当前位置:文档之家› 行星齿轮减速器的优化设计

行星齿轮减速器的优化设计

行星齿轮减速器的优化设计
行星齿轮减速器的优化设计

图1.1 为2K-H 型行星轮系机构简图。已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45—55HRC ,行星轮个数c=3,要求以重量最轻为目标,对其进行优化设计。 1、目标函数和设计变量的确定

行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替,因此目标函数可简化为:

()()??

??2221f x =0.19635m z b 4+u -2c

式中:1z — 中心轮1的齿数;

m — 模数,单位为(mm); b — 齿宽,单位为(mm); c — 行星轮2的个数; u — 轮系的传动比。

影响目标函数的独立参数应列为设计变量,即

[]1T

T

??=??x z b m c 1234=x x x x

在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为:

[]

1T

T

??=??x z b m

123=x x x

目标函数为:

()()??

??x 222312f x =0.19635x x 4+u -2c 2.约束条件的建立

1)小齿轮1z 不根切,得:()≤1

1g

x =17-x 0

2)限制齿宽最小值,得:()≤2

2g x =10-x 0

3)限制模数最小值,得:()-≤3

3g

x =2x 0

4)限制齿宽系数b/m 的范围:≤≤5b/m 17,得:

()-≤432g x =5x x 0

()17-≤523g x =x x 0

5)满足接触强度要求,得:

()[]H σ-≤61g x =750937.3/(x x 0

式中:[]H

σ — 许用接触应力。 6)满足弯曲强度要求,得:

())[]F σ-≤2

7F S 123g x =1482000y y /(x x x 0

式中:F

y 、S

y — 齿轮的齿形系数和应力校正系数;

[]F σ — 许用弯曲应力。

,案。

1.目标函数和设计变量

在大批量生产压力容器时,以螺栓总成本最小作为追求的设计目标很有意义,一台压力容器的螺栓总成本W n 取决于螺栓的个数n 和单价W ,即

W n =n W

W=0.0205d-0.1518 于是,可对这种螺栓组写出如下目标函数

f(x)=n(0.0205d-0.1518)

显然,可取设计变量为

X=[x1,x2]T=[d,n]T

则目标函数

f(x)= x2 (0.0205 x1-0.1518)

2.约束函数

设计压力容器螺栓组时,螺栓数量的确定既要考虑密封性要求,又要兼顾装拆工具的工作空间。而螺栓直径应保证必要的强度,又要使容器凸绦外径尺寸D0不致过大(图1)。综合考虑这些要求,可确立下列约束函数:

1)紧密性条件为保证螺栓间的密封压力均匀,且防止局部漏气,据经验,螺栓间的周向距离不应大于10d,即

πD/n≤10d

由此得约束函数

g

1

(x)=10 x1-πD/ x2≥0

2) 扳手工作空间的限制为保证装拆螺栓联接的工艺性,应有足够的扳手回转空

间,即螺检栓间的间隔不应小于5d,即

πD/n≥5d

则约束函数

g

2

(x)= πD/ x2-5 x1≥0

3)强度条件由机械零件设计手册,可查出类似材料的螺栓在不同直径时无预先锁紧工况的螺栓许用载荷,利用这些资料,用回归分析法可求得许用载荷的指数回归方程

[F]=7.06302d2.11354

为保证压力容器在额定压强P下安全工作,螺栓总许用载荷n[F]应至少等于容器盖所受总压力,即

n[F]-α

2

1

4

D

p

≥0

式中α=1.1 -安全余量系数因而约束函数

g

3(x)= 7.06302 x2 x12.11354-0.86394p2

1

D≥0

三、普通圆柱螺旋弹簧的优化设计

试优化设计一气门类压簧,材料为50CrVA 钢 丝,工作载荷F=680N ,最大变形λ=16.59mm, 工作频率f r =25Hz ,循环工作次数N =106。结构上要求:2.5≤d ≤9.5 mm ,30 mm ≤D 2≤60 mm ,n ≥3,C ≥6,P 0=47N /mm 。查得[τ]=405 N /mm 2,刚度相对误差δ取0.01。按重量最轻优化. 1.目标函数和设计变量

普通螺旋圆柱弹簧包括拉簧、压簧和扭簧。在优化设计时,可以重量最轻、体积最小、高度最小等分别作为追求目标建立单目标函数,也可以组成多目标函数。

1)重量最轻

()()22

20πf x =γd D n +n 4

式中:γ-弹簧材料的比重; 0n —压簧支承圈数; D 2 ——弹簧中径;

d —簧丝直径;

n —工作圈数。 2)体积最小

()()()2

20πf x =d d +D n +n 4

3) 高度最小

()()d 0f

x =n+n

由上述3式知,目标函数是d 、2D 和n 的函数,因此,可取设计变量

X=[x 1,x 2,x 3]T =[d ,2D ,n]T

为简化计算,略去某些常数部分,可将上述3式改写为: ()()2

1

230f

x =x x x +n ()()()2

11230f x =x x +x x +n

()()301f x =x +n x

2.约束函数

1)弹簧旋绕比C=3~6=2D /d ,约束函数为

()≥1

2

1g x =6.5-x -9.50

2)弹簧刚度约束 要求弹簧设计刚度与要求刚度P 0的相对误差小于给定值δ

4'3Gd P =8D n

约束函数为

()18δ-≥41

23

023

Gx g x =-0P x x 式中:G —弹簧材料的剪切弹性模量 3)强度条件 压簧的扭转剪应力τ不得超出许用应力[τ]

d τπ223

8F D K =

式中:F 2—压簧的最大工作载荷;

