当前位置:文档之家› 蚁群算法C

蚁群算法C

蚁群算法C
蚁群算法C

这里发个贴吧里面的蚁群算法代码。

// AO.cpp : 定义控制台应用程序的入口点。

#pragma once

#include

#include

#include

const double ALPHA=1.0; //启发因子,信息素的重要程度

const double BETA=2.0; //期望因子,城市间距离的重要程度

const double ROU=0.5; //信息素残留参数

const int N_ANT_COUNT=34; //蚂蚁数量

const int N_IT_COUNT=1000; //迭代次数

const int N_CITY_COUNT=51; //城市数量

const double DBQ=100.0; //总的信息素

const double DB_MAX=10e9; //一个标志数,10的9次方

double g_Trial[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间信息素,就是环境信息素double g_Distance[N_CITY_COUNT][N_CITY_COUNT]; //两两城市间距离

//eil51.tsp城市坐标数据

double x_Ary[N_CITY_COUNT]=

{

37,49,52,20,40,21,17,31,52,51,

42,31,5,12,36,52,27,17,13,57,

62,42,16,8,7,27,30,43,58,58,

37,38,46,61,62,63,32,45,59,5,

10,21,5,30,39,32,25,25,48,56,

30

};

double y_Ary[N_CITY_COUNT]=

{

52,49,64,26,30,47,63,62,33,21,

41,32,25,42,16,41,23,33,13,58,

42,57,57,52,38,68,48,67,48,27,

69,46,10,33,63,69,22,35,15,6,

17,10,64,15,10,39,32,55,28,37,

40

};

//返回指定范围内的随机整数

int rnd(int nLow,int nUpper)

{

return nLow+(nUpper-nLow)*rand()/(RAND_MAX+1);

}

//返回指定范围内的随机浮点数

double rnd(double dbLow,double dbUpper)

{

double dbTemp=rand()/((double)RAND_MAX+1.0);

return dbLow+dbTemp*(dbUpper-dbLow);

}

//返回浮点数四舍五入取整后的浮点数

double ROUND(double dbA)

{

return (double)((int)(dbA+0.5));

}

//定义蚂蚁类

class CAnt

{

public:

CAnt(void);

~CAnt(void);

public:

int m_nPath[N_CITY_COUNT]; //蚂蚁走的路径

double m_dbPathLength; //蚂蚁走过的路径长度

int m_nAllowedCity[N_CITY_COUNT]; //没去过的城市 int m_nCurCityNo; //当前所在城市编号

int m_nMovedCityCount; //已经去过的城市数量public:

int ChooseNextCity(); //选择下一个城市

void Init(); //初始化

void Move(); //蚂蚁在城市间移动

void Search(); //搜索路径

void CalPathLength(); //计算蚂蚁走过的路径长度};

//构造函数

CAnt::CAnt(void)

{

}

//析构函数

CAnt::~CAnt(void)

{

}

//初始化函数,蚂蚁搜索前调用

void CAnt::Init()

{

for (int i=0;i

{

m_nAllowedCity[i]=1; //设置全部城市为没有去过 m_nPath[i]=0; //蚂蚁走的路径全部设置为0

}

//蚂蚁走过的路径长度设置为0

m_dbPathLength=0.0;

//随机选择一个出发城市

m_nCurCityNo=rnd(0,N_CITY_COUNT);

//把出发城市保存入路径数组中

m_nPath[0]=m_nCurCityNo;

//标识出发城市为已经去过了

m_nAllowedCity[m_nCurCityNo]=0;

//已经去过的城市数量设置为1

m_nMovedCityCount=1;

}

//选择下一个城市

//返回值为城市编号

int CAnt::ChooseNextCity()

{

int nSelectedCity=-1; //返回结果,先暂时把其设置为-1

//============================================================================ ==

