当前位置:文档之家› 上海工程技术大学城市轨道交通学院电力牵引与控制计算题

上海工程技术大学城市轨道交通学院电力牵引与控制计算题

上海工程技术大学城市轨道交通学院电力牵引与控制计算题
上海工程技术大学城市轨道交通学院电力牵引与控制计算题

1、某他励直流电动机的额定功率P N=17kW,额定电压U N=220V,ηN=0.83,额定转速n N=1500r min。计算I N、T2N及额定负载时的输入功率P1N。

解:P1N=P N

ηN =17kW

0.83

=20.48kW

I N=P1N

U N =20.48kW

220V

=93.09A

T2N=9550·P N

n N =9550×17kW

1500r min

=108.23N·m

答:该他励直流电动机额定负载时的输入功率P1N为20.48kW,额定电流I N为93.09A,额定转矩T2N为108.23N·m。

2、一台他励直流电动机的额定功率P N=40kW,额定电压U N=220V,额定电流

I N=207.5A,额定转速n N=1500r min,电枢回路总电阻R a=0.0422Ω,电动机拖动反抗性负载转矩运行于正向电动状态时,T L=0.85T N,求采用能耗制动停车,并且要求制动开始时最大电磁转矩为1.9T N,求电枢回路应串多大电阻?

解:正向电动状态时:

C E·?N=U N?I N·R a

n N =220V?207.5A×0.0422Ω

1500r/min

=0.140829

I a正=T L

C T·?N =0.85·T N

C T·?N

=0.85×I N=0.85×207.5A=176.375A

E a=U N?I a·R a=220V?176.375A×0.0422Ω=212.557V 采用能耗制动停车时:

I a制=T max

C T·?n =1.9·T N

C T·?n

=1.9×I N=1.9×207.5A=394.25A

R H=E a

I

a制?R a=212.557V

394.25A

?0.0422Ω=0.497Ω

答:电枢电阻回路应串联的电阻为0.497Ω。

3、一台绕线式三相异步电动机,其额定数据为P N =70kW ,n N =725r min ,λ=2.4,求此时输出转矩的实用公式。

解:n N =725r min ,则n 0=750r min

s n =n 0?n N n 0=750?725750=130 s m =s N · λ+ λ2?1 =130

× 2.4+ 2.42?1 =0.153 T N =9550·P N n N =9550·

70kW

725r min =922.07N ·m T m =λT N =2.4×922.07N ·m =2212.968N ·m

T =2T m s s m +s m s =2×2212.968N·m s +0.153=4425.936s +0.153 N ·m 答:该绕线式三相异步电动机输出转矩的实用公式为T =4425.936

s +0.153 N ·m 。

4、一台绕线式三相异步电动机,其额定功率为P N =70kW ,额定频率为50Hz ,额定转速n N =1460r min ,额定电压U N =380V ,λ=2.3,求电动机的转差率s=0.02时的电磁转矩及拖动转矩负载为860N·m 时电动机的转速。

解:n N =1460r min ,则n 0=1500r min

s n =n 0?n N n 0=1500?14601500=275

s m =s N · λ+ λ2?1 =275× 2.3+ 2.32?1 =0.118

T N =9550·P N n N =9550·70kW 1460r min =457.88N ·m T m =λT N =2.3×457.88N ·m =1053.124N ·m

当s =0.02时,T =2T m s s m +s m s =2×1053.124N·m

0.020.118+0.1180.02=347.02 N ·m 当T L =860N ·m 时,T L =2T m s s m +s m s =

2×1053.124N·m s 0.118+0.118s =860N ·m 解得s 1=0.06,s 2=0.23(舍去)

则n =n 0· 1?s =1500×(1?0.06)=1410r min

答:电动机的转差率s=0.02时的电磁转矩T 为347.02 N ·m ,拖动转矩负载为860N·m 时电动机的转速n 为1410r min 。

5、一台他励直流电动机的额定功率为P N=70kW,额定电压U N=220V,额定电流

I N=385A,额定转速n N=980r min,电枢回路总电阻R a=0.01024Ω,电动机带额定负载运行。使用降压斩波回路对该电动机进行控制,若要求转速调节到358r min,求:(1)采用改变电枢电源电压调速时,电枢电源电压应调节到多少伏?(2)若该降压斩波器的直流电源的电压值为400V,则此时需要的占空比为多少?

解:C E·?N=U N?I N·R a

n N =220V?385A×0.01024Ω

980r/min

=0.220467

n0=U N

C E·?N =220V

0.220467

=997.88r/min

?n=n0?n N=997.88?980=17.88r/min

n0′=?n+n1=17.88+358=375.88r/min

U=C E·?N·n0′=0.220467×375.88r/min=82.87V

α=U

U

额定=82.87

400

=20.72%

答:采用改变电枢电源电压调速时,电枢电源电压应调节到82.87V,若该降压斩波器的直流电源的电压值为400V,则此时需要的占空比为20.72%。

6、一台四极三相异步电动机,额定功率为P N=30kW,额定电压U N=380V,额定频率为50Hz,额定负载运行时,定子铜耗为824.2W,铁耗582.3W,转子铜耗为506W,机械损耗为351W,求额定负载时:(1)机械功率(2)电磁功率(3)额定转速(4)电磁转矩(5)空载转矩(6)输入功率(7)效率。

解:P N=30kW,P Cu

1=824.2W,P Fe=582.3W,P Cu

2

=586W,p m+p s=351W

P=4,n0=60·f

P =60×50Hz

4

=750r/min

(1)P m=P N+p m+p s=30kW+351W=30351W (2)P M=P m+P Cu

2

=30351W+506W=30857W

(3)s n=P Cu2

P M =506W

30857W

=0.02

n N=n0·1?s=750×1?0.02=735r min

(4)T N =9550·P N n N =9550×30kW 735r min =389.80N ·m (5)T 0=9.55·p m +p s

n N =9.55×351W 735r min =4.56N ·m (6)P I =P M +P Cu 1+P Fe =30857W +824.2W +582.3W =32263.5W

(7)η=P N

P I =30000W 32263.5W =92.98%

答:机械功率P m 为30351W ,电磁功率P M 为30937W ,额定转速n N 为735r min ,电磁转矩T N 为389.80N ·m ,空载转矩T 0为4.56N ·m ,输入功率P I 为32343.5W ,效率η为92.75%。