K —曲度系数,当载荷作用次数在103以下时,K=1+0.5/C ,否

则,取k=1.6/(D 2/d)0.14。

约束函数为

()[

]≥2233

1

8F x K

g x =τ-0πx 4)稳定性条件 在无导杆或导套的情况下,为保证压簧在F 2作用下不失稳,应满足

H 0/D 2≤b m =2.62/μ0 式中:H 0—压簧自由高度

H 0=(n+n 0-0.5)d+1.1λ

式中: λ — 弹簧的最大变形量,λ=F 2/P 0,P 0=(F 2-F 1)/h H — 弹簧工作行程

μ0 — 弹簧端部系数,两端固定μ0=0.5,一端固定一端回转

μ0=0.7,两端回转μ0=1

约束函数为

g 4(x)=2.62/μ0-H 0/x 2

5)无共振条件 为防止共振,对于气门类弹簧,应使其自振频率f 远大于其工作频

率f r ,一般f ≥10f r ;而对于减振弹簧则相反,取f ≤0.5 f r 。自振频率

5

22d

f =3.56×10D n

因此,约束函数为

0r ≥5

1

5

2

23

x g (x)=3.56×10-10f x x 或

0r ≥5

1

52

23

x g (x)=0.5f -3.56×10x x 6)最小二作圈数n min 限制 即n ≥n min ,约束函数为

≥63min g (x)=x -n 0

7)其他界限约束 如中径在许用范围内,则有

≥≥722min 82max 2g (x)=x -D 0g (x)=D -x 0

弹簧直径在允许范围内,有

≥≥91min 10max 1g (x)=x -d 0g (x)=d -x 0

1.目标函数及设计变量 目标函数为

22

πf(x)=(D -d )(+a)4

l

其中,主轴内径d 主要决定于棒料直径,因此可作为常量处理。故目标函数是决定主轴刚度和强度的三个参数D 、l 和a 的函数,可取设计变量

X=[x 1,x 2,x 3]T =[l ,D ,a ]T

这样,目标函数就可写成

1x 22

23πf(x)=(x -d )(+x )4

2.约束条件

机床加工质量在很大程度上取决于主轴的刚皮。因此,要求主轴伸出端的挠度不

超过给定的静变形,即y ≤y 0。据此,可建立主轴静刚度约束条件

≥10

g (x)=y -y 0 (1)

根据材料力学的莫尔积分公式,挠度

?0L

MM dx y =EJ

式中 M 和M 0—作用在端点C 处的外力P 和单位力所引起的弯矩;

L ——主轴全长;

E 和J ——主轴的弹性模量和截面惯性矩。

44

πJ =(D -d )64

24464Pa (+a)y =

3πE(D -d )l

主轴由钢材制造,E =2.1×105kg/cm 2,将这些参数和数值 代入式(1),得

≥02-53131

442x (x +x )P g (x)=1-30233624241×100y (x -d )

此外。三个设计参数l 、D 和a 的边界约束条件为

≤≤≤≤≤≤min max min max

D D D a a a min max

l l l

写成设计变量形式,则可得约束函数式如下:

1111-≥-≥-≥-≥1

22

32

43

5x g (x)=0

30x g (x)=0

6x g (x)=014x g (x)=0

9

()2

0023ψψ??π

=+

- (1) 并要求机构的传动角(连杆2l 与从动件3l 之间的夹角)的最小值和最大值应分别不小于和不大于其许用值,即

[][]min min max max 45,135γγγγ≥=?≤=?

1设计变量的确定

决定机构尺寸的各杆长度,以及当摇杆按已知运动规律开始运动时,曲柄所处的位置角0?应列为设计变量,即

由于机构杆长按比例变化时不会改变主、从动件的运动规律,因此常取曲柄为单位长

度,即1l =1,其余杆长则表示为1l 的倍数,若取曲柄的初始位置角为极位角,则0?及相应的摇杆3l 位置角0?均为杆长的函数,其关系式为

5512341234T

T

x x x x x l l l l l ????==????

x

[][]

123234T T

x x x l l l ==x 22

212430124221243034()arccos 2()()arccos 2l l l l l l l l l l l l l ?ψ??

++-=??

+??

??+--=??

??

因此,独立变量只有2l 、3l 、4l ,则设计变量为

2.目标函数的建立

目标函数可根据已知的运动规律与机构实际运动规律之间的偏差最小为指标来建立,为此,把曲柄在从0?至0

2

π

?+

的区间分成s 等分,从动件输出角也有相应的分点与之对

应,分点标号记作为i ,以各分点输出角的偏差平方总和作为目标函数,故有

21

()()s

i si i f x ψψ==-∑

式中:

i ψ——期望输出角,它是当曲柄输人角02i i

s

π

???==+?时由式(1)确定的摇杆输出角。2002

()(1,2,3,)3i i i s ψψ??π

=+

-= ;

si ψ——实际输出角,由图5.2可知

,0,2i i i si i i i παβ?π

ψπαβπ?π--<

式中:

222

32322

2414arccos 2arccos 2i i i i i i i l l l l l l ραρρβρρ??