//计算当前城市和没去过的城市之间的信息素总和

double dbTotal=0.0;

double prob[N_CITY_COUNT]; //保存各个城市被选中的概率

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

prob[i]=pow(g_Trial[m_nCurCityNo][i],ALPHA)*pow(1.0/g_Distance[m_nCurCityNo][i],BET A); //该城市和当前城市间的信息素

dbTotal=dbTotal+prob[i]; //累加信息素,得到总和

}

else //如果城市去过了,则其被选中的概率值为0

{

prob[i]=0.0;

}

}

//============================================================================ ==

//进行轮盘选择

double dbTemp=0.0;

if (dbTotal > 0.0) //总的信息素值大于0

{

dbTemp=rnd(0.0,dbTotal); //取一个随机数

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

dbTemp=dbTemp-prob[i]; //这个操作相当于转动轮盘,如果对轮盘选择不熟悉,仔细考虑一下

if (dbTemp < 0.0) //轮盘停止转动,记下城市编号,直接跳出循环

{

nSelectedCity=i;

break;

}

}

}

}

//============================================================================ ==

//如果城市间的信息素非常小( 小到比double能够表示的最小的数字还要小)

//那么由于浮点运算的误差原因,上面计算的概率总和可能为0

//会出现经过上述操作,没有城市被选择出来

//出现这种情况,就把第一个没去过的城市作为返回结果

//题外话:刚开始看的时候,下面这段代码困惑了我很长时间,想不通为何要有这段代码,后来才搞清楚。

if (nSelectedCity == -1)

{

for (int i=0;i

{

if (m_nAllowedCity[i] == 1) //城市没去过

{

nSelectedCity=i;

break;

}

}

}

//============================================================================ ==

//返回结果,就是城市的编号

return nSelectedCity;

}

//蚂蚁在城市间移动

void CAnt::Move()

{

int nCityNo=ChooseNextCity(); //选择下一个城市

m_nPath[m_nMovedCityCount]=nCityNo; //保存蚂蚁走的路径

m_nAllowedCity[nCityNo]=0;//把这个城市设置成已经去过了

m_nCurCityNo=nCityNo; //改变当前所在城市为选择的城市

m_nMovedCityCount++; //已经去过的城市数量加1

}

//蚂蚁进行搜索一次

void CAnt::Search()

{

Init(); //蚂蚁搜索前,先初始化

//如果蚂蚁去过的城市数量小于城市数量,就继续移动

while (m_nMovedCityCount < N_CITY_COUNT)

{

Move();

}

//完成搜索后计算走过的路径长度

CalPathLength();

}

//计算蚂蚁走过的路径长度

void CAnt::CalPathLength()

{

m_dbPathLength=0.0; //先把路径长度置0

int m=0;

int n=0;

for (int i=1;i

{

m=m_nPath[i];

n=m_nPath[i-1];

m_dbPathLength=m_dbPathLength+g_Distance[m][n];

}

//加上从最后城市返回出发城市的距离

n=m_nPath[0];

m_dbPathLength=m_dbPathLength+g_Distance[m][n];

}

//tsp类

class CTsp

{

public:

CTsp(void);

~CTsp(void);

public:

CAnt m_cAntAry[N_ANT_COUNT]; //蚂蚁数组

CAnt m_cBestAnt; //定义一个蚂蚁变量,用来保存搜索过程中的最优结果 //该蚂蚁不参与搜索,只是用来保存最优结果public:

//初始化数据

void InitData();

//开始搜索

void Search();

//更新环境信息素

void UpdateTrial();

};

//构造函数

CTsp::CTsp(void)

{

}

CTsp::~CTsp(void)

{

}

//初始化数据

void CTsp::InitData()

{

//先把最优蚂蚁的路径长度设置成一个很大的值

m_cBestAnt.m_dbPathLength=DB_MAX;

//计算两两城市间距离

double dbTemp=0.0;

for (int i=0;i

{

for (int j=0;j

{

dbTemp=(x_Ary[i]-x_Ary[j])*(x_Ary[i]-x_Ary[j])+(y_Ary[i]-y_Ary[j])*(y_Ary[i]-y_Ary[j]); dbTemp=pow(dbTemp,0.5);

g_Distance[i][j]=ROUND(dbTemp);