7、一台绕线式三相异步电动机,其额定数据为:P N =75kW ,n N =720r min ,U N =380V ,I N =148A ,λ=2.4,E 2N =213V ,I 2N =220A ,拖动恒转矩负载T L =0.85T N 时,欲使电动机运行在540r/min 。求:(1)s m ,R 2;(2)电动机运行在540r/min 的转差率。

解:n N =720r min ,则n 0=750r min

s n =n 0?n N n 0=750?720750=0.04 s m =s N · λ+ λ2?1 =0.04× 2.4+ 2.42?1 =0.183

R 2=n 2n

3I =

3×220A =0.0224Ω T N =9550·P N n N =9550×75kW

720r min =994.79N ·m

T m =λT N =2.4×994.79N ·m =2387.496N ·m

T L =0.85T N =0.85×994.79N ·m =845.5715N ·m

当T L =845.5715N ·m 时,T L =2T m

s s m +s m s =2×2387.496N·m s 0.183+0.183s =845.5715N ·m

解得s 1=0.03,s 2=1.00(舍去),则s =0.03

答:临界转差率s m 为0.183,转子等效电阻R 2为0.0224Ω,电动机运行在540r/min 的转差率s 为0.03。

上海城市轨道交通需求与供给状况调查与分析

上海城市轨道交通需求与供给状况调查与分析 摘要:改革开放之初的中国,经济需求增长与交通运输滞后的矛盾日益突出。时至如今,改革开放30有余,高速路网基本建成,解决市内交通堵塞又成了头等大事,一时间各地纷纷发展轨道交通。上海的轨道交通建设已有18年,地铁迅猛发展的同时,巨大的人流等诸多问题接踵而至,合理有序发展、按时按需规划轨道交通迫在眉睫。 自改革开放以来,我国的城市规模和经济建设都有了飞速的发展。城市化进程在逐步加快,城市人口在急剧增加,大量流动人口涌进城市,人员出行和物资交流频繁,使城市交通面临着严峻的局势。当前,全国大中城市普遍存在着道路拥挤、车辆堵塞、交通秩序混乱的现象。我国人口众多,目前100万人口以上的大城市已发展到34个,而50~100万人口之间的大城市也达到43个。但这些城市的公共交通方式,绝大多数还是采用传统的运量不大的公共汽车和无轨电车。而现代城市在一天的客运高峰期间,旅客高度集中、流向大致相同的客流现象已很普遍,低运量的交通工具已远远不能满足民众出行的需要。这些都是造成城市交通局面越来越严峻的重要因素。根据国外发达国家的经验,当人均国民生产总值达到约1000美元时,将普遍进入城市地下空间大规模开发利用的阶段。当前国内城市的公共交通结构比较单一,基本上依靠地面交通,而从地面走向地下的速度则非常缓慢。 我国城市随着我国经济的发展,大城市日趋繁荣,城市交通矛盾逐渐严重,发展大运量的城市轨道交通已成为解决大城市交通矛盾的关键。在"十五"规划中,国家首次提出了要发展城市轨道交通,《国家产业技术政策》也明确指出:"在百万人以上城市,要优先发展以轨道交通为主的公共交通系统。 目前,我国已有15个城市正在修建或申请地铁和轻轨道路,建设投资约需2000亿人民币。据预测至2014年,我国城市轨道交通投入运营里程将达到1000公里左右。其中,上海无疑走在了全国的前列。 上海自1990年上海地铁一号线破土动工以来,1995年建成投入运营,实现了上海轨道交通零的突破,而上海地铁二号线投入运营,轨道交通运营长度达40公里,从明珠线一期运营,轨道交通长度将增至65公里。轨道交通发展,不仅大大方便了沿线几十万居民的出行,并且使周边地区房地产明显升值,为地面公交带来了“松动效益”,充分体现了轨道交通的优势,以及在整个城市公共交通的地位。 上海轨道交通至2000年固定投资额已达206亿元,平均每年建设近10km。2000年,地铁一号线平均日客运量约33万人次,所占公交比重约为4%。2004年,1号线日均客流突破百万。2008年3月7日上海轨道交通日客流量首次突破350万人次,达353.7万人次,创下历史新高,总换乘客流也再次刷新历史记录,达108.4万。除9号线外,其余7条轨道线均刷新了客流的最高记录。目前上海轨道交通开通8条线路,总计234公里161个车站,轨道交通网络运营效能日益凸现,轨道交通换乘成为上海市民出行的重要方式。但是,上海轨道交通线路仍太少,在公交出行中所占比重仍很低。 上海城市轨道交通运营里程增长趋势 单位:公里 指标 1 996 199 7-1999 200 0-2002 2 003 2 004 2 005 2 010 运营线路长度 1 5.21 20. 06 62. 92 1 08.65 1 21.23 1 47.8 5 10

城市轨道交通牵引供电系统复习资料

城市轨道交通牵引供电系统复习资料 第一章电力牵引供电系统概述 1、电力牵引的制式概念: 供电系统向电动车辆或电力机车供电所采用的电流或电压制式,包括直流/交流制、电压等级、交流电频率、交流制中单相/三相等问题。 2、电力牵引系统性能要求: ①启动加速性能:启动力矩大,加速平稳; ②动力设备容量利用充分:轻载时,运行速度高;重载时,运行速度可以低一些。功率容量 P=FV近似于常数; ③调速性能:速度调节容易实现,能量损耗小。 满足上述条件:直流串激(串励)电动机。 3、直流串励电动机优缺点: 通过串联电阻调速,原理简单,调速范围宽,供电系统电压损失和能量消耗较大,而且需要换向。 4、城市轨道交通牵引制式:直流供电制式。 城市轨道机车功率不大,供电半径小,城市之间运营供电电压不能太高,以确保安全。我国国标规定采用750V 和1500V直流供电两种制式,不推荐600V。 5、城市轨道交通电力牵引供电系统组成:发电厂(站)、升压变压器、电力网(110-220KV)、主降压变电站(110~220KV→10~35KV)、直流牵引变电所(10~35KV→1500、750V)、馈电线、接触网、走行轨道、回流线。 6、组成统一的电力供电系统的优点: ①充分利用动力资源;②减少燃料运输;③提高供电可靠性;④提高发电效率。 7、环形供电接线:由两个或两个以上主降压变电站和所有的牵引变电所用输电线联成一个环行。 8、环形供电接线的优缺点:环行供电是很可靠的供电线路,因为在这种情况下,一路输电线和一个主降压变电站同时停止工作时,只要其母线仍保持通电,就不致中断任何一个牵引变电所的正常