+-= ?

????

+-= ???

=

1)按曲柄存在条件建立约束条件

112213314414

325123461324()0()0()0

()0()0()0

g x l l g x l l g x l l g x l l l l g x l l l l g x l l l l =-≤=-≤=-≤=+--≤=+--≤=+--≤

2)曲柄摇杆机构的传动角应在min γ和max γ之间,可得

22

232147max 23222

32418min 23()()arccos 0

2()()arccos 0

2l l l l g x l l l l l l g x l l γγ??

+-+=-≤????

??

+--=-≤????

不管你学习什么专业,我提供的以下建议对你来说均可以适用,而最终

实现的目标是至少在你毕业的时候很容易找到一份自己还比较喜欢和基本胜任的职业,请你记住,虽然你在大学校园,你时刻要为四年以后要投入的那个社会做准备。

1、至少实习三次或者兼职三次:实习让你了解真实的社会需要,也让你

比较了解相对爱好的工作。你可以在大一到大三的三个暑期实习,也可以在平时就寻找与获得兼职或者非坐班实习机会——有很多创意和设计类工作是不需要坐班的。建议你的实习与兼职不要集中在一类工作中,也不要仅限于与自己学习的专业对口的岗位。

2、四年中至少认识150个可以联系的陌生人:建议大学生都可以印自己的名片,在今天这个规模社交的社会中,名片也许是不多的可以与人保持联系的途径,而你如果给出名片就有了道义理由要求人家给你名片。一般而言,你每给出100张名片可以收回30张左右名片,其中你可以个大致与10%的人保持联系。大学四年,在听讲座、参加志愿活动、与朋友交往认识其他朋友中,你至少要发出500张名片,大致回收150张,你可以和其中15人成为比较熟悉的朋友,发展4- 5人成为你的良师益友。

3、组织与参与3个以上学生社团、学生社会实践活动或者学生社会公益发展项目:当你代表或者作为组织成员的身份与你的个人是两个不一样的人格形象,不见得每个人都是团队活动能手,但是不要丧失与放弃发展自己组织人格的机会,而且很大社交机会与信息获得与组织行为有更密切的关系。

4、读240本课外书:我们普通人按照一个半月读一本书的普通速度,一辈子也就是读500本书左右,而我们要学会用快读法在大学里读完240本书,平均每学年读60本书,大致相当于每一周读一本书。有很多种快读的方法,其中最好的一种方法是一组朋友一起分工读书,然后用邮件分享读书要点,我们零点最近就用这个方法让员工用四个月读完110本书。

5、考察至少三个从未去过的地方:我说的是考察,就是了解一个地方的人情风情,而不只是旅游景点,认识风情也是一种增长见识的方式,可以扩大跨文化的能力。地方距离越远越好。也可以把朋友关系发展起来,这样一来可以交换行住资源,降低旅行成本。

6、尝试与掌握10条人情世故:我总结了现在依然流行的36条人情世故,在百度上很容易检索出来,我们每一个同学只要尝试学习掌握8-10条就很好了。 80后与90后普遍不掌握人情世故,在这方面的技能会让人们感到我们特别容易能设身处地,而得到大家的认同。

7、每周尝试写一篇博客:把博客当成自我总结与反思的工具,也把博当成观察社会生活与周围人群的工具,博客的写作可以使得我们拥有流利的笔头表达能力与思维分析能力。如果我们每周至少写一篇博文,我们四年就能写240篇博文,如果你能把这样的博文精选一些编成一本成长日记附在你的求职简历后面,我相信你会显得非常独特。

8、尝试一次创业:你可以尝试一次学生创业,这可以是在淘宝网上开个小店,也可以在自己有兴趣或者专长的领域尝试创办公司,也可以尝试创办一个致力于社会服务的学生公益团体,如果让我再给个具体的目标,你要在大学四年至少挣到过自己的5000块钱。

我可以说,这八个指标你要是实现了一个,你就已经有个不错的开端,而且在同学中显示出特色;实现了3-5个指标就会表现得很突出,而且找个工作机会根本不是个问题;如果你能同时实现这8个指标,你就是无可辩驳的优秀人士,并且在步出校园的时候就已经非常接近于一个成功的职业人士。

一级减速器设计说明书

机械设计课程设计说明书设计题目:一级直齿圆柱齿轮减速器班级学号: 学生姓名: 指导老师: 完成日期:

设计题目:一级直齿圆柱齿轮减速器 一、传动方案简图 二、已知条件: 1、有关原始数据: 运输带的有效拉力:F= KN 运输带速度:V=S 鼓轮直径:D=310mm 2、工作情况:使用期限8年,2班制(每年按300天计算),单向运转,转速误差不得超过±5%,载荷平稳; 3、工作环境:灰尘; 4、制造条件及生产批量:小批量生产; 5、动力来源:电力,三相交流,电压380/220V。 三、设计任务: 1、传动方案的分析和拟定 2、设计计算内容 1) 运动参数的计算,电动机的选择; 3) 带传动的设计计算; 2) 齿轮传动的设计计算; 4) 轴的设计与强度计算; 5) 滚动轴承的选择与校核; 6) 键的选择与强度校核; 7) 联轴器的选择。 3、设计绘图: 1)减速器装配图一张; 2)减速器零件图二张;

