当前位置:文档之家› 中性点经消弧线圈瞬时并联小电阻接地研究_韩静 (1)

中性点经消弧线圈瞬时并联小电阻接地研究_韩静 (1)

中性点经消弧线圈瞬时并联小电阻接地研究_韩静 (1)
中性点经消弧线圈瞬时并联小电阻接地研究_韩静 (1)

消弧线圈接地选线原理

1 选线原理 ⑴绝缘监察装置。绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。接成开口三角形的二次线圈供给绝缘监察继电器。系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。其优点是投资小,接线简单、操作及维护方便。其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电。 ⑵零序电流原理。在中性点不接地的电网中发生单相接地故障时,非故障线路零序电流的大小等于本线路的接地电容电流。故障线路零序电流的大小等于所有非故障线路的零序电流之和,也就是所有非故障线路的接地电容电流之和。通常故障线路的零序电流比非故障线路零序电流大得多,利用这一原则,可以采用电流元件区分出接地故障线路。 ⑶零序功率原理。在中性点不接地的电网中发生单相接地故障时,非故障线路的零序电流超前零序电压90°,故障线路的零序电流滞后零序电压90°,故障线路的零序电流与非故障线路的零序电流相位相差180°。根据这一原则,可以利用零序方向元件区分出接地故障线路。 2 消弧线圈接地系统的特点 随着国民经济的不断发展,配网规模日渐扩大,电缆出线日渐增多,系统对地电容电流急剧增加,接地弧光不易自动熄灭,容易产生间隙弧光过电压,进而造成相间短路,使事故扩大。为了防止这种事故,电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》规定;3~10 kV架空线路构成的系统和所有35 kV、66 kV电网,当单相接地故障电流大于10 A时,中性点应装设消弧线圈,3~10 kV电缆线路构成的系统,当单相接地故障电流大于30 A时,中性点应装设消弧线圈。根据这一规定,潮州供电分公司对系统进行改造,采取中性点经消弧线圈接地的运行方式,但是造成了采用零序电流原理、零序功率方向原理的接地选线装置的选线正确率急剧下降。其原因是中性点经消弧线圈接地系统单相接地时,电容电流分布的情况与中性点不接地系统不一样了,如图1所示。

中性点经消弧线圈并联电阻接地方案的实际应用

()[ ]C L X X j R I V -+?=110 ()[]C L X X j R I V -+?=220 中性点经消弧线圈并联电阻接地 消弧选线方案的实际应用 一. 工作原理 消弧线圈接在接地变压器或发电机中性点上,采取预调谐方式,系统正常运行时,装置对中性点电流进行快速采样,通过相位跟踪法测定系统对地电容的变化。为了防止系统发生谐振,消弧线圈串联阻尼电阻,在发生单相接地时自动短接。微机调谐是根据电网的脱谐度进行调节的。 ε=(I L -I C )/ I C 其中ε为脱谐度,I L 为消弧线圈电感电流, I C 为电网的电容电流。 由于I L 为消弧线圈上电感电流,为已知量,因此只要测量出系统对地的电容电流,即可计算出电网的脱谐度。 L 2档时,测量零序回路电流为I 1故: 由(1-1)和(1-2)即可求出R 和X C 。 U φ I C = X C 控制器以脱谐度和残流为判断依据的,投运前先将脱谐度的范围设定为ε=ε1~ε2,当系统的脱谐度超出此范围,调谐器发出指令,控制电机来调整消弧线圈的有载开关,使调整后的脱谐度及残流满足要求。 本篇推荐的DK 选线方法工作过程如下,系统发生单相接地后,对瞬时接地故障,由于流过消弧线圈的电感性电流与流入接地点的电容性电流相位相反,接地弧道中所剩残流很小,对于瞬间接接将自行消失。如果是稳定接地,延时60秒钟后(时间可以任意设定)由计算机控制投入并联电阻(投入时间小于1秒),产生一定的有功电流,该电流流向接地线路,计算机对所有出线 当系统正常运行时,其零序回路的等值电路图如图1所示。 其中: U 0:系统的不对称电压; C :系统对地的等效电容;R :回路电阻;L :有载调节消弧线圈。 图1 系统的零序等效电路 当消弧线圈在L 1档时,测量零序回路电流为I 1,当消弧线圈在