供电。但其投资较大。 9、双边供电接线:由两个主降压变电站向沿线牵引变电所供电,通往牵引变电所的输电线都经过其母线联接,为了增加供电的可靠性.用双路输电线供电,而每路按输送功率计算。这种接线可靠性稍低于环行供电。当引入线数目较多时,开关设备多,投资增加。 10、电网向牵引变电所供电形式:环形供电接线、双边供电接线、单边供电接线、辐射形供电接线。 11、最简单单相半波整流: 12、单相半波整流原理:13、单相全波整流原理: 14、三相半波整流原理:

上海城市轨道交通规划

上海城市轨道交通规划 自1863年在英国伦敦出现第一条地下铁道以来,城市轨道成为世界各国解决城市交通问题的首选方案,并在世界40多个国家的130多个城市快速发展。城市交通成为一个国家现代化进程的标尺。 回索历史的胶片,中国的地铁始建于1965年,比世界发达国家晚了整整一个世纪!到二十世纪末,在北京、天津、上海和广州四个已运营的地铁系统中,总长仅80公里,而法国巴黎的地铁即超过300公里。 1958年8月,北京中南海。周恩来总理在一次会上提出:“西方卡不住我们的油脖子,中国也要修地下铁道”。9月,中铁四局集团的前身铁道部北京地下铁道工程局在北京市正式成立,很快就开始了北京地铁一号线的筹建,在西方实施经济技术封锁的情况下,克服重重困难,进行了线路比选、地质钻探、勘测设计、方案研究、施工组织等大量工作,后因三年自然灾害而暂缓施工。1965年3月,中铁四局集团抽调所属第一工程处、地下铁道工程技术研究组、钢筋混凝土预制构件工厂、机械厂筹建组、机械经租站、修配厂及机关部分人员重新组建铁道部北京地下铁道工程局,开始了新中国第一条地铁——北京地铁一号线的艰难困苦的掘进。 步入新世纪,城市轨道交通作为疏通堵塞的唯一选择,成为中国经济增长的新亮点。据悉,中国“十五”期间城市交通投资达8000亿元,其中2000亿元用于地铁建设。城市规划建设地铁和轻轨线路30多条,总长650公里。北京、上海、天津、广州在加速地铁里程的拓展,深圳、南京、青岛、重庆、沈阳、长春、成都和哈尔滨在动工兴建地铁,杭州、大连、兰州、昆明、西安、鞍山、合肥、佛山和乌鲁木齐在积极筹建地铁。首都北京现有地

铁一号线、环线和复八线,总长54公里,已全部贯通运营。全长27.7公里的地铁五号线已动工。北京规划地铁网络12条新线,总长达408公里。 上海地铁发展简史 早在1956年,上海市就开始地铁建设的前期准备,1956年8月,上海市政建设交通办公室向市人委提交《上海市地下铁道初步规划(草案)》,上海地下铁道建设开始提到市领导的议事日程。 1958年8月,上海市地下铁道筹建处成立,以“平战结合”的功能要求,对上海地下铁道开始规划设计、方案论证和试验研究。当时苏联专家断言上海是软土地层,含水量多,因此不宜建设隧道工程。1959年8月,上海警备区领导机关提出:上海地下铁道应以“平战结合、以战为主”的指导思想规划建设,地铁尽可能深埋入基岩层。市地铁筹建处组织科研、大专院校和设计单位,对上海地下铁道的埋设深度作浅、中、深3种方案的研究。对深埋方案探索后认为:如将地铁置于地下300~350米的基岩层,对功能要求、工程技术和建设经济均不合理。 1960年2月,上海市隧道工程局在浦东塘桥开始作盾构掘进试验。 1963年3月,上海市城市建设局隧道处继续在浦东塘桥用直径4.2米盾构,分别在覆土4米和12米处,建成25.2米和37.8米的装配式钢筋混凝土管片衬砌试验隧道,用于验证粉沙性土质和淤混质粘土质中建设隧道的可行性。 1964年11月,上海市委决定结合战备在地铁规划线上的衡山路段实施地铁扩大试验工程。至1967年7月,完成一井一站和600米区间的两条隧道后,因“文化大革命”中止。11年后,地铁试验工程才得以继续,1978年,漕溪路段试验工程批准开工,在漕溪公园的地底下,又尝试了第二条试验隧道的掘进,投资达四千多万人民币,上下行总长1290米。至1983年底,完成一井一站和圆形隧道913米、矩形隧道274米。试验成果:盾构掘进的轴线误差和地表沉陷都可控制在允许的范围之内;隧道用单层装配式钢筋混凝土管片衬砌可满足地铁隧道结构要求,防水达到同期国际标准;初步掌握槽壁地下连续墙的设计与施工技术。细心的乘客可以发觉这段线路采用结构法修筑地下连续水泥墙(方形隧道),与此后采用的盾构掘进(圆形隧道)有明显不同。这段线路现在作为上海轨道交通一号线的正式路线使用。 十一届三中全会后,随着改革开放形势的发展,市区“乘车难”的矛盾日渐突出。1983年初,市基本建设委员会、市科学技术委员会组织有关专家探讨上海的多平面、大容量快速有轨交通工程。4月,市计委向市政府上报《关于建设本市南北快速有轨交通项目建议书》,建议建设南起金山卫、北抵宝山、纵贯南北的快速有轨交通干线,穿越市区的中段为地下铁道。8月,市政府批准项目建议书,并成立上海市南北快速有轨交通线项目筹备组,组织有关单位和国内外专家开展项目的可行性研究。 1985年3月,上海市地铁公司成立,接替上海市南北快速有轨交通线项目筹备组的地铁工程项目可行性研究。1986年7月,市政府向国务院上报建设新龙华至新客站地下铁道的请示报告。8月,国务院批准立项。1988年2月,国务院批准工程可行性研究报告,同时成立上海市地铁工程建设指挥部,组织实施工程建设,由上海市市政工程管理局副局长石礼安兼任指挥。

