅拌摩擦焊焊接示意图

用matlab实现碰撞模型程序代码

clc; clear; fill([6,7,7,6],[5,5,0,0],[0,0.5,0]);%右边竖条的填充 hold on; %保持当前图形及轴系的所有特性 fill([2,6,6,2],[3,3,0,0],[0,0.5,0]);%左边竖条的填充 hold on;% 保持当前图形及轴系的所有特性 t1=0:pi/60:pi; plot(4-2*sin(t1-pi/2),5-2*cos(t1-pi/2));%绘制中间的凹弧图形 grid on;%添加网格线 axis([0,9,0,9]);%定义坐标轴的比例% axis('off');%关闭所有轴标注,标记,背景 fill([1,2,2,1],[5,5,0,0],[0,0.5,0]);%中间长方形的填充 hold on;% 保持当前图形及轴系的所有特性 title('碰撞');%定义图题 x0=6; y0=5; head1=line(x0,y0,'color','r','linestyle','.','erasemode','xor','markersize',30); head2=line(x0,y0,'color','r','linestyle','.','erasemode','xor','markersize',50); %设置小球颜色,大小,线条的擦拭方式 t=0;%设置小球的初始值 dt=0.001;%设置运动周期 t1=0;%设置大球的初始值 dt1=0.001; while 1%条件表达式 t=t+dt; x1=9-1*t; y1=5; x3=6; y3=5; if t>0 x2=6; y2=5;%设置小球的运动轨迹 end if t>2.8 t=t+dt; a=sin(t-3); x1=6.1; y1=5.1; x3=4-2*sin(1.5*a); y3=5-2*cos(1.5*a);%设置大球的运动轨迹

MATLAB 画等温线

测量到不同坐标点的高度值,如何用matlab画三维图 附上部分数据: A=[-210.6627 -33391.1192 5.0273 -221.3052 -33387.7415 4.5969 -210.9391 -33393.0068 5.5647 -221.8901 -33390.7396 5.0077 -211.384 -33394.7093 5.6505 -222.6117 -33392.778 5.0554 -212.7074 -33397.5459 5.7381 -225.8973 -33397.5869 5.5587]; 解:代码在matlab2009a版以上均可运行。 A=[-210.6627 -33391.1192 5.0273 -221.3052 -33387.7415 4.5969 -210.9391 -33393.0068 5.5647 -221.8901 -33390.7396 5.0077 -211.384 -33394.7093 5.6505 -222.6117 -33392.778 5.0554 -212.7074 -33397.5459 5.7381 -225.8973 -33397.5869 5.5587]; xData = A(:,1); yData = A(:,2); zData = A(:,3); fitresult = fit( [xData, yData], zData, 'linearinterp'); figure( 'Name', '三维图' ); plot( fitresult, [xData, yData], zData ); xlabel( 'x' ); ylabel( 'y' ); zlabel( 'z' ); grid on view( -53, 50 );

基于MATLAB的地震正演模型实现[1]