目录 一、传动方案的拟定及说明.......................................... 二、电机的选择 .................................................................... 1、电动机类型和结构型式....................................................... 2、电动机容量................................................................. P.......................................................... 3、电动机额定功率 m 4、电动机的转速 ............................................................... 5、计算传动装置的总传动....................................................... 三、计算传动装置的运动和动力参数.................................. 1.各轴转速................................................................... 2.各轴输入功率为(kW) ........................................................ 3.各轴输入转矩(N m) ........................................................ 四、传动件的设计计算.............................................. 1、设计带传动的主要参数....................................................... 2、齿轮传动设计............................................................... 五、轴的设计计算.................................................. 1、高速轴的设计............................................................... 2、低速轴的设计............................................................... 六、轴的疲劳强度校核.............................................. 1、高速轴的校核............................................................... 2、低速轴的校核............................................................... 七、轴承的选择及计算.............................................. 1、高速轴轴承的选择及计算..................................................... 2、低速轴的轴承选取及计算..................................................... 八、键连接的选择及校核............................................ 1、高速轴的键连接............................................................. 2、低速轴键的选取............................................................. 九、联轴器的选择.................................................. 十、铸件减速器机体结构尺寸计算表及附件的选择...................... 1、铸件减速器机体结构尺寸计算表............................................... 2、减速器附件的选择 (22) 十一、润滑与密封.................................................. 1、润滑....................................................................... 2、密封.......................................................................

一级圆锥齿轮减速器传动方案

设计题目:一级圆锥齿轮减速器传动方案 运动简图: (1) 原始数据 运输带牵引力F=2200N 运输带线速度v=1.8m/s 驱动滚筒直径D=280mm (2)工作条件及要求 ①使用5年,双班制工作,单向工作 ②载荷有轻微冲击 ③运送煤,盐,沙等松散物品 ④运输带线速度允许误差为±5% ⑤有中等规模机械厂小批量生产 目录 机械设计基础课程设计任务书.................................................. 第1章引言 ............................................................................. 第2章电机的选择 ................................................................. 第3章带传动的设计 ................................................................. 第4章、齿轮传动的设计计算.................................................. 第5章、齿轮上作用力的计算................................................ 第6章、轴的设计计算 ............................................................. 第7章、密封与润滑 ................................................................. 第8章课程设计总结 ............................................................... 参考资料 .....................................................................................

二级展开式圆柱齿轮减速器设计说明书

课程机械设计说明书 题目:二级展开式圆柱齿轮减速器学院:机械工程学院 班级:过程1102 姓名:马嘉宇 学号: 0402110211 指导教师:陆凤翔

目录 一课程设计任务书 1 二设计要求2三设计步骤2 1. 传动装置总体设计方案 3 2. 电动机的选择 4 3. 确定传动装置的总传动比和分配传动比 5 4. 计算传动装置的运动和动力参数 6 5. 齿轮的设计 7 6. 滚动轴承和传动轴的设计 11 7. 键联接设计 28 8.联轴器的计算 29

带式运输机传动装置的设计 设计任务书 动力及传动装置 已知条件 1.工作条件:8h/天,两班制,连续单向运转,载荷较平稳,室内工作,有粉 尘,环境最高温度35℃; 2.使用折旧期:8年; 3.动力来源:电力,三相电流,电压380/220V; 4.运输带速度允许误差:±5% 5.制造条件及生产批量:一般机械厂制造,小批量生产。 设计数据(1号数据) 运输带工作拉力F=1500N 运输带工作速度v=1.1m/s 卷筒直径D=220mm

一、传动装置传动方案拟定和传动方案的确定 1.二级展开式圆柱齿轮减速器: 优点: 缺点: 2.锥圆柱齿轮减速器: 优点: 缺点: 结构较复杂,横向尺寸小,轴向尺寸大,间轴较长,刚度差,中间轴润滑比较困难。 3.单级蜗杆减速器 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。 减速器横向尺寸较小,两大齿轮浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。 齿轮传动的传动效率高, 适用的功率和速度范围广,使用寿命较长。