上海市城市快速轨道交通近期建设规划(2010-2020)

上海市城市快速轨道交通近期建设规划(2010-2020年) 发布单位:上海市环境科学研究院 发布日期:2009年4月2日 一、规划背景及概况 (1) 上海城市轨道交通网络运营现状 目前,上海城市轨道交通已呈现网络化特征,网络效应初步显现。2007年随着“三线两段”(6号线、8号线一期、9号线一期开通试运营,1号线向北延伸3个车站,4号线实现环线运营)开通后,上海城市轨道交通网络运营线路总数达到8条,运营线路总长度达到235km,覆盖全市13个行政区域,形成了“一条环线、七条射线、九个换乘站、九站共线”的网络运营格局。 建成线路运营情况总体呈现出客流总量逐年增加、客流效益显著提高、运营服务水平逐步提升的特点。近年轨道交通在城市公共交通体系中发挥出了重要作用。 表1 上海轨道交通现状运营线路一览表

(2) 2005年编制的近期建设规划 2005年4月,上海申通地铁集团有限公司组织编制了《上海市轨道交通近期规划》,至2012年,包括已运营的线路长度,上海将形成轨道交通网络规模约567km,见表2。 在上述规划基础上,我院编制完成了《上海市城市快速轨道交通近期建设规划环境影响报告书》,并通过了国家环境保护部的审批。 表2 2012年形成的基本网络

(3) 新一轮近期规划的建设项目规模和构成 今年,在原有轨道交通网络规划的基础上,结合“支持城市重点地区开发建设、服务郊区及保障性住房建设、提升对外交通枢纽配套能力、继续支持浦东新区开发开放、完善和加密中心城轨道交通网络”等原则。上海申通地铁集团有限公司又一次组织编制了近期建设规划,新一轮建设项目在2010-2020年期间共13项,包括5条延伸线和8条新建线,线路总长合计约310km,车站189座,见表3。至此,2020年上海城市轨道交通网络总规模将达到约877km,见图1。 表3 新一轮近期建设规划建设项目(2010-2020年)

轨道交通牵引供电系统综述

轨道交通牵引供电系统综述 在各行各业不断发展的今天,轨道交通扮演了非常重要的角色,可以说轨道交通已经成为了现如今生活生产中必不可少的一项组成内容。在轨道交通系统中,牵引系统是重要的组成内容,所以也是轨道交通研究人员重点关注的内容。为了进一步保证轨道交通系统的安全性和可靠性,本文将就轨道交通牵引供电系统展开论述。 标签:轨道交通;牵引供电;供电系统 1 牵引变压器 1.1 普通铁路牵引变压器 普通铁路牵引变电所内的牵引变压器设置了两台,一旦其中一台出现故障那么另一台将启动保证正常供电。原变压电压等级主要是以110kv为主,电气化铁路牵引变电器多选择V/v接线的方式,有时在交大外部电源容量时会采用单相接线形式变压器。 1.2 高速铁路牵引变压器 我国的高速铁路通常采用的是V/x接线牵引变压器。这种牵引变压器方式的构成主要是两台单相变压器,变压器分别和接触网和负馈线连接,中间抽头和钢轨连接。 2 牵引供电系统 2.1 牵引变电站 2.1.1 牵引变电站位置确定 牵引变电站与车站内的降压变电站一起组成牵引降压混合变电站,然而并不是每个车站都是牵引降压混合变电站。它的设置取决于牵引系统网络结构、牵引网电压等级、牵引网电压损失、供电质量,并涉及到杂散电流防护、线路能耗、土建造价及运营维护等因素。 2.1.2 牵引变电站设备 牵引变电站的主要设备是27.5kV开关柜、整流变、整流器、直流1500V正负母排、直流高速开关。27.5kV开关柜应选用SF6绝缘全封闭组合电器,以减少占地面积。27.5kV开关柜进线还配有避雷器,防止雷电波入侵。整流器组由24个整流二极管与24个保护二极管组成,每个牵引变电站有两套整流器组,每套整流器为6相12脉波整流,单独运行时输出的为12脉波的脉动电流,两套并