基于MATLAB的地震正演模型实现 贾跃玮 (中国地质大学(北京) 北京100083) 摘 要 人工合成地震正演模型是进行三维模型计算的基础。针对地震勘探的原理,本文运用MATLAB强大数学计算和图像可视化功能,对一个三层介质模型制作了人工合成地震记录。文章首先说明了地震记录形成的物理机制,然后介绍了地质模型的构造及参数选择,最后针对该具体地质模型制作了合成地震记录。 关键词 地震;MATLAB;正演 0引 言 地震勘探就是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理方法。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。 人工合成二维地震模型记录是各种复杂地震模型正演计算的基础,是对地震勘探经典理论的忠实实现。在实际工作中,针对具体地质构造进行二维地震模拟能够有效帮助地球物理工作者在地震剖面上识别各种地质现象。MATLAB环境集编程、画图于一体,特别适合人工合成地震记录的快速实现。因此,我们在MATLAB环境下设计了一个三层地质模型,并对该模型模拟了地震记录,旨在可视化地观察地震波场记录特征并验证地震褶积模型。 1地震记录形成的物理机制 在地震记录上看到的波形是地震子波叠加的结果,从地下许多反射界面发生反射时形成的地震子波,振幅大小决定于反射界面反射系数的绝对值,极性的正负决定于反射系数的正负,到达时间的先后取决于界面深度和覆盖层的波速。若地震子波波形用S(t)表示,反射系数是双程垂直反射旅行时t的函数,用R(t)表示,地震记录f(t)形成的物理过程在数学上就可表示为:f(t)=S(t)3R(t)=∫0T S(τ)R(t-τ)dτ 地震子波和反射系数资料常常不易取得,因此计算时常做这样一些假设: (1)地质模型的建立是来自大量观察实际地质结构的经验性归纳总结。 (2)为了模型建立和计算过程中突出理论数值,去除了一些干扰因素,对一切衰减、噪声都不进行考虑。 (3)地层在横向上均匀,纵向上是由大量具有不同弹性性质的薄层构成。 (4)地震子波以平面波形式垂直入射到界面,各薄层的反射子波与地震子波形状相同,只是振幅及极性不同。 (5)所有波的转换、吸收及绕射等能量损失都不考虑。 基于以上这些假设条件进行地震记录合就必须已知地震子波以及地层的反射系数,而反射系数又主要由地层的波阻抗反映,所以必须首先获取地层的速度和密度资料。 速度资料可通过连续速度测井获得,密度资料可从密度测井获得,得不到密度资料时,可近似假定密度不变,以速度曲线代替波阻抗曲线来计算反射系数。加德纳根据实际资料提出了一个由速度推算密度的经验公式: ρ=0.23V0.25 (速度单位:英尺/秒) 或 ρ=0.31V0.25 (速度单位:米/秒)

搅拌摩擦焊工艺参数对焊缝质量的影响

搅拌摩擦焊工艺参数对焊缝质量的影响 摘要:自主设计了多种结构的搅拌针,并针对铝合金材料进行焊接工艺实验,分析了焊头形状、旋转速度、焊接速度等对焊缝质量的影响,为进一步研究开发和铝合金零部件生产应用摩擦搅拌焊接技术提供理论和实践依据。 关键词:搅拌摩擦焊;工艺参数 随着人们对节能、环保、安全提出更高的要求,铝合金等轻质高强材料的应用获得广泛关注。所以铝材成为航空航天和现代交通运输轻量化、高速化的关键材料。轻量化可使飞机和宇航器飞得更高、更快、更远,可使导弹打得更快、更远、更准,可使电动汽车零污染高速行驶,可减少牵引力和节省大量能源,使运输工具既安全又准点[ 1]。 1.试验材料及方法 选用轨道客车中空车体及结构件用厚为3mm的铝合金挤压板材,将板材裁剪多组尺寸为600×110mm的母板。用XD5032A立式升降台铣床作为FSW的设备。 2.试验结果与讨论 对于一定形状的搅拌焊头,影响焊缝成型和接头机械性能的主要因素是旋转速度(n)、焊接速度(v)和焊接压力(p)。 2.1.旋转速度对焊缝质量的影响 搅拌焊头的旋转速度一定时,若焊接速度较慢,焊缝表面平滑光亮,但在焊缝背面可见到由于局部母材熔化而出现的缩孔。随着焊接速度的增加,这种缩孔会消失,继续增加焊接速度,焊缝表面的光洁度变差,沿焊缝的横截面将试样切开会发现隧道型缺陷,若焊接速度过快,隧道型缺陷逐渐增大,甚至会在焊缝表面出现沟槽。 采用本实验的搅拌焊头焊接时,将旋转速度定为1500rpm/min,此时,焊接速度若高于35mm/min,会看到焊缝的一侧产生未焊合或在搅拌焊头的后面出现长长的沟槽;当焊接速度低于23.5mm/min时,则焊缝表面发生凹陷或在焊缝某一侧产生切边现象,同时,在焊缝的背面会出现由于过热而形成的缩孔。当焊接速度在23-40mm/min范围内,焊缝的外观成型较好;拉伸试验结果表明,当焊接速度在35-60mm/min范围内时,焊缝的抗拉强度较高。如果将旋转速度降低为1180rpm/min,焊接速度为23-45mm/min时,焊缝的外观成型及接头的抗拉强度均较高。这是由于焊接速度影响单位长度焊缝上的热输入量,旋转速度一定而焊接速度过慢时,单位长度焊缝上获得的热量过多,使焊接区温度接近母材的熔化温度而出现局部过热甚至熔化现象;反之,当焊接速度过快时,焊接区获得的

相关主题
相关文档 最新文档