中性点经电阻接地方式的适用范围及优缺点正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 中性点经电阻接地方式的适用范围及优缺点正式版

中性点经电阻接地方式的适用范围及 优缺点正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的

电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容

10kV中压电网采用中性点经消弧线圈接地方式

10kV中压电网采用中性点经消弧线圈接地 方式 2000年第2期 总第78期 冶金动力 M盯^LLUR0ICALPOWER?1? 10kV中压电网采用中性点经消弧线圈接地方式 狰器…例 联锻压勰谆讽 ppl尚PointhingThrough 1概述 3~35kV中压电网的中性点采用何种接地方 式.是一个牵涉到诸多因素的综合性技术问题,如供 电的呵靠性,过电压,电气绝缘水平,继电保护装置 的灵敏度及生产工艺,电气传动等方面. 从国外历史及习惯上来看.以蒋国,西欧一些国 家比较习惯于采用不接地或经消弧线圈接地的方 式因为这种接地方式.当发生单相接地故障时,仍 然可以继续保持供电若干小时.而以美国,日本等国 家大多数习惯于采用中性点经电阻接地方式,这种 接地方式,无论发生单相接地故障或相间故障,继电 保护很灵敏,能快速跳闸切除故障. 从国内历史及习惯上来看,我国因采用前苏联 的方式,而且国标设计规范也是这样要求的:对于架 空输电线,系统电容电流达2OA时,对电力电缆输 电网的系统电容电流达3OA时,需要采用中性点弪 消弧线圈接地的方式.这种接地方式的好处是t一旦

系统发生单相接地故障,由于流弪消弧线圈的电感 电流和系统的电容电流相补偿,减小接地故障电流(一般控制在5~1OA以下),以确保故障点的电弧 在电流过零时自动熄灭.不再复燃,因而可以允许继续保持供电2h(电缆电网).也就是说,保护装置只 发信号,不跳开关.但是.由于非故障相的相电压升 高√3倍.且断续电弧的过电压,系统有可能发生 各种谐振电压,这些对系统中的各种电气设备的绝 缘是非常不利.同时,这种系统需要特殊灵敏的继电器或带微机的继电保护装置. 2宝钢冷轧供电电源中性点接地方式探讨 冷轧之所以采用消弧线圈接地方式,主要是由 于冷轧的工艺,电气传动所要求.众所周知,冷轧板 的带钢很薄,热轧板的带钢较厚.因此,一旦发生供 电线路故障(包括单相接地故障及相问短路),开关 突然跳闸,由于机械惯性和带钢张力等谭c因,将引起严重的"堆钢,.断带及部分带钢在酸洗槽内停留 时间过长被腐蚀,造成废品.另外,突然的断电,使各 种轧辊及机械齿轮部件受到不同程度的损伤,因此 可见,对于冷轧传动工艺,提高供电的可靠性是一个至关重要的要求.也就是说,除了系统发生耜问短路 冶金动力 METALLURGICALPOWER 年第2期 总第78期 必衙马上跳外.在发生单相接地故障时,能继续保 证供电1~2h,以确保生产操作人员有足够的时间 逆于亍有序的停电停机,以满足冷轧传动工艺的特殊

中性点经电阻接地方式的适用范围及优缺点

编订:__________________ 审核:__________________ 单位:__________________ 中性点经电阻接地方式的适用范围及优缺点Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5969-82 中性点经电阻接地方式的适用范围 及优缺点 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随