城市轨道交通牵引供电系统

1牵引供电系统:从主降压变电站(当它不属于电力部门时)及其以后部分统称“牵引供电系统” 2杂散电流:绝大多数电力牵引轨道交通线路是以走行轨为其回路的,由于钢轨大地之间不是绝缘的,因此回流电流必有部分经大地回牵引所,这部分电流因土壤的导电性质,地下管道位置不同,可以分布很广,故称杂散电流。 3.GIS:六氟化硫全封闭组合电器,它是在六氟化硫断路器的基础上把各种控制保护电器全部封装的组合电器设备。 4远动控制:又称遥控即在远离变电所(执行端)的电气设备进行控制。 5距离控制:即在主控制室内对变电所的一次设备集中进行控制监测,开关位置信号-中央信号以及继电保护装置等都配置在主控制室的屏台上,便于监视和管理运行。 6安装接线图:为二次设备的制造安装或调试检修而专门绘制的安装图 7二次原理图:也称归总式原理图,用来表示二次设备中的监视仪表,控制与信号,保护和自动装置等的工作原理图。 一.简述断路器的主要功能?答:断路器又叫高压开关,断路器不仅可以切断和闭合高压电路的空载电流和负载电流,而且,当系统发生故障时,它与保护装置相配合,可以迅速地切断故障电流,以减少停电范围,防止事故扩大,保证系统的安全运行。 二.简述地铁动力照明结构及功能?答: 三.简述直流牵引所的保护?答: 四.接触网设计过程中应满足什么要求?答:1.接触网 悬挂应弹性均匀高度一致, 在高速行车和恶习的气象 条件下,能保证正常取。2. 接触网结构应力求简单,并 保证在施工和运营检修方 面具有充分的可靠性和灵 活性。3.接触网寿命应尽量 长,具有足够的耐磨性和抗 腐蚀能力。4.接触网的建设 应注意节约有色金属及其 他贵重材料,以降低成本。 五.简述地面架空接触网组 成及功能?答:架空式接触 网由接触悬挂,支撑装置, 支柱与基础设施几大部分 组成。接触悬挂是将电能传 导给电动车组的供电设备。 支持装置用来支持悬挂,并 将悬挂的负荷传递给支柱 和固定装置。支柱与基础用 以承受接触悬挂和支撑装 置所传递的负荷(包括自身 重量),并将接触线悬挂固 定在一定高度。 六.简述地下迷流防护措 施?答:在电力牵引方面: 提高供电电压,减小牵引所 距离,采用双边供电,减小 钢轨电阻,增加回流线减少 回流电阻,增加到道泄漏电 阻,定期检测。在埋设金属 管方面:尽量远离,在金属表 面或接头处采用绝缘,采用 防电蚀电缆线路,在电缆上 包铜线套钢管,在地下管道 涂沥青包油毡,设排流装 置。 七.牵引变电所计算需要的 参数有那些?答:1.馈电线 及牵引变电所的平均电流, 有效电流,最大电流;2.电 动车辆或机车在供电区段 内运行时的平均电压损失 及最大电压损失;3.接触网 中平均功率损失等 八.高压控制电路构成及作 用?答:主要由控制元件, 中间放大元件与继电器以 及操作机构等几部分组成。 1控制元件:运行人员用来 发出开关跳,合闸操作命令 的操作按钮。2 中间放大元 件与继电器:将控制元件的 操作命令转化成高压开关 的电磁操作机构所需要的 大电流。3操作机构;直接对 高压开关进行分,合闸操 作。 九.电气主接线的要求是? 答:可靠性:保证在各种运行 方式下,牵引负荷以及其他 动力的供电连续性。灵活 性:在系统故障或变电所设 备故障和检修时,能适应调 度的要求,灵活便捷迅速地 改变运行方式,且故障影响 的范围最小。安全性:保证 在进行一切操作切换时,工 作人员和设备的安全以及 能在安全条件下进行维护 检修工作。经济性应使主接 线投资与运行费用达到经 济合理。 十.简述断路器控制回路的 要求?答;1高压开关的合 跳闸回路是按短路通过大 电流脉冲来设计的。操作或 自动合跳闸完成后,应迅速 自动断开跳合闸回路以免 烧损线圈。2控制回路应能 在控制室由控制开关控制 进行手动跳合闸,又能在自 动装置和继电保护作用下 自动合闸或跳闸,同时能由 远方调度中心发送控制命 令进行跳合闸。3应具有高 压开关位置状态的信号,事 故跳闸与自动合闸的闪光 信号。4.具有防止断路器多 次合跳闸的“防跳”装置。 5.采用液压和气压操作的机 构,跳合闸操作回路中应分 别设有液压和气压闭锁,在 低于规定标准压力情况下, 闭锁操作回路。断路器和隔 离开关配合使用时,应有防 误操作的闭锁措施。6.对跳 合闸回路及其电源的完好 性,应能进行监视。

上海市城市轨道交通现状及发展

上海市城市轨道交通现状及发展 上海市城市轨道交通现状及发展 一、线网建设现状及发展分析 2019年底上海市完成地铁2号西延伸线(长6.2km )、3号线北延伸线(长 15.6km )。至此,上海城轨交通运营总里程达145km 。根据上海轨道交通规划到2019年,上海将有12条轨道交通线建成通车,组成长达311公里的轨道交通线路。根据远景规划,上海整个轨道交通网络中共有17条线路(2019年建成12条),共设车站430座。 项目名称 1号线 2号线 3号线 4号线 轨道线路长类型度(公里)地铁地铁地铁地铁 21.26 18.4 24.97 27 17.04 31 33.1 35 23.3 31 - 120 - - - - - - - 上海市城市轨道交通线网现状及规划 起点 已建项目火车站中山公园清河泾浦西大木桥莘庄龙阳路 莘庄高科路江湾镇浦东蓝村路车站 闵行开发区浦东机场 16 14 19 26 11 2 27 28 22 12 33 38 27 23 - - - - - 65.53 120 84.6 38.1 100 - - - - - - - - - - - - - 1990-1996 1997-2000 1997-2000 -2019 -2019 2001-2019 -2019 2019-2019 -2019 -2019 - - - - - - - - - 终点 车总投站数资(亿元) 工期 5号线轻轨 磁悬浮磁悬机场快线浮列车 6号线 7号线 8号线 9号线 10号线 11号线 12号线 13号线 14号线 15号线 16 号线 17号线 18号线

轻轨地铁地铁地铁地铁地铁地铁地铁地铁轻轨轻轨轻轨轻轨 在建项目 济阳路站港城路站外环路站 龙阳路站 市光路站成山路站松江新城站宜山路站 拟建项目 外高桥保税 高速铁路客 区站临港新城2 城北路 站 虹梅路金海路丰庄路华夏西路环西二大道金桥上海西站环南二大道祁连山路虹口公园上海西站军工路长江西路华夏中路 二、设备现状及发展 上海轨道交通运用了大量先进的新技术,所拥有的硬件设施在国际上处于领 先水平。 车辆分别选用德国和法国技术制造的宽体长身贯通式的电动列车,每节额定载客为310人,最大载客为410人,最高时速80公里,运营平均时速35公里,高峰时段最短行车间隔2.75分钟。 信号采用ATC (列车自动控制)系统,由ATP (列车自动保护)、A TO (列车自动运行)、ATS (列车自动监控)三个子系统组成,实现全自动驾驶,并可监测列车位置,调整续行列车的车速,按照预定要求完成列车调度。 轨道交通各线均使用自动售检票系统,设有多功能的自动售票机,使用的票卡主要有公共交通“一卡通”和单程票,实现了“一票换乘”。 近年来,随着上海城市轨道交通建设力度的增加,上海轨道交通设施也大幅增加。 199 6 96

牵引供电系统简介

牵引供电系统简介 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路:AC110 kV或AC220kV,城市轨道交通:中心变电所AC220kV或AC110kV→AC35kV环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV或AC2×25kV,城市轨道交通:DC750V、DC1500V或DC3000V),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统 图1.2城市轨道交通牵引供电系统

二、牵引网供电方式 1.交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT供电方式和AT供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1)和带回流线的直接供电方式(图2.2)两种。 图2.1 不带回流线的直接供电方式 图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km)。