行星齿轮减速器的优化设计

减速器是机械行业中十分重要的传动装置,传统的减速器设计通常3 )限制模数最小值,得: 需要有经验的人员选取适当的参数,进行反复的试凑、校核确定设计方4)限制齿宽系数b/m 的范围: ,得:案,但也不一定是最佳设计方案,而优化设计的方法则通过设计变量的选取、目标函数和约束条件的确定,建立数学模型,通过求解得到满足5)满足接触强度要求,得: 条件的最佳解,同时缩短设计周期。为了合理分配行星轮系的总传动比,并使系统体积小、质量轻,建立了具有3个设计变量、1个目标函数 和几个约束方程的优化设计数学模型,并用MATLAB 优化工具箱进行求6)满足弯曲强度要求,得:解。 2K-H (NGW )型行星齿轮减速器的优化设计: 式中: 、 -齿轮的齿形系数和应力校正系数; -许用弯曲应力。 3 所选优化方法的介绍 惩罚函数法:根据惩罚函数项的不同构成形式,惩罚函数法又可分为外点惩罚函数法、内点惩罚函数法和混合惩罚函数法三种,分别简称为外点法、内点法和混合法。 3.1 外点法:外点法的计算步骤 1)给定初始点 、收敛精度ε、初始罚因子 和惩罚因子递增系数c ,置k=0; 1-中心轮 2-行星轮 3-壳体 图1 NGW 型行星轮系机构简图 图1为NGW 型行星轮系机构简图。已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45-55HRC ,行星轮个数c=2,要求以重量最轻为目标,对其进行优化设计。 1 目标函数和设计变量的确定 行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替, 3.2 内点法:内点法是另一种惩罚函数法 因此目标函数可简化为: 其构成形式与上式相同,但要求迭代过程始终限制在可行域内进 行。 式中:z 1-中心轮1的齿数;m-模数,单位为(mm ); b-齿宽,单位对于不等式约束 ,满足上述要求的复合函数有以下两种为(mm );c-行星轮的个数;u-轮系的传动比4.64。 影响目标函数的独立参数应列为设计变量,即 在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为: 其中,惩罚因子 是一递减的正数序列,即 2 约束条件的建立 由式(2)和式(3 )可知,对于给定的某一惩罚因子 ,当点在可1)小齿轮z 1不根切,得: 行域内时,两种惩罚项的值均大于零,而且当点向约束边界靠近时,两 2)限制齿宽最小值,得: 行星齿轮减速器的优化设计 赵明侠 (宝鸡职业技术学院 机械工程系 陕西 宝鸡 721013) 摘 要: 根据可靠性设计理论和机械优化设计技术,以NGW 型行星齿轮减速器为例,初步探讨优化设计的原理和方法。关键词: 行星齿轮减速器;优化设计;优化设计方法 中图分类号:TH132 文献标识码:A 文章编号:1671-7597(2011)1010074-02 2)构造惩罚函数

行星齿轮减速器设计DOC

1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+=7.0588 其传动比误差i ?= ip i ip -= 7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数

一级圆柱齿轮减速器说明书

机械设计《课程设计》 课题名称一级圆柱齿轮减速器的设计计算 系别 专业 班级 姓名 学号 指导老师 完成日期 目录 第一章绪论 第二章课题题目及主要技术参数说明 2.1 课题题目 2.2 主要技术参数说明 2.3 传动系统工作条件 2.4 传动系统方案的选择 第三章减速器结构选择及相关性能参数计算 3.1 减速器结构

3.2 电动机选择 3.3 传动比分配 3.4 动力运动参数计算 第四章齿轮的设计计算(包括小齿轮和大齿轮) 4.1 齿轮材料和热处理的选择 4.2 齿轮几何尺寸的设计计算 4.2.1 按照接触强度初步设计齿轮主要尺寸 4.2.2 齿轮弯曲强度校核 4.2.3 齿轮几何尺寸的确定 4.3 齿轮的结构设计 第五章轴的设计计算(从动轴) 5.1 轴的材料和热处理的选择 5.2 轴几何尺寸的设计计算 5.2.1 按照扭转强度初步设计轴的最小直径 5.2.2 轴的结构设计 5.2.3 轴的强度校核 第六章轴承、键和联轴器的选择 6.1 轴承的选择及校核 6.2 键的选择计算及校核 6.3 联轴器的选择 第七章减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算

7.1 润滑的选择确定 7.2 密封的选择确定 7.3减速器附件的选择确定 7.4箱体主要结构尺寸计算 第八章总结 参考文献 第一章绪论 本论文主要内容是进行一级圆柱直齿轮的设计计算,在设计计算中运用到了《机械设计基础》、《机械制图》、《工程力学》、《公差与互换性》等多门课程知识,并运用《AUTOCAD》软件进行绘图,因此是一个非常重要的综合实践环节,也是一次全面的、规范的实践训练。通过这次训练,使我们在众多方面得到了锻炼和培养。主要体现在如下几个方面: (1)培养了我们理论联系实际的设计思想,训练了综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。 (2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。 (3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理、计算机辅助设计方面的能力。 (4)加强了我们对Office软件中Word功能的认识和运用。 第二章课题题目及主要技术参数说明

二级齿轮减速器说明书

机械设计课程设计 计算说明书 设计题目:带式输送机 班级:05机械1班 学号:200530500214 设计者:丁肖支 指导老师:罗海玉

目录 1.题目及总体分析 (3) 2.各主要部件选择 (4) 3.电动机选择 (4) 4.分配传动比 (5) 5.传动系统的运动和动力参数计算 (6) 6.设计高速级齿轮 (7) 7.设计低速级齿轮 (12) 8.链传动的设计 (16) 9.减速器轴及轴承装置、键的设计 (18) 1轴(输入轴)及其轴承装置、键的设计 (18) 2轴(中间轴)及其轴承装置、键的设计 (24) 3轴(输出轴)及其轴承装置、键的设计 (29) 10.润滑与密封 (34) 11.箱体结构尺寸 (35) 12.设计总结 (36) 13.参考文献 (36)