之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容电流的原则来选择。由于接地故障时总的接地电流比较小,对电气设备和线路所产生的机械应力和热效应也比较小,同样也减少人身遭受电击的危险和靠近接地故障点的人员遭受到电弧和闪络的危险,还可以带故障继续运行2h,以便利用这段时间消除接地故障,保持系统运行的可靠性。 (2)中电阻接地

消弧线圈接地方式

长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。 现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。 一、相接地电容电流的危害 中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面: 1.弧光接地过电压的危害 当电容电流一旦过大,接地点电弧不能自行熄灭。当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。 2.造成接地点热破坏及接地网电压升高 单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。 3.交流杂散电流危害 电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。 4.接地电弧引起瓦斯煤尘爆炸 二、消弧线圈的作用 电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的发生概率。 三、消弧线圈接地方式存在的一些问题:

10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发

消弧线圈工作原理分析

、消弧线圈的工作原理 配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、 可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。 电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消弧线圈接地。两种接地方式各自优缺点:中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的V 3倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。 中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为 3 倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。 中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。 随着社会经济的迅猛发展,电力系统的重要性日益凸显。因而近几年电网的安全可靠运行倍受关注。在电力系统中发生几率最大的故障类型为单相接地故障。而在发生故障后及时确定及切断线路故障则显得尤为重要 配电网中主要采用第二种中性点接地方式。但是以前以架空线路为主的配电网采

关于中性点经小电阻接地方式在运行中存在问题分析(黄)

关于配电网中性点经小电阻接地方式的分析 李景禄1、李政洋1、张春辉2 1.长沙理工大学湖南长沙410076 2.长沙信长电力科技有限公司 湖南长沙(410076) 摘要:本文对配电网中性点小电阻接地方式、对铁磁谐振过电压的消除、对弧光接地过电压的限制及对电网的适用性进行了分析。分析了小电阻接地方式故障点的接地阻抗对零序保护的影响,特别对比分析了架空线路绝缘子闪络造成的瞬时性故障和架空绝缘导线断线接地时对零序保护的影响,认为:小电阻接地方式使供电可靠性下降的原因是架空线路绝缘子闪络时故障电流大,足以启动零序保护,而在架空绝缘导线断线接地时由于接地点接地电阻大会使零序保护“失灵”。因而小电阻接地方式仅适用于纯电缆网络,不适用于架空线路为主或架空电缆混合网。 关键词:小电阻接地方式、单相断线、过渡电阻接地、人身安全Analysis of Neutral Point via Small Resistance Grounding Method Of Distribution Network Li Jinglu1、Li Zheng Yang1、Zhang Chunhui2 (1.Changsha University of Science and Technology.Changsha 410076,China; 2.Changsha Xinchang Power technology co., LTD.Changsha 410076,China) Abstract: In this paper, the distribution network neutral point via small resistance grounding method, elimination of ferroresonance overvoltage, the limitation on the over-voltage of arc light earthing and analyzes the applicability of the power grid. Analysis of the impact of small resistance grounding fault point grounding impedance of zero-sequence protection.Special analysis of the overhead line insulator flashover caused by instantaneous fault and overhead insulated wire break ground on the influence of zero sequence protection.Draw the conclusion: the cause of the small resistance grounding mode led to the decrease of the power supply reliability is overhead line insulator flashover fault current is large enough to start the

消弧线圈原理及 (2)

自动控制消弧线圈 继电保护所保护四班 范永德

消弧线圈的作用 消弧线圈的作用主要是将系统的电容电流加以补偿,使接地点电 流补偿到较小的数值,防止弧光短路,保证安全供电。降低弧隙电压恢复速度,提高弧隙绝缘强度,防止电弧重燃,造成间歇性接地过电压。中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3、系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: (1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。