上海与东京城市轨道交通对比

上海与东京城市轨道交通对比 上海城市轨道交通发展与现状 上海轨道交通开始于1989年,上海地铁1号线一期工程于1995年4月10号开通,运营时间已经超过12年。12年间,上海轨道交通已经发生巨大变化,运营线路从开通之初的1条发展到2007年的8条。 从1995年到2005年运营线路已达到4条线,2005年底到5条线路,运营里里程从开通之初的16.365千米达到112千米,日均客流承载量也由开通之初的24万人次,提高到2005年的160万人次。2005念得运营线路长达77千米,计57座车站,“五一”期间,最大日客流超过203万人次。自进入2005年,轨道线路的客流量继续稳定增长,与2004年相比,日净增客流30万人次。客流稳定高速增长使4条线路的运营设备长期处于高负荷运转状态,早晚高峰时间段列车超载严重,据现场测试,每节车辆乘客超过450人,列车满座率超过130%。 至2007年,上海轨道交通运营里程将达到230千米,共有163座车站投入使用,日均将可承担350万到380万人次的客流量,占公交客运量26%左右。根据规划,上海“十一五”期间将新建10条轨道交通线。长度近400千米。总投资超过1600亿。至2010年上海市轨道交通将有11条线路,运营里程近410千米,共有280座车站投入使用,预计日客流量将达到600万人次以上,轨道客流量在城市公共交通客流量中所占的比重将达到35%以上。届时,上海轨道网络将形成“中心城十字加环、中心城三横六纵、外围区八向辐射”的网络形象,城市轨道交通规模将位居世界前列,与纽约、伦敦等城市的规模并驾齐驱,超过巴黎、东京、波士顿、马德里等城市,客流量也仅次于莫斯科地铁。 东京城市轨道交通发展与现状 东京最早的地铁线路建成于1927年,但到战前的20世纪40年代,成为数不多的4条线路。此后由于战争的影响,直到战后60年代大规模道交通建设才又一次起步。战后东京轨道交通的建设为满足城市快速发交通需求的增长,主要进行了连接东京城市中心、即山手线主要枢纽站市郊区以及东京与周边城市之间的城市内和城市间的轨道交通线路建设造。在城市快速发展的六七十年代,除国家和地方政府的公共项目之外,大量大型私营企业参与了城市轨道交通项目的开发建设,如东武、西武等都是非常具有实力的大型私营轨道交通公司。此外,为了加强首都圈的通勤运输能力.政府以直接投资或对私营线路改造费补助的方式投入巨资,对已有城市轨道交通进行了增设线路等技术改造,实现了旅客列车、货运列车.近距离列车、快速列车、慢行列车等分道行驶以及长编组化和高速化,大幅度提高了输送能力和运行速度。东京城市轨道交通的快速发展不仅有效地解决了首都圈内数千万人的通勤问题,同时极大地促进了城市人口和产业向郊区转移,郊区化的快速发展和城市间联系的日益紧密,使得东京与其周边的其他城市逐渐形成了区域一体化的大型都市圈。 东京的轨道交通系统经过多年的开发和经营,目前已经形成了纵横交错、四通八达的现代化轨道交通网络;运营线路总长约2 300公里,车站数量多达500多个。从轨道交通密度来看,平均轨道交通网络密度达到了约300米/平方公里,23个市区的轨道交通网络密度更是高达约1 010米/平方公里。从这些指标来看.东京轨道交通的发达程度甚至超过了纽约,伦敦、巴黎等其他世畀级城市,可以说是世界上轨道交通网络最为发达的城市。 具体对比 1.城市轨道交通站台宽度对比 通过对日本和我国的城市轨道交通车站站台宽度计算公式的对比,以上海和东京为例 分析可知,日本和我国的城市轨道交通车站站台宽度计算公式存在一定的差异。日本的站台

牵引供电系统简介.

牵引供电系统简介 (丁为民) 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路: AC110 kV或AC220kV ,城市轨道交通:中心变电所AC220kV 或AC110kV →AC35 kV 环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV 或AC2×25kV ,城市轨道交通:DC750V 、DC1500V 或DC3000V ),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统

图1.2 城市轨道交通牵引供电系统 二、牵引网供电方式 1. 交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT 供电方式和AT 供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1 和带回流线的直接供电方式(图2.2 两种。 图2.1 不带回流线的直接供电方式

图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km )。 (2) BT 供电方式 BT (Boost Transformer)供电方式又称吸流变压器供电方式,也是在我国早期电气化铁路中有采用,其主要目的是为了提高牵引网防干扰能力,但随着通讯线路电缆化和光缆化,防干扰矛盾越来越不突出,其生命力也已大大降低,该种供电