一.题目及总体分析 题目:设计一个带式输送机的减速器 给定条件:由电动机驱动,输送带的牵引力7000F N =,运输带速度0.5/v m s =,运输机滚筒直径为 290D mm =。单向运转,载荷平稳,室内工作,有粉尘。工作寿命为八年,每年300个工作日,每天工作16 小时,具有加工精度7级(齿轮)。 减速器类型选择:选用展开式两级圆柱齿轮减速器。 特点及应用:结构简单,但齿轮相对于轴承的位置不对称,因此要求轴有较大的刚度。高速级齿轮布置在远离转矩输入端,这样,轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯曲变形可部分地互相抵消,以减缓沿齿宽载荷分布不均匀的现象。高速级一般做成斜齿,低速级可做成直齿。 整体布置如下: 图示:5为电动机,4为联轴器,3为减速器,2为链传动,1为输送机滚筒,6为低速级齿轮传动,7为高速级齿轮传动,。 辅助件有:观察孔盖,油标和油尺,放油螺塞,通气孔,吊环螺钉,吊耳和吊钩,定位销,启盖螺钉,轴承套,密封圈等.。

一级圆柱齿轮减速器说明书(1).

机械设计基础 课程设计 课题名称:一级圆柱齿轮减速器的设计计算系别:机电工程系 专业:机电一体化 班级:12级机电班 姓名: 学号: 指导老师: 完成日期:年月日

目录 摘要 (1) 第一章绪论 (2) 1.1概述 (2) 1.2本文研究内容 (2) 第二章减速机的介绍 (2) 2.1减速机的特点、用途及作用 (2) 2.2减速器的基本构造和基本运动原理 (3) 第三章电动机的选择 (5) 3.1电动机类型和结构的选择 (5) 3.2电动机容量选择 (5) 3.3电动机转速 (6) 3.4传动比分配和动力运动参数计算 (7) 第四章齿轮传动的设计及校核 (9) 4.1齿轮材料和热处理的选择 (9) 4.2齿轮几何尺寸的设计计算 (9) 4.3 齿轮的结构设计 (13) 第五章V带传动的设计计算 (14) 各类数据的计算 (14) 第六章轴的设计与校核 (17) 6.1轴的设计 (17) 6.2轴材料的选择和尺寸计算 (17) 6.3轴的强度校核 (18) 第七章轴承的选择和校核 (21) 轴承的选择和校核 (21) 第八章键的选择和校核 (24) 8.1 I轴和II轴键的选择和键的参数 (24) 8.2 I轴和II轴键的校核 (25) 第九章联轴器的选择和校核 (26) 9.1联轴器的选择 (26) 9.2联轴器的校核 (27) 第十章减速器的润滑和密封 (27) 减速器的润滑和密封 (27) 第十一章箱体设计 (28) 箱体的结构尺寸 (28) 第十二章参考文献 (31)

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它的主要有优点是: 1.瞬时传动比恒定、工作为平稳、传动准确可靠,可传递空间任意两轴之间运动和动力。 2.适用的功率和速度范围广; η之间; 3.传动效率高,% = .0- .0 9223 9885 % 4.工作为可靠、使用寿命长; 5.外轮廓尺寸小、结构运送。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作为机构之间,起匹配转速和传递转矩的作用力,在现代机械中应用极为广泛。 6.国内的减速器多以齿轮传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。减速器的种类很多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星减速器以及它们互相组合起来的减速器;按照传动的级数可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥一圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。当今的减速器是向着大功率、大传动比、体积小、高机械效率以及使用寿命长的方向发展。近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而失去了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品加工更加精致化、美观化。 齿轮减速器应用范围广泛,例如,内平动齿轮传动与定轴齿轮传动和行星齿轮传动相比具有许多优点,能够适用于机械、冶金、矿山、建筑、轻工、国防等众多领域的大功率、大传动比场合,能够完全取代这些领域中的圆柱齿轮传动和蜗轮蜗杆传动,因此,内平动齿轮减速器有广泛的应用前景。 关键字:减速器轴承齿轮机械传动

减速器优化设计

一、减速器优化设计问题分析: 二级锥齿圆柱齿轮减速器,高速级输入功率P1=2.156kW ,转速n1=940r/min ;总传动比i=9.4,齿宽系数d ?=1。齿轮材料和热处理:大齿轮为45号钢调质处理,硬度为240HBS ;小齿轮为40Cr 调质处理,硬度为280HBS ,工作寿命10年以上。在满足强度、刚度和寿命等条件下,使体积最小来确定齿轮传动方案。 二、建立优化设计的数学模型 ①设计变量: 将涉及总中心距a ∑齿轮传动方案的6个独立参数作为设计变量 X=[Mn 1,Mn 2,Z 1,Z 2,i 1,β]T=[x 1,x 2,x 3,x 4,x 5,x 6]T (其中Z1、Z2分别为高速级小齿轮齿数、低速级小齿轮齿数) ②目标函数:优化目标选为体积最小,归结为使减速器的总中心距a 最小, 写成111222(1)(1)2cos Mn Z i Mn Z i a β +++= 减速器总中心距a ∑最小为目标函数 6 1542531cos 2)4.91()1()(min x x x x x x x X f -+++= ③约束条件:含性能约束和边界约束 性能约束: (1) 齿面接触强度计算: 0cos 10845.6][31161313121≥-?β?σT K i Z m n d H 和0cos 10845.6][32 26232322 2≥-?β?σT K i Z m n d H 式中:][H σ—许用接触应力; 1T —高速轴的转矩; 2T —中间轴的转矩; 12,K K —载荷系数; d ?—齿宽系数。 (2)齿根弯曲强度计算: 高速级小、大齿轮的齿根弯曲强度条件为: 0cos 3)1(][21 12131111≥-+β?σT K Z M i Y n Fa d F