}

}

//初始化环境信息素,先把城市间的信息素设置成一样

//这里设置成1.0,设置成多少对结果影响不是太大,对算法收敛速度有些影响

for (int i=0;i

{

for (int j=0;j

{

g_Trial[i][j]=1.0;

}

}

}

//更新环境信息素

void CTsp::UpdateTrial()

{

//临时数组,保存各只蚂蚁在两两城市间新留下的信息素

double dbTempAry[N_CITY_COUNT][N_CITY_COUNT];

memset(dbTempAry,0,sizeof(dbTempAry)); //先全部设置为0

//计算新增加的信息素,保存到临时数组里

int m=0;

int n=0;

for (int i=0;i

{

for (int j=1;j

{

m=m_cAntAry[i].m_nPath[j];

n=m_cAntAry[i].m_nPath[j-1];

dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;

dbTempAry[m][n]=dbTempAry[n][m];

}

//最后城市和开始城市之间的信息素

n=m_cAntAry[i].m_nPath[0];

dbTempAry[n][m]=dbTempAry[n][m]+DBQ/m_cAntAry[i].m_dbPathLength;

dbTempAry[m][n]=dbTempAry[n][m];

}

//==================================================================

//更新环境信息素

for (int i=0;i

{

for (int j=0;j

{

g_Trial[i][j]=g_Trial[i][j]*ROU+dbTempAry[i][j]; //最新的环境信息素= 留存的信息素+ 新留下的信息素

}

}

}

void CTsp::Search()

{

char cBuf[256]; //打印信息用

//在迭代次数内进行循环

for (int i=0;i

{

//每只蚂蚁搜索一遍

for (int j=0;j

{

m_cAntAry[j].Search();

}

//保存最佳结果

for (int j=0;j

{

if (m_cAntAry[j].m_dbPathLength < m_cBestAnt.m_dbPathLength) {

m_cBestAnt=m_cAntAry[j];

}

}

//更新环境信息素

UpdateTrial();

//输出目前为止找到的最优路径的长度

sprintf(cBuf,"\n[%d] %.0f",i+1,m_cBestAnt.m_dbPathLength);

printf(cBuf);

}

}

int main()

{

//用当前时间点初始化随机种子,防止每次运行的结果都相同

time_t tm;

time(&tm);

unsigned int nSeed=(unsigned int)tm;

srand(nSeed);

//开始搜索

CTsp tsp;

tsp.InitData(); //初始化

tsp.Search(); //开始搜索

//输出结果

printf("\nThe best tour is :\n");

char cBuf[128];

for (int i=0;i

{

sprintf(cBuf,"d ",tsp.m_cBestAnt.m_nPath[i]+1);

if (i % 20 == 0)

{

printf("\n");

}

printf(cBuf);

}

printf("\n\nPress any key to exit!");

getchar();

return 0;

}

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

蚁群算法

蚁群算法 目录 1 蚁群算法基本思想 (1) 1.1蚁群算法简介 (1) 1.2蚁群行为分析 (1) 1.3蚁群算法解决优化问题的基本思想 (2) 1.4蚁群算法的特点 (2) 2 蚁群算法解决TSP问题 (3) 2.1关于TSP (3) 2.2蚁群算法解决TSP问题基本原理 (3) 2.3蚁群算法解决TSP问题基本步骤 (5) 3 案例 (6) 3.1问题描述 (6) 3.2解题思路及步骤 (6) 3.3MATLB程序实现 (7) 3.1.1 清空环境 (7) 3.2.2 导入数据 (7) 3.3.3 计算城市间相互距离 (7) 3.3.4 初始化参数 (7) 3.3.5 迭代寻找最佳路径 (7) 3.3.6 结果显示 (7) 3.3.7 绘图 (7)