城市轨道交通交直流统一的牵引供电计算

第38卷第8期电力系统保护与控制Vol.38 No.8 2010年4月16日Power System Protection and Control Apr.16, 2010 城市轨道交通交直流统一的牵引供电计算 刘 炜,李群湛,陈民武 (西南交通大学电气工程学院,四川 成都 610031) 摘要:针对城轨牵引供电计算现状,即一般将交流系统等效至直流侧进行计算或者交直流侧分开迭代,简化了交直流系统的内在联系,在一定程度上影响计算的精度,探讨了一种基于整流机组模型的城轨牵引供电系统交直流统一的牵引供电计算方法,并采用改进的牛顿-拉夫逊法和高斯-赛德尔法求解,利用10节点直流牵引供电系统进行了验证。提出的交直流统一的牵引供电计算方法已成功应用在城轨牵引供电仿真系统中。 关键词: 城市轨道;牵引供电计算;仿真分析 Study of unified AC / DC power flow in DC traction power supply system LIU Wei, LI Qun-zhan, CHEN Min-wu (School of Electric Engineering, Southwest Jiaotong University, Chengdu 610031, China) Abstract:Traditional power flow for DC traction power supply system usually carries out at DC traction side or executes separately at AC/DC sides, which simplifies the internal relationship and reduces the calculation precision. Through analyzing the model of parallel-connected 12 pulse uncontrolled rectifier, a unified AC/DC power flow for DC traction power system based on improved Newton-Raphson method and Gauss-Seidel method is discussed and applied in 10-node hybrid traction power supply system for practical verification. The unified AC/DC power flow algorithm has been successfully applied in simulation system of DC traction power supply system. Key words:urban railway; traction power calculation; simulation analysis 中图分类号: U231.92; TP391 文献标识码:A 文章编号: 1674-3415(2010)08-0128-06 0 引言 牵引供电计算在城轨供电系统的设计工作中占有极其重要的地位,是进行供电系统设计必须的一项工作,它关系到供电系统构成、牵引供电方式、变电所设置等多项系统设计的关键因素。 国内外众多学者对城轨牵引供电计算进行了深入的研究。Tylavsky对6脉波整流机组建立功率电压方程,采用牛顿-拉夫逊法求解牵引供电系统交直流混合潮流[1]。Yii-Shen Tzeng指出直流牵引供电系统中R/X较大,忽略换相电阻会导致潮流计算误差,其建立的6脉波整流机组模型中详细考虑了换相电阻和精确的基波电流,并提出一种城市轨道交直流统一的潮流计算方法[2]。蔡炎等建立了考虑复杂地网模型的多支路直流牵引供电网络模型,并采用节点电压法进行数值求解[3]。C.S.Chen,Y.S Tzeng分析了12脉波整流机组带平衡电抗器和不带平衡电抗器,各工作模式下的基波、谐波数学模型[4-5]。王晓东基于CAD技术、电路网络理论提出了一种城轨牵引供电系统仿真方法,这种研究方法成功应用在上海地铁1号线、2号线、东方明珠线的牵引供电系统研究中[6]。于松伟、史凤丽建立了牵引网动态模型,采用回路法求解牵引供电系统,并开发了城市轨道交通牵引供电仿真软件URTPS[7]。刘海东将列车牵引计算和供电计算结合,建立了实时计算牵引变电所负荷过程的供电仿真系统[8]。刘学军提出了城轨牵引供电计算的RS模型及其算法[9]。 目前比较成熟的直流牵引供电系统仿真分析软件有Carnegie-Mellon大学的EMM [10];ELBAS针对城轨牵引供电系统仿真的SINANET [11],该系统国内设计院均有引进。国内的一些设计院和科研所也自行研发了仿真分析设计软件。 城轨牵引供电计算一般将交流侧等效至直流侧进行或者交、直流侧分开迭代。实际上城轨供电系统是一混合系统,交直流互相耦合,相互影响。本文在12脉波整流机组模型的基础上,提出城市轨道

城市轨道交通电力牵引复习

城市轨道交通电力牵引 复习 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

城市轨道交通电力牵引复习资料第一章牵引理论基础 1、目前,绝大多数城市轨道交通车辆属于钢轮钢轨式,运行的任何一种工况,都依赖于车轮和钢轨的相互作用力。在钢轮钢轨式城市轨道交通车辆中,牵引动力由牵引电动机通过传动机构,传递给动车的动力轮对(动轮),由车轮和钢轨的相互作用,产生使车辆运动的反作用力。 2、空转:因驱动转矩过大,破坏粘着关系,使轮轨间出现相对滑动的现象,称为“空转”。 3、粘着:由于正压力而保持动轮与钢轨接触处相对静止的现象称为“粘着”。 4、蠕滑:在动轮正压力的作用下,轮轨接触处产生弹性变形,形成椭圆形的接触面。从微观上看,两接触面是粗糙不平的。由于切向力的作用,动轮在钢轨上滚动时,车轮和钢轨的粗糙接触面产生新弹性变形,接触面间出现微量滑动,即“蠕滑”。 5、蠕滑速度:由于蠕滑的存在,牵引时动轮的波动圆周速度将比其前进速度高,速度差称为蠕滑速度,用蠕滑率表示。σ=ωR i?v ,式中v—动轮的前进速度;ω—动轮的转 v 动角速度。 6、论述:粘着系数与改善粘着的方法。(P5) (一)影响粘着系数的重要因素:①动轮踏面与钢轨表面状态;②线路质量;③车辆运行速度和状态;④动车有关部件的状态。 (二)改善粘着的方法:①修正轮轨表面接触条件,改善轮轨表面不清洁状态;②试法改善轨道车辆的悬挂系统,以减轻轮对减载带来的不利影响。常用的措施:撒沙、清洗轨道、打磨钢轨,改进匝瓦材料如用增粘匝瓦,改善车辆悬挂减少轴重转移。

上海城市轨道交通网络建设标准化技术文件

上海城市轨道交通网络建设标准化技术文件 地下区间 土压平衡盾构施工风险控制 建设指导意见 STB-DQ=010002 (试行) 上海申通地铁集团有限公司 上海申通轨道交通研究咨询有限公司

编制说明 当前上海地铁建设的速度与规模在全国位居前列,尽管已经取得了很大的成就,但应清醒地认识到上海地铁所面临的地质条件与环境条件正在变得极为复杂,设备超负荷运转,施工难度加大,技术人才紧缺,风险与挑战仍十分严峻;根据近年来国内其他城市地铁建设中发生事故的态势来看,上海地铁建设风险也不应乐观。各单位对此应有新的认识,对存在的困难与风险应有充分的估计。主要概括为以下几个方面: (1)技术“稀释”严重:目前,上海在建及即将建设的盾构隧道区间将达到几百公里,预计高峰期在地下同时掘进的盾构机台数将可能达到80-90 台;有经验的项目经理、盾构司机及其他辅助技术岗位缺乏,目前在岗大多数为盾构机新手; (2)技术难点及新问题大幅增加;大量盾构隧道将高难度穿越已运行的地铁、磁浮、高速铁路、城市重要生命线以及城市密集居住区等;同时,上海地铁向深层发展导致盾构穿越的土层也发生了较大改变;由原来30 米以内的软土向硬粘土和承压水砂性地层发展,这对是现有盾构的适应性提出了较大挑战,且一些风险在硬土埋深较浅的地段已经暴露出来; (3)风险管理要求更高、难度加大;环境变形控制要求由以往的【+10,-30】mm 变为小于10mm 的毫米级范围,这种极其苛刻条件下的施工,是对施工技术、装备、组织管理、人员素质等施工各要素的严峻考验。常规施工条件下可被忽略的风险,在这种条件下转化为显著风险;常规施工条件下的一般设备缺陷也可能导致工程失败。该类工程实践是对施工队伍的高标准检验,同时,在这种精细化严密控制过程中,可以摸索到以往不曾注意或