消弧线圈的作用

消弧线圈的作用 一个电网的存在必然存在着漏电.从那里漏的电呢? 电缆对地的电 容!我们知道,我们采用的是50Hz的频率.而且在传输的过程中是没有零线的,主要的目的是为了节约成本!代替零线的自然就是大地. 三相点他们对大地的距离不一样也就是对大地的电容也不一样! 既然电容不一样,那么漏电流也不一样.漏掉的电流跑到那里去了呢? 这要取决于那条线路距离大地最近.因为漏掉的电流要跑到另外的 线路中!假如A失去电流,那么B或者C就得到电流!容性电流=A- B|A-C 线路越长容性电流就越大!容性电流越大,当发生接地的时候弧光 就不容易熄灭!通过引入消弧线圈来保证整个变电站的接地时候的电流<5A就可以消灭接地弧光!当然:引入消弧线圈后,变电站的系 统有可能是过补(电感电流大于电容电流)或者是欠补(电感电流小于电容电流)但绝对不能相同(电感电流等于电容电流)!

中性点经小电阻接地

中性点经小电阻接地零序过流 0 引言 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系,早期惠州惠阳的配网主要以架空线为主,线路电容电流较小,因此配网主要采用中性点不接地或者经消弧线圈接地并取得较好的效果,随着城网改造的深入,越来越多的采用电缆代替架空线,使得这些地区接地电容电流迅速上升,在这种情况下,中性点不接地或者经过消弧线圈接地已经不能满足系统限制过电压的要求,而且电缆馈线发生故障一般为永久性故障,宜采用迅速切除故障防止故障扩大,所以惠州惠阳10kv配网基本上都采用中性点经低电阻接地(接地变/曲折变),即NRS,由于系统的零序阻抗较小,线路发生单相接地故障时,线路的零序过流保护能够迅速切除故障,10kv母线发生故障时,接入曲折变保护的零序过流保护会动作隔离故障。 1 中性点经小电阻接地的特点 1.1 降低工频过电压和抑制弧光过电压中性点经小电阻接地方式可降低单相接地工频过电压,因为能迅速切除故障线路,使得工频电压升高持续时间很短,中性点电位衰减很快,弧光重燃产生过电压幅值可明显降低,有效地抑制弧光接地过电压。 1.2 消除铁磁谐振过电压和防止断线谐振过电压在中性点不接地系统中,由于电磁式电压互感器的激磁电感和线路的对地电容形成非线型谐振回路,在特定情况下引起铁磁谐振过电压,在中性点经小电阻接地后谐振无法产生。配网中性点不接地系统发生断线时,配电变压器的铁芯线圈与线路对地电容组成的串联回路在特定条件下会发生谐振,产生过电压。中性点经小电阻接地可以防止大部分的断线谐振过电压,减少绝缘老化,延长电气设备使用寿命,提高网络和设备可靠性。 1.3 避免发生高压触电事故配网系统的架空线路分布较广,高度也不太高,时有发生外物误碰高压线路以及高压线断线情况,极易导致触电伤亡事故。中性点经小电阻接地系统装有保护装置,一旦发生接地故障,可以立即跳闸,断

中性点经消弧线圈接地系统接地方式分析

XX大学 二○**届毕业设计 中性点经消弧线圈接地系统接地方式分析 学院: 专业: 姓名: 学号: 指导教师: 完成时间: 二〇*年六月

摘要 电力系统中性点接地方式是一个非常综合的技术问题,它与电网电压等级、电网结构、绝缘水平、供电可靠性、继电保护、电磁干扰、人身安全都有很大的关系。 建国初期,我国10kV配电网主要采用中性点不接地和经消弧线圈接地方式80年代中后期为适应城区电网的迅速发展,特别是电缆的大量使用后,出现了l0kV 配电网中性点经低电阻接地方式,该运行方式先后在许多大中城市如广州、上海、北京、珠海等地采用。经多年的运行实践,各地普通认为低电阻接地方式比消弧线圈接地方式的过电压水平要低,但同时反映出的运行状况也存在较多的问题,主要是供电可靠性有所下降,还曾发生过多起人身伤亡事故。因此国内目前在10kV 电网中性点接地运行方式的选择上出现较大的争议,争议点主要是两种接地方式的应用范围、供电可靠性的高低、人身安全、通信干扰和运行维护工作等诸多方面。 本论文主要针对10kV配电网中性点接地运行方式的选择问题进行研究。论文首先对10kV配电网的中性点各种运行方式进行分析,比较不同运行方式的特点。然后以茅坪变电站10kV电网的实际参数来建立数值计算模型,在考虑了电网接地电容电流变化、接地点接地电阻值变化等多种影响因素的情况下,对中性点经消弧线圈接地系统进行了仿真分析。 关键词:配电网;中性点接地方式;消弧线圈;过电压;

