当前位置:文档之家› 天然气制氢

天然气制氢

天然气制氢
天然气制氢

天然气制氢

利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。

天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。

1 天然气制氢的选择理论分析

氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。

2 天然气制氢工艺原理

天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生.

反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q

主要技术指标。压力:1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。

3、天然气水蒸汽重整制氢需解决的关键问题

天然气水蒸汽重整制氢需吸收大量的热,制氢过程能耗高,燃料成本占生产成本的50-70%。辽河油田在该领域进行了大量有成效的研究工作,在油气集输企业建有大批工业生产装置,考虑到氢在炼厂和未来能源领域的应用,天然气水蒸气转化工艺技术不能满足未能满足大规模制氢的要求。因此研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证,新工艺技术应在降低生产装置投资和减少生产成本方面应有明显的突破。

4、天然气制氢新工艺和新技术分析

天然气绝热转化制氢。该技术最突出的特色是大部分原料反应本质为部分氧化反应,控速步骤已成为快速部分氧化反应,较大幅度地提高了天然气制氢装置的生产能力。天然气绝热转化制氢工艺采用廉价的空气做氧源,设计的含有氧分布器的反应器可解决催化剂床层热点问题及能量的合理分配,催化材料的反应稳定性也因床层热点降低而得到较大提

高,天然气绝热转化制氢在加氢站小规模现场制氢更能体现其生产能力强的特点。该新工艺具有流程短和操作单元简单的优点,可明显降低小规模现场制氢装置投资和制氢成本。

天然气部分氧化制氢。天然气催化部分氧化制合成气,相比传统的蒸汽重整方法比,该过程能耗低,采用极其廉价的耐火材料堆砌反应器,但天然气催化部分氧化制氢因大量纯氧而增加了昂贵的空分装置投资和制氧成本。采用高温无机陶瓷透氧膜作为天然气催化部分氧化的反应器,将廉价制氧与天然气催化部分氧化制氢结合同时进行。初步技术经济评估结果表明,同常规生产过程相比,其装置投资将降低约25——30%,生产成本将降低30-50%。

天然气高温裂解制氢。天然气高温裂解制氢是天然气经高温催化分解为氢和碳该过程由于不产生二氧化碳,被认为是连接化石燃料和可再生能源之间的过渡工艺过程。辽河油田对于天然气高温催化裂解制氢,广泛开展了大量研究工作,所产生的碳能够具有特定的重要用途和广阔的市场前景。

天然气自热重整制氢。该工艺同重整工艺相比,变外供热为自供热,反应热量利用较为合理,原理是在反应器中耦合了放热的天然气燃烧反应和强吸热的天然气水蒸汽重整反应,反应体系本身可实现自供热。另外,由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低等缺点。

5.天然气脱硫制氢技术

辽河油田在原合成氨造气工艺基础上对转化炉、脱硫变换、热量回收系统等进行了大胆改革,采用创新装置,比老工艺大为减少,天然气消耗也降低约1/3。技术特点:天然气加压脱硫后与水蒸汽在装填有催化剂的特殊转化炉裂解重整,生成氢气、二氧化碳和一氧化碳的转化气,回收部分热量后,经变换降低转化气中CO含量、变换气再通过变压吸附(PSA)提纯得到氢气。

主要性能指标。在一定压力下,利用活性碳、硅胶、分子筛、氧化铝多种吸附剂组成的复合吸附床,将甲醇裂解气、合成氨驰放气、炼油厂的催化裂化干气、变换气、水煤气和半水煤气等各种含氢气源中杂质组分在较低压力下选择吸附,难吸附的氢从吸附塔出口作为产品气输出,以达到提纯氢气目的。

生产能力:根据用户需要一般为400~20000Nm3/h;

产品纯度:99%~99.999%(v/v);

产品压力:1.3~2.0MPa-g;

主要技术指标。处理原料量:10~5000Nm/h;吸附压力:0.8Mpa~2.4Mpa;氢气纯度:99.9~99.99%;氢气提取率:75~90%(视原料气条件和产品气要求而定)