1 蚁群算法基本思想 1.1 蚁群算法简介 蚁群算法(ant colony algrothrim,ACA)是由意大利学者多里戈(Dorigo M)、马聂佐(Maniezzo V )等人于20世纪90初从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来的一种新型的模拟进化算法。该算法用蚁群在搜索食物源的过程中所体现出来的寻优能力来解决一些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的方法来引导每个蚂蚁的行动。 蚁群算法能够被用于解决大多数优化问题或者能够转化为优化求解的问题,现在其应用领域已扩展到多目标优化、数据分类、数据聚类、模式识别、电信QoS管理、生物系统建模、流程规划、信号处理、机器人控制、决策支持以及仿真和系统辩识等方面。 蚁群算法是群智能理论研究领域的一种主要算法。 1.2 蚁群行为分析 B m=20 t=0 m=10 m=10 t=1

蚁群算法相关概念

蚁群算法,PSO算法以及两种算法可以融合的几种方法 蚁群算法(ACO)是受自然界中蚂蚁搜索食物行为的启发,是一种群智能优化算法。它基于对自然界真实蚁群的集体觅食行为的研究,模拟真实的蚁群协作过程。算法由若干个蚂蚁共同构造解路径,通过在解路径上遗留并交换信息素提高解的质量,进而达到优化的目的。蚁群算法作为通用随机优化方法,已经成功的应用于TSP等一系列组合优化问题中,并取得了较好的结果。但由于该算法是典型的概率算法,算法中的参数设定通常由实验方法确定,导致方法的优化性能与人的经验密切相关,很难使算法性能最优化。 蚁群算法中每只蚂蚁要选择下一步所要走的地方,在选路过程中,蚂蚁依据概率函数 选择将要去的地方,这个概率取决于地点间距离和信息素的强度。(t+n) = (t)+ Δ (t+n) 上述方程表示信息素的保留率,1-表示信息素的挥发率,为了防止信息的无限积累,取值范围限定在0~1。Δ ij 表示蚂蚁k在时间段t到(t +n)的过程中,在i到j的路径上留下的残留信息浓度。

在上述概率方程中,参数α和β:是通过实验确定的。它们对算法性能同样有很大的影响。α值的大小表明留在每个节点上信息量受重视的程度,其值越大,蚂蚁选择被选过的地点的可能性越大。β值的大小表明启发式信息受重视的程度。 这两个参数对蚁群算法性能的影响和作用是相互配合,密切相关的。但是这两个参数只能依靠经验或重复调试来选择。 在采用蚁群-粒子群混合算法时,我们可以利用PSO对蚁群系统参数α和β的进行训练。 具体训练过程:假设有n个粒子组成一个群落,其中第i个粒子表示为一个二维的向量xi = ( xi1 , xi2 ) , i = 1, 2, ?,n,即第i个粒子在搜索空间的中的位置是xi。换言之,每个粒子的位置就是一个潜在的解。将xi带入反馈到蚁群系统并按目标函数就可以计算出其适应值,根据适应值的大小衡量解的优劣。 蚁群算法的优点: 蚁群算法与其他启发式算法相比,在求解性能上,具有很强的鲁棒性(对基本蚁群算法模型稍加修改,便可以应用于其他问题)和搜索较好解的能力。 蚁群算法是一种基于种群的进化算法,具有本质并行性,易于并行实现。 蚁群算法很容易与多种启发式算法结合,以改善算法性能。

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

蚁群算法TSP问题matlab源代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta ,Rho,Q) %%===================================================== ==================== %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.doczj.com/doc/852050541.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×4的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%===================================================== ==================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=max( ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5,min(abs(C(i,3)-C(j,3)),144- abs(C(i,3)-C(j,3))) );%计算城市间距离 else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线

蚁群算法

蚁群算法报告及代码 一、狼群算法 狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。 算法采用基于人工狼主体的自下而上的设计方法和基 于职责分工的协作式搜索路径结构。如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。 二、布谷鸟算法 布谷鸟算法 布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS 算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS 也采用相关的Levy 飞行搜索机制 蚁群算法介绍及其源代码。 具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。 应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能 三、差分算法 差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。 算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体