ABSTRACT It is an important technical problem to neutral grounding mode of the electricpower system which associates with voltage level, network structure, insulation level,reliability of power supply, protective relaying, electromagnetic interference, andpersonal safety. In China, the neutral grounding mode of the 10kV network used of nonegrounding, grounding by arc suppressing coils in the past. With the development ofurban power network, especially the widespread use of cables, low resistancegrounding mode was used to restrain the over voltage in Guangzhou, Shanghai,Beijing, and Zhuhai etc. It was reported that the over voltage level of low resistancegrounding mode is lower than that of arc suppressing coil mode, but the operationcarried out the other problems, including reliability of power supply rapidly dropping,and person safety being threatened. So interiorly the grounding mode selection of the10kV network was disputed, which mainly focused on the fault form of 10kV networkgrounding, the apply area of arc suppressing coil grounding mode and low resistancegrounding mode, reliability of power supply, person safety, communicationinterference and the work load of maintenance. This paper studied on how to select the neutral grounding mode of 10kV network.Firstly it analyzed the characteristic of grounding modes about 10kV network. Thenwith the demonstration of Maoping substation in Hubei province, this paper built anumerical value equivalent model. Taking account of the transformation of thecapacitive current or the variety of the grounding point resistance, it simulated theover voltage level and the grounding point short current value of the network with arcsuppressing coil grounding mode or low resistance grounding mode, in addition, this paper discussed the problem of restrained arc over voltage. In this paper , the technical parameters for the arc suppressing coil and associatedequipment were calculated , and reasonable selection has been made to finally realizeautomatic tracing compensation for arc suppressing coil grounding mode. Key words:Power distribution network;Neutral grounding mode;Arc suppressing coil;Over voltage;Automatic tracing compensation

中性点经消弧线圈系统接地故障时选线问题

中性点经消弧线圈接地系统 发生单相故障时选线不准问题分析 小电流接地系统,包括中性点不接地系统,中性点经高阻接地、中性点经消弧线圈接地系统。对于中性点不接地系统,由于不够成短路回路,我国规程规定可以继续运行1~2个小时。但随着线路长度增加,电容电流增大,弧光接地过电压倍数增高,长时间运行还容易造成相间短路,尤其是在中性点接地系统中,发生永久接地时,故而更有必要分开故障线路,进行检修。但是由于中性点经消弧线圈系统具有接地故障电流小、不易燃起电弧等特点,其作用原理是补偿发生接地故障时流过中性点的容性电流,这就造成了故障电流变小的特点,给选线装置提出了技术难题,为深入剖析经消弧线圈接地系统选线不准的原因,有必要对小电流接地系统发生接地时的故障特点进行陈述。 对于中性点不直接接地系统,当发生单相接地故障时电路图如下图所示: 从图中可以看出: 1.电力系统发生单相接地时,故障线路故障相电压近于零,非故障相电压升高为线电压。 2.非故障相线路电容电流值为原来的3倍,相位超前该相对地电压近90度。 3.故障相零序电流最大,为非故障相零序电流之和。 对于中性点经消弧线圈接地系统,当发生单相接地故障时电路图如下图所示:

(a) 图2 中性点经消弧线圈接地示意图 从图中可以看出,当中性点经消弧线圈接地系统,通过接地的电容电流与消弧线圈电感电流相互补偿,在发生单相接地故障时,使流过接地点的电流较小,小电流接地系统一般采用过补偿运行方式,在此种运行情况下,将与中性点不直接接地系统规律不同,故障线路与非故障线路的电流方向大致相同,幅值上也比较接近。 在以上接地故障特征的基础上,对于小电流接地系统故障选线装置,现在通用的单相接地选线方法原则上可以说就是通过故障发生时的故障特征来判断哪条线路发生了故障,这些故障特征一方面是稳态信号,一方面是暂态信号,总的来说稳态故障特征指的就是零序电流、零序电压,相位等,暂态特征指的是高次谐波,因为在发生故障时,高次谐波在故障线路与非故障线路时是不相同的,但总的来说故障电流较小,故障特征不明显是选线理论所要解决的核心问题。 目前,消弧线圈接地系统的单相接地选线方法归纳起来主要有两类,一类是通过改变消弧线圈回路参数来获取接地故障特征的方法;另一类方法不通过改变消弧线圈回路参数,只依据单相接地时的自身接地故障特征。第一类方法应用得最多的是单相接地时在消弧线圈旁并接电阻,以改变接地故障线路的零序电流,通过检测各线路零序电流的改变实现接地故障线路的选择。虽然这种单相接地选线方法具有相对较高的选线正确率,但也存在如下的不足 1)需要增加电阻及相应的开关控制设备,加大了设备成本,且电阻的开关控制设备是系统运行的薄弱环节 2)消弧线圈并接电阻后,其故障线路接地点电流将大幅增加,影响系统的运行安全; 3)消弧线圈并接电阻是在判断系统稳定单相接地后进行的,其接地选线时间一般大于5 s,对小于 5 s 的瞬时单相接地,通常不能反应。 第二类方法不存在以上第一类方法的不足,但由于选线原理和实现手段的缺陷,其大多数单相接地选线方法的选线正确率是较低的,具体的常用的选线原理和算法有如下几种: 1.零序保护原理──该原理是利用故障线路的零序电流大于非故障相线路的零序电

10kV小电阻接地系统运行方式评价

10kV小电阻接地系统运行方式评价 摘要:在对变电站在低压侧接地运行方式分析的基础之上,文章对10kV小电阻接地相关问题进行了研究和探讨,阐述了小电阻接地方式的优点及合理性,并对其进行了评价。 关键词:变电站;小电阻;接地系统;优点 1.引言 近年来,随着城市经济的迅速发展,一些大城市新发展的10 kV 配电网主要采用地下电缆,使对地电容电流大大增加。如果采用消弧线圈接地,则需要较大的补偿容量,而且要配置多台。10kV配电网线路在运行中操作较多,消弧线圈的分接头及时调整有困难,容易出现谐振过电压现象。因此我国许多大城市10 kV配电网采用了中性点经小电阻接地方式来解决这一问题。10 kV中性点小电阻接地方式在我国投入运行时间不长,本文就小电阻接地系统实际运行情况进行了分析,实践证明此种接地方式的选择是合理的,下面就相关问题进行阐述和分析,并给予评价。 2.小电阻接地方式的分析 一般对于郊区变电站10kV侧带出线的变电站采用的是消弧线圈接地方式,对于核心城区变电站采用的是小电阻的接地方式,小电阻接地方式在某些方面弥补了消弧线圈运行方式带来的不足。 2.1消弧线圈接地方式缺点