3Z型行星齿轮减速器设计

1.绪论 1.1课题研究的背景和意义 “十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。 在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。 大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。 可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。 1.2行星齿轮减速器研究现状及发展动态 行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:

级齿轮减速器说明书

重庆机电职业技术学院课程设计说明书 设计名称:机械设计基础 题目:带式输送机传动装置 学生姓名: 专业:机械设计与制造 班级: 学号: 指导教师: 日期:年月日

目录 一、电动机的选择 (3) 二、齿轮的设计 (4) 三、轴的设计 (7) 四、轴上其它零件的设计 (8) 五、输出轴的校核 (9) 六、键的选择 (10) 七、箱体的选择和尺寸确定 (11)

一、电机的选择 (1)选择电动机类型 按工作要求选用Y 系列全封闭自扇冷式笼型三相异步电动机,电压380V 。 (2)选择电动机的容量 电动机所需工作功率为W d P P η= nw=60×1000V/πD=(60×1000×1.7)/(π×400)=81.21 r/min 其中联轴器效率η4=0.99,滚动轴承效率(2对) η2=0.99,闭式齿轮传动效率η3=0.97,V 带效率η1=0.96,滚筒效率η3=0.96代入得 传动装装置总效率: =122345=0.867 工作机所需功率为: P W =F ·V/1000=3000×1.7/1000=5.1 kW 则所需电动机所需功率 P d = P W /=5.1/0.867=5.88kw 因载荷平稳,电动机额定功率ed p 略大于d p 即可由《机械设计基础实训指导》附录5查得Y 系列电动机数据,选电动机的额定功率为7.5kw. (3)确定电动机转速 卷筒轴工作转速:由nw=81.21 r/min,v 带传动的传动比i 1=2~4;闭式齿轮单级传动比常用范围为i 2=3~10,则一级圆柱齿轮减速器传动比选择范围为: I 总= i 1×i 2=6~40 故电动机的转速可选范围为 n d = n w ×I 总=81.21×(6~40)= 487.26 r/min ~3248.4r/min 符合这一范围的同步转速有750 r/min 、1000 r/min 、1500 r/min 、3000 r/min 。可供选择的电动机如下表所示: 方案 电动机型号 额定功率/Kw 同步转速/满载转速 m n (r/min) 1 Y132S2— 2 7.5 3000/2900 2 Y132M —4 7.5 1500/1440 3 Y160M —6 7.5 1000/970 4 Y160L —8 7.5 750/720 min r 。

机械设计课程设计展开式二级圆柱齿轮减速器设计F=4000,V=1.6,D=400解读

结果 计算及说明 一课程设计任务书 课程设计题目: 设计带式运输机传动装置(简图如下) 1——二级展开式圆柱齿轮减速器 2——运输带 3——联轴器(输入轴用弹性联轴器,输出轴用 的是齿式联轴器) 4——电动机 5——卷筒 已知条件: 1)工作条件:两班制,连续单向运转,载荷较平稳,室内工作,有粉尘,环境最高温度35℃; 2)使用折旧期:8年; 3)检修间隔期:四年一次大修,两年一次中修,半年一次小修; 4)动力源:电力,三相交流,电压380/220V 5)运输带速度允许误差为±5%; 6)制造条件及生产批量:一般机械厂制造,小批量生产。 7)运输带工作拉力4000N 8)运输带工作速度1.6m/s 9)卷筒直径400mm 二. 设计要求 1.完成减速器装配图一张。 2.绘制轴、齿轮、箱体零件图各一张。 3.编写设计计算说明书一份。

三. 设计步骤 1. 传动装置总体设计方案 1)减速器为二级展开式圆柱齿轮减速器。 2) 该方案的优缺点:瞬时传动比恒定、工作平稳、传动准确可靠,径向尺寸小,结构紧凑,重量轻,节约材料。二级展开式圆柱齿轮减速器具有传递功率大,轴具有较大刚性,制造简单,维修方便,使用寿命长等许多优点。但减速器轴向尺寸及重量较大;高级齿轮的承载能力不能充分利用;仅能有一个输入和输出端,限制了传动布置的灵活性。 2、电动机的选择 1)选择电动机的类型 按工作要求和工作条件选用Y 系列三相笼型异步电动机,电压380V 。 2)选择电动机的容量 工作机的有效功率为:kW v P w w 4.611000/6.140001000/F =??==η 从电动机到工作机传送带间的总效率为:6 543210ηηηηηηηη??????=∑ 由《机械设计课程设计手册》表1-7可知: η0——输入轴联轴器(弹性联轴器)效率,取为0.99; η1——第一级圆柱斜齿轮的传动效率,精度为8级,取为0.97; η2——输入轴上轴承(角接触球轴承)效率,取为0.99; η3——第二级圆柱直齿轮的传动效率,精度为8级,取为0.97; η4——中间轴上轴承(角接触球轴承)效率,取为0.99 η5——输出轴上轴承(深沟球轴承)的传动效率,取为0.99; η6——输出轴联轴器(齿式联轴器)效率,取为0.99 895 .099 .097.097.099.099.03 6543210=????==∑ηηηηηηηη 所以电动机所需工作功率为 kW P P w d 15.7895 .04 .6===∑η 3)确定电动机转速 kw P w 4.6= 895.0=∑η