的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。 四、免疫算法 免疫算法是一种具有生成+检测的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。 五、人工蜂群算法 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,科学家提出了人工蜂群算法ABC模型。 六、万有引力算法 万有引力算法是一种基于万有引力定律和牛顿第二定律的种群优化算法。该算法通过种群的粒子位置移动来寻找最优解,即随着算法的循环,粒子靠它们之间的万有引力在搜索空间内不断运动,当粒子移动到最优位置时,最优解便找到了。 GSA即引力搜索算法,是一种优化算法的基础上的重力和质量相互作用的算法。GSA 的机制是基于宇宙万有引力定律中两个质量的相互作用。 七、萤火虫算法 萤火虫算法源于模拟自然界萤火虫在晚上的群聚活动的自然现象而提出的,在萤火虫的群聚活动中,每只萤火虫通过散发荧光素与同伴进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一代的移动,最终使的萤火虫聚集到较好的萤火虫周围,也即是找到多个极值

4蚁群算法的基本思想

蚁群算法的基本思想 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优 化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感 来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且 最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达 所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当 一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这 里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物, 开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无 关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁 来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的 蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来, 从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短 的路径就找到了。 蚁群算法的基本思想如下图表示:

(二)算法描述 基本蚁群算法的算法简单描述如下: 1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素; 2.随着时间的推移,较短路径的信息素浓度升高; 3.蚂蚁再次遇到障碍物时,会选 择信息素浓度高的路径; 4.较短路径的信息素浓度继续升高,最终最优路径 被选择出来。 三、随机蚁群算法 在基本蚁群算法中,蚂蚁会在多条可选择的路径中,自动选择出最短的一 条路径。但是,一旦蚁群选择了一条比之前短的路径,就会认为这条路径是最 好的,在这条路径上一直走下去。这样的算法存在问题:蚂蚁可能只是找到了 局部的最短路径,而忽略了全局最优解。 因此,在基本蚁群算法的基础上,需要对蚂蚁选路的方案加以改善:有些 蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,也就是它会按 照一定的概率不往信息素高的地方。如果令开辟的道路比原来的其他道路更短,

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

人工蚁群算法的实现与性能分析

目录.................................................... 错误!未定义书签。摘要. (ii) Abstract (iii) 第一章引言 (1) 1.1 非对称TSP问题(ATSP)及其求解方法概述 (1) 1.2 人工蚁群算法的主要思想和特点 (1) 1.3 主要工作 (2) 第二章 ATSP问题分析 (3) 2.1 ATSP问题的数学模型 (3) 2.2 ATSP问题与TSP问题的比较 (3) 第三章求解ATSP问题的人工蚁群算法 (4) 3.1 ATSP问题的蚁群算法表示 (4) 3.2 人工蚁群算法的实现 (4) 3.2.1 人工蚁群算法的流程图 (5) 3.2.2 蚁群的规模、算法终止条件 (6) 3.2.3 路径选择方法和信息素的更新方法 (7) 第四章实验和分析 (10) 4.1 测试环境 (10) 4.2 测试用例 (10) 4.3 实验结果及参数分析 (10) 4.3.1 br17.atsp的测试结果 (10) 4.3.2 ft53.atsp的测试结果 (12) 4.3.3 ftv33.atsp的测试结果 (13) 4.3.4 ftv35.atsp的测试结果 (15) 4.3.5 br17.atsp相关参数修改后的测试结果 (16) 第五章总结 (19) 致谢 (20) 参考文献 (21)

摘要 旅行商问题(TSP问题)是组合优化的著名难题。它具有广泛的应用背景,如计算机、网络、电气布线、加工排序、通信调度等。已经证明TSP问题是NP难题,鉴于其重要的工程与理论价值,TSP常作为算法性能研究的典型算例。TSP的最简单形象描述是:给定n个城市,有一个旅行商从某一城市出发,访问各城市一次且仅有一次后再回到原出发城市,要求找出一条最短的巡回路径。TSP分为对称TSP和非对称TSP两大类,若两城市往返距离相同,则为对称TSP,否则为非对称TSP 。本文研究的是对称的ATSP。 实质上,ATSP问题是在TSP问题上发展而来的,它们的区别就在于两座城市之间的往返距离是否相同。例如,有A,B两个城市,在TSP问题中,从A到B的距离是等于从B到A得距离的,是一个单向选择的连通问题。而在ATSP问题中,从A到B的距离就不一定等于从B到A的距离,所以这是双向选择的联通问题。 本文主要阐述了用人工蚁群算法的原理和一些与其相关联的知识结构点。通过对算法原理的理解,及在函数优化问题上的应用,与优化组合问题的研究来了解ATSP问题以及人工蚁群算法解决实际问题上的应用与研究。 关键词:ATSP ;组合优化;人工蚁群算法;TSP