近年来,随着我国城市电网的发展,城市居民的增多,10kV出线中电缆所占的比重越来越大,中性点经消弧线圈接地运行方式的缺点日渐暴露,主要原因为: (1)消弧线圈各分接头的标称电流和实际电流误差较大,有些甚至可达15%,运行中就发生过由于实际电流值与铭牌数据差别而导致谐振的现象。 (2)计算电容电流和实际电容电流误差较大,对于电缆和架空线混合的出线,单位长度的电容电流也不尽相同,消弧线圈补偿的正确性难以保证。 (3)出线电缆的单相接地故障多为永久性故障。由于中性点经消弧线圈接地的系统为小电流接地系统,发生单相接地永久性故障后,在接地故障点的检出过程中,这对城市中人口密集的现状而言,事故的后果会非常严重。 (4)中性点经消弧线圈接地系统仅能降低弧光接地过电压发生的概率,并不能降低弧光接地过电压的幅值,将使系统设备长时间承受过电压作用,对设备绝缘造成威胁。 综合以上分析,就要考虑小电阻的接地方式。 2.2小电阻接地方式 2.2.1应用介绍 近些年随着配电网的高速发展,电缆线路的比重越来越大,使线路电容电流的数值大幅度增加。据最近对部分变电站电容电流的测量,某些变电站(全站总的接地电容电流已达420A,而且有些变电

中性点经消弧线圈接地系统单相接地故障暂态电流分析

中性点经消弧线圈接地系统单相接地故障暂态电流 摘要:通过对中性点经消弧线圈接地系统单相接地时零序暂态电流的频域分析和时域分析,得出接地导线中零序暂态电流的峰值比健全线路中零序暂态电流的峰值大许多,比较峰值的大小可以识别故障线路,同时得出零序暂态电流的方向是不确定的,不宜采用零序暂态电流的方向作为选线判据。 关键词:消弧线圈;暂态电流;选线 1 引言中性点不接地或经消弧线圈接地称小电流接地。小电流接地系统单 相接地选线长期以来研究不断。根据单相接地时出现的区别于正常运行时的物理现象,人们提出各种各样的选线方法。有些方法已获得应用,有些方法尚在研究之中。本文通过对中性点经消弧线圈接地系统单相接地时零序暂态电流的分析,对零序暂态电流的性质给出明确的物理概念,指出利用零序暂态电流识别故障线路的判据和应注意的问题。 2 中性点经消弧线圈接地系统单相接地时零序等效电路中性点经 回路等效电路如图1所示。L为消弧线圈电感,消弧线圈接地系统单相接地时3I C 为第n条线路的相对地等效电容,R为接地过渡电阻。由于线路相对地等效电n 阻值远大于相对地等效容抗值,故忽略不计,消弧线圈电阻与感抗相比,电阻也sin(ωt+a)是故障相电源电压。中性点经消弧线圈接地系可忽略不计,u=U m 统发生单相接地时,相当于图1等效电路的零状态响应。 (s)经计算得接地导线和第n条线路电流的拉氏变换表达式I(s)和I n 为:

3 零序暂态电流分析

用待定系数法确定P、Q、K、H数值,便可获得式(1)的解。式(2)也用类似方法求解。 举例:某中性点经消弧线圈接地的10 kV系统,有12条电缆线路,系统对地等效电容C=48×10-6F,消弧线圈电感L=0.2 H,分析上述三种情况的零序暂态电流。 3.1二次三项式有两个不相等的实数根 取R=20Ω,代入C和L数据,则 式(3)中的前两项是流过接地导线中的暂态分量;第三项是流过接地导线中的稳态分量,即补偿后的残流,“+”号表示属于电感性质(过补偿)。

消弧线圈工作原理分析

一、消弧线圈的工作原理 配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。 电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消 弧线圈接地。两种接地方式各自优缺点: 中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的√3 倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。 中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为3倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。 中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。 随着社会经济的迅猛发展,电力系统的重要性日益凸显。因而近几年电网的安全可靠运行倍受关注。在电力系统中发生几率最大的故障类型为单相接地故障。而在发生故障后及时确定及切断线路故障则显得尤为重要

变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 6 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 7 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知............................................ - 9 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

相关主题
文本预览
相关文档 最新文档