单级齿轮减速器机械优化设计

青岛理工大学琴岛学院 机械优化设计 课题名称:单级齿轮减速器的优化设计学院:机电工程系 专业班级:机械设计及其自动化143 学号 学生: 指导老师: 青岛理工大学教务处 2016年11月27日

《单级齿轮减速器的优化设计》说明书 摘要 机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。常用的机械优化设计方法包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主要性能指标。 机械优化设计的目的是以最低的成本获得最好的效益,是设计工作者一直追求的目 标,从数学的观点看,工程中的优化问题,就是求解极大值或极小值问题,亦即极值问题。 本文从优化设计的基本理论、优化设计与产品开发、优化设计特点及优化设计应用等方 面阐述优化设计的基本方法理论。 关键词:机械优化设计;优化方法;优化应用。

目录 摘要......................................................... II 1设计任务.. (1) 2 齿轮的传统设计 (2) 3优化设计的数学模型 (7) 3.1确定设计变量和目标函数 (7) 3.2确定约束条件 (7) 4 Matlab计算机程序 (9) 5结果分析 (11) 参考文献 (12)

1设计任务 设计如图2-40所示的单级直齿圆柱齿轮减速器,其齿数比2.3u =,工作寿命要求10年两班制,原动机采用电动机,工作载荷均匀平稳,小齿轮材料为40Cr,调质后表面淬火,齿面硬度HB=235~275,MPa H 531][1=σ,MPa F 5.297][1=σ,大齿轮材料为45钢,调质,齿面硬度为HB=217~255,a 513][2MP H =σ, MPa F 4.251][2=σ,载荷系数k=1.3,P=28KN ,n=1440rad/min 要求在满足工作要求的前 提下使两齿轮的重量最轻。

NGW型行星齿轮减速器——行星轮的设计 (1).

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

一级减速器设计说明书(1)-一级减速器设计

机械设计课程设 计说明书 设计题目:一级直齿圆柱齿轮减速器班级学号: 学生姓名: 指导老师: 完成日期:

设计题目:一级直齿圆柱齿轮减速器 一、传动方案简图 二、已知条件: 1、有关原始数据: 运输带的有效拉力:F=1.47 KN 运输带速度:V=1.55m/S 鼓轮直径: D=310mm 2、工作情况:使用期限 8 年, 2 班制(每年按 300 天计算),单向运转,转速误差不得超过± 5%,载荷平稳; 3、工作环境:灰尘; 4、制造条件及生产批量:小批量生产; 5、动力来源:电力,三相交流,电压380/ 220V 。 三、设计任务: 1、传动方案的分析和拟定 2、设计计算内容 1)运动参数的计算,电动机的选择;3)带传动的设计计算; 2)齿轮传动的设计计算;4)轴的设计与强度计算; 5)滚动轴承的选择与校核;6)键的选择与强度校核; 7)联轴器的选择。 3、设计绘图: 1)减速器装配图一张; 2)减速器零件图二张;

目录 一、传动方案的拟定及说明...................................................................................................................................................错误!未定义书签。 二、电机的选择.................................................................................................................................................................................错误!未定义书签。 1、电动机类型和结构型式 ........................................................................................................................................错误!未定义书签。 2、电动机容量......................................................................................................................................................................错误!未定义书签。 3、电动机额定功率P m...........................................................................................................................................错误!未定义书签。 4、电动机的转速 ................................................................................................................................................................错误!未定义书签。 5、计算传动装置的总传动 ........................................................................................................................................错误!未定义书签。 三、计算传动装置的运动和动力参数...........................................................................................................................错误!未定义书签。 1.各轴转速............................................................................................................................................................................错误!未定义书签。 2.各轴输入功率为( kW ) ........................................................................................................................................错误!未定义书签。 3.各轴输入转矩(N m).......................................................................................................................................错误!未定义书签。 四、传动件的设计计算...............................................................................................................................................................错误!未定义书签。 1、设计带传动的主要参数 ........................................................................................................................................错误!未定义书签。 2、齿轮传动设计 ................................................................................................................................................................错误!未定义书签。 五、轴的设计计算...........................................................................................................................................................................错误!未定义书签。 1、高速轴的设计 ................................................................................................................................................................错误!未定义书签。 2、低速轴的设计 (12) 六、轴的疲劳强度校核 (13) 1、高速轴的校核 (13) 2、低速轴的校核 (13) 七、轴承的选择及计算 (17) 1、高速轴轴承的选择及计算 (17) 2、低速轴的轴承选取及计算 (18) 八、键连接的选择及校核 (19) 1、高速轴的键连接 (19) 2、低速轴键的选取 (19) 九、联轴器的选择 (20) 十、铸件减速器机体结构尺寸计算表及附件的选择 (20) 1、铸件减速器机体结构尺寸计算表 (20) 2、减速器附件的选择 (22) 十一、润滑与密封 (21) 1、润滑 (21) 2、密封 (21) 十二、参考文献 (24)

相关主题
文本预览
相关文档 最新文档