蚁群算法matlab程序代码

先新建一个主程序M文件ACATSP.m 代码如下: function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q) %%================================================== ======================= %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 蚁群算法MATLAB程序最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 表示蚁群算法MATLAB程序信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%================================================== =======================

%% 蚁群算法MATLAB程序第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示 end D(j,i)=D(i,j); %对称矩阵 end end Eta=1./D; %Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n); %Tau为信息素矩阵 Tabu=zeros(m,n); %存储并记录路径的生成

用蚁群算法解决TSP问题

用蚁群算法解决TSP 问题 一、引言 蚁群算法是一种受自然界生物行为启发而产生的“自然”算法,产生于对蚂蚁行为的研究。蚁群中的蚂蚁以“信息素”为媒介,间接异步的相互联系。蚂蚁在行动中,会在他们经过的地方留下一些化学物质,称为“信息素”。这些物质能被同一种群众后来的蚂蚁感受到,并作为一种信号影响后者的行动,具体表现在后到的蚂蚁选择有这些物质的路径的可能性比选择没有这些物质的路径的可能性大的多。后者留下的信息素会对原有的信息素进行加强,并循环下去。这样,经过蚂蚁多的路径,后到蚂蚁选择这条路径的可能性就越来越大。由于在一定的时间内,越短的路径会被越多的蚂蚁访问,因而积累的信息素就越多,在下一个时间内被其他的蚂蚁选中的可能性也越大。这个过程会持续到所有的蚂蚁都走到最短的那一条路径为止。 二、关键技术 (1) 解的表达形式 在应用蚁群优化算法时,只需要建立一个虚拟的始终点,相当于蚁群的巢穴和食物所在地,这样一个所经过城市的路径的排列就构成了一个解; (2) 信息素的记忆和更新 在算法开始时,由于从来没有蚂蚁去寻找过路径,因此可以认为是没有任何先验信息,即每条路上的信息相等。客观地将,信息素应该都为0,但是由于在蚁群算法中,信息素决定了蚂蚁选择这条路径的概率,因此可以认 为初始信息素矩阵为:1/(*(1))0ij N N p -?=?? i j i j ≠=其中N 为城市数 当算法运行过程中,每次放出m 支蚂蚁,每只蚂蚁按照信息素选择路径,将其中路径最短的记录下来,对这条最短路进行信息素的加强;而对于其他路径,因为信息素的挥发,信息素浓度将会降低,更新后的信息素矩阵为: 11(1)//(1)/k ij k ij k ij p N p p ρρρ--?-+?=?-?? i j i j →→经过路径不经过路径其中N 为城市数,ρ为挥发系数 (3) 蚁群的规模 在一般应用中,蚁群中蚂蚁的个数m 是固定数,不超过TSP 图的节点数。

蚁群算法matlab

蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解 % % % the procedure of ant colony algorithm for VRP % % % % % % % % % % % % %initialize the parameters of ant colony algorithms load data.txt; d=data(:,2:3); g=data(:,4); m=31; % 蚂蚁数 alpha=1; belta=4;% 决定tao和miu重要性的参数 lmda=0; rou=0.9; %衰减系数 q0=0.95; % 概率 tao0=1/(31*841.04);%初始信息素 Q=1;% 蚂蚁循环一周所释放的信息素 defined_phrm=15.0; % initial pheromone level value QV=100; % 车辆容量 vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40; % 计算两点的距离 for i=1:32; for j=1:32;

dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2); end; end; %给tao miu赋初值 for i=1:32; for j=1:32; if i~=j; %s(i,j)=dist(i,1)+dist(1,j)-dist(i,j); tao(i,j)=defined_phrm; miu(i,j)=1/dist(i,j); end; end; end; for k=1:32; for k=1:32; deltao(i,j)=0; end; end; best_cost=10000; for n_gen=1:50; print_head(n_gen); for i=1:m; %best_solution=[]; print_head2(i);