城市轨道交通 供电系统讲义

第二章城市轨道交通供电系统描述 ●第一节供电系统的组成与功能 ●地铁供电系统是为地铁运营提供所需电能的系统,它不仅为地铁电动列车提供牵引用 电,而且还为地铁运营服务的其它设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等。 ●地铁供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照 明供电系统、电力监控系统。其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。 幻灯片26 ●地铁系统是一个重要的用电负荷。按规定应为一级负荷,即应由两路电源供电,当任 何一路电源发生故障中断供电时,另一路应能保证地铁重要负荷的全部用电需要。在地铁供电系统中牵引用电负荷为一级负荷,而动力照明等用电负荷根据它们的实际情况可分为一级、二级或三级负荷。地铁外部电源供电方案,可根据实际情况不同分为集中供电方式、分散供电方式和混合供电方式。 幻灯片27 第二节变电所的分类 ●地铁供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、 降压变电所及牵引降压混合变电所。 ●主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其 降压后以中压供给牵引变电所和降压变电所的一种地铁变电所。 ●降压变电所从主变电所(电源开闭所)获得电能并降压变成低压交流电。 ● 幻灯片28 ●牵引变电所从主变电所(电源开闭所)获得电能,经过降压和整流变成电动列车牵引所 需要的直流电。 ●主变电所:专为城市轨道交通系统提供能源的枢纽。 ●牵引变电所:为列车提供适应的电源。 ●降压变电所(配电变电所):为车站、隧道动力照明负荷提供电源。 幻灯片29 第四节供电系统主要运行方式 ● 1 10kV系统运行方式 ● 1.1 正常运行方式 ●变电所10kV母联开关和开闭所间联络开关均处于打开状态,每座变电所由2回电源供 电,两段10kV母线分列运行。变电所由开闭所按不同的供电分区供电。 1.2 其它运行方式 1.2.1 故障或检修运行方式 开闭所一回10kV外电源退出时的运行方式时,合上开闭所母联开关,由另一回10kV外电源向该开闭所供电范围内所有变电所供电。 非开闭所一回10kV进线电源退出运行时,合上该变电所母联开关,由另一回10kV进线电

上海城市轨道交通线网规划的问题及对策_顾保南

上海城市轨道交通线网规划的问题及对策 顾保南郭长弓 (同济大学城市轨道与铁道工程系,201804,上海M第一作者,教授) 摘要随着上海市人口规模的增长及轨道交通线网规划理论研究的深入,上海市轨道交通线网规划的一些问题逐渐显现,因而有必要对现有的上海市轨道交通线网规划进行调整。通过类比、经济分析等方法,提出了上海轨道交通线网规划中存在的4个主要问题:1中心区及核心区的线网密度和车站密度偏低;o市郊放射线数量不足;?市域快线在中心城未实现快速功能;?市域快线在新城内的通过能力未发挥应有的作用。详细论述了解决以上问题的重要性,并提出了初步的应对措施。 关键词上海;城市轨道交通;市域轨道交通;线网规划;车站分布 中图分类号U231 O n Shangh ai Urban Ra il T ransit Network Plann i ng G u Baonan,G uo Chang gong Abstrac t W ith the populati on g row t h and t he dev elop m ent o f ra il transit li ne net w o rk p l ann i ng t heory,s om e prob l em s on ra il tran sit p lann i ng i n Shangha i hav e g radua ll y em erged,so it is necessary t o m ake bett e r ad j ust m ent o f t he ex isti ng rail transit net w o rk p l ann i ng.T hro ugh ana l o gy and eco nom i c analy sis,t h is paper ha s pre s ented4m a i n iss ues i n Shangha i ra il transit ne-t w o rk p l ann i ng:low density o f ro ut e net w o rk and stati o ns in t he centra l and co re a reas;i nsuffic i ent rad i oac ti ve routes from urban centre t o t he suburbs;low er functions o f rap i d trunk li ne s in ur-ban center and the capac it y w aste i n sate llite t ow ns.T his paper d iscusses i n deta il th e i m po rtance o f t hese issues and o ffers sev- e ra l pre li m ina ry response s. K ey word s Shangha;i urban ra il transi;t rapid c ity rail tran-si;t net w o rk plan;d istri buti on o f stati on s F i r st-au thor.s address D epa rt m ent o f R a il w ay Eng i nee ri ng, T ong jiU nive rsit y,201804,Shang ha,i C hina 目前实施的上海市轨道交通线网规划是依据5上海市城市总体规划(1999)2020)6(1999)编制的[1-2]。相应的城市总体规划主要指标是:全市2020年规划常住人口为1600万,其中中心城区人口约850万。然而,2009年上海市实际常住人口已达1921万,其总量超出了2020年的规划人口规模;仅增加的321万常住人口,就会使城市出行需求总量增长800万人次/日以上。在城市道路交通趋于饱和的情况下,出行需求的大部分将分担至轨道交通系统。因此,近期有必要对上海市城市轨道交通线网规划进行全面的修编。 笔者认为,在下一轮上海轨道交通线网修编中,需要重点关注中心区线网密度、郊区放射线、中心城内市域快线、新城内市域线车站分布等方面。本文将针对上述问题进行分析,并提出相应对策。 1中心区及核心区的线网密度 现行的上海轨道交通线网规划有14条线经过中心区,其中有13条线路将在2012年建成通车。为揭示该规划线网中存在的问题,本文选取轨道交通发展更为成熟的日本东京市作为比较对象,进行研究。 1.1上海与东京的可比性分析 东京区部(23区)、东京都(23区+26市)、东京都市圈(半径60km范围)的面积分别为622 km2、1406k m2、约10000km2;2006年,其对应的人口为857万(白天1129万)、1260万、2800万[6]。 上海中心城区的面积为667k m2,近年来常住人口为1000万~1100万人,远期控制在850万~ 900万人;上海市域面积为6340k m2。至2009年底,上海市常住人口已达到1921万,且保持年均30万人的增长趋势,预计远期(2030年)人口将超过2300万;上海都市圈(半径60~70k m)包括太仓、昆山、嘉善3县市,面积约10000km2,远期规划可达2600万~2800万人。 由此可见,未来的上海在人口规模与分布上与东京有很好的可比性。 1.2上海与东京的中心区线网密度比较 上海中心区为道路内环线以内区域,面积约 #4 #

相关主题
文本预览
相关文档 最新文档