蚁群算法解决旅游线路问题

2011年第八届苏北数学建模联赛 承诺书 我们仔细阅读了第八届苏北数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们的参赛报名号为: 参赛组别(研究生或本科或专科): 本科组 参赛队员(签名) : 队员1:唐文辉 队员2:徐玲 队员3:涂杰 获奖证书邮寄地址:

摘要 本文就旅游线路的优化设计问题,根据旅游者在旅行中的旅游时间,旅游费用,旅游地点,交通状况,住宿等因素的约束,借助图论,蚁群算法,建立最优化数学模型。在最短路路线的基础上,综合考虑交通,用费,时间对问题(2)、(3)、(4)、(5)的影响,给出旅游路线,并用lingo程序对结论进行检验,确保结论的全局最优性。 针对问题(1),首先,由城市经纬度建立城市和城市之间距离的有向图图论模型,在建立图论模型的基础上,建立在城市之间距离矩阵,采用蚁群算法,得到一条最短闭合路线。根据最短路线,查找合适时间的车次,距车站或景点一定范围内的最便宜的宾馆,达到费用最小。结合实际,得出最优路线:徐州->常州->舟山->黄山->庐山->武汉->洛阳->西安->祁县->北京->青岛->徐州,得到行程表和旅游最小费用3551元。 针对问题(2),采用衔接最得当,城市间交通时间和最少的交通方式,由此找出交通方式的时间最优化配置,进而得到最优路线:徐州->舟山->黄山->武汉->九江->常州->洛阳->西安->祁县->青岛->北京->徐州,并得到行程表和最短旅游时间9天。 针对问题(3)在问题(1)的基础上,对每个旅游景区最短停留时间,门票费用加权赋值建立权向量。运用层次分析法,分别求出权重。根据权重,分别求出每个景点综合花销。在2000元旅费的限制下,在最短路线上删除耗时长,费用高的城市。重新查找删去城市后城市间的交通费,得到旅游行程表和最多旅游景点7个,旅行线路:徐州->青岛->北京->祁县->西安->洛阳->武汉->九江。 针对问题(4),在基于问题(2)的结果下,首先,将问题(2)中停留时间(离开时刻与到达时刻之差)较长的城市从路线中删除,直到满足小于5天为止。重新查找删去城市后城市间的交通时间,对路线进行微调后,得到旅游行程表和最多旅游景点7个,分别是:徐州->北京->青岛->祁县->西安->洛阳->武汉->常州->徐州。 针对问题(5),对问题(3)和问题(4)综合考虑,找出其中时间相对长,旅游费用相对大的城市,进行排名并逐个剔除,并做适当调整。当满足条件时,得出行程表和费时5天、总费用1798元的结论,具体路线:徐州->北京->青岛->祁县->西安->洛阳->常州->徐州。 最后,对模型的优缺点进行了分析,提出改进方案。 关键字:TSP问题蚁群lingo 最优 1问题重述 江苏徐州有一位旅游爱好者打算现在的今年的五月一日早上8点之后出发,到全国一些著名景点旅游,最后回到徐州。他预选了十个省市旅游景点,如表1

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

蚁群算法MATLAB代码

function [y,val]=QACStic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

蚁群算法解决TSP问题的MATLAB程序

蚁群算法TSP(旅行商问题)通用matlab程序 function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha, Beta,Rho,Q) %%=================================================================== %% ACA TSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.doczj.com/doc/852050541.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%=================================================================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线 L_best=inf.*ones(NC_max,1);%各代最佳路线的长度 L_ave=zeros(NC_max,1);%各代路线的平均长度

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

相关主题
文本预览
相关文档 最新文档