6. 氢气分离、提纯

吸附塔是交替进行吸附、解吸和吸附准备过程来达到连续产出氢气。氢气在压力一定下进入PSA-H2系统.富氢气自下而上通过装填有专用吸附剂的吸附塔,从吸附塔顶部收集到的产品氢气输出界外.当床层中的吸附剂被CO.CH4.N2饱和后,富氢气切换到其他吸附塔.在吸附-解吸的过程中,吸附完毕的塔内仍留着一定压力的产品氢,利用这部分纯氢给刚解吸完毕的另外几个均压塔分别均压和冲洗,这样做不仅利用了吸附塔内残存的氢气,还减缓了吸附塔的升压速度,也就减缓了吸附塔的疲劳程度,有效达到了分离氢,达到氢和杂质组分的分离。

天然气制氢的基本原理及工业技术进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下:

1)可逆反应在一定的条件下,反应可以向右进行生成CO 和H2,称为正反应;随着生成物浓度的增加,反应也可以 向左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO 和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含 量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

天然气制氢

天然气制氢 1.制氢原理 1.天然气脱硫本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1?5%1 勺氢,在约400C高温 下发生下述反应: RSH+H 2=H2S+RH H 2S+MnO=MnS2+OH 经铁锰系脱硫剂初步转化吸收后,剩余勺硫化氢,再在采用勺氧化锌催化剂作用下发生下述脱硫反应而被吸收: H 2S+ZnO=ZnS+2OH C 2H5SH+ZnO=ZnS+2HC4+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至O.lppm以下,以满足蒸汽转化催化剂对硫的要求。 2蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃--- 蒸汽转化反应, 主要反应如下: CH 4+H3CO+3HQ ⑴ 一氧化碳产氢CO + H 2O CO2 + H 2 +Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积炭,氧化等。 在转化反应中,要使转化率高,残余甲烷少,氢纯度高,反应温度就要高。但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积炭,增加收率,要控制较大的水碳比。 3变换反应的反应方程式如下: CO+H 2O=CO2+H2+Q 这是一个可逆的放热反应,降低温度和增加过量的水蒸汽,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。为使最终CO浓度降到低的程度,只有低变催化剂才能胜任。高低变串联不仅充分发挥了两种催化剂各自的特点,而且为生产过程中的废热利用创造了良好的条 4改良热钾碱法 改良热钾碱溶液中含碳酸钾,二乙醇胺及VO。碳酸钾做吸收剂、二乙醇胺做催化剂、它起着加快吸收和解吸的作用。VO5为缓蚀剂,可以使碳钢表面产生致密的保护膜,从而防止碳钢的腐蚀。KCO吸收CO的反应机理如下: K2CO+CO+H

炼厂干气制氢工艺流程介绍

干气制氢工艺流程 (一)造气单元 1、进料系统 来自装置外的焦化干气进入原料气缓冲罐,经原料气压缩机压缩至3.2MPa(G)后进入原料气脱硫部分。 2、脱硫部分 进入脱硫部分的原料气经原料气-中变气换热器或开工加热炉(开工时用)升温到230℃左右进入加氢反应器,在其中原料中的不饱和烃通过加氢转化为饱和烃类,床层温度升至380℃左右,此外通过加氢反应,原料中的有机硫转化为无机硫,然后进入氧化锌脱硫反应器脱除硫化氢和氯化氢。经过精制后的气体总硫含量小于0.5PPm,氯化氢含量小于1 PPm,进入转化部分。 3、转化部分 精制后的原料气按水碳比3.5与自产的3.5MPa水蒸汽混合,再经转化炉对流段予热至500℃,进入转化炉辐射段。在催化剂的作用下,发生复杂的水蒸汽转化反应。整个反应过程是吸热的,所需热量由分布在转化炉顶部的气体燃料烧嘴提供,出转化炉840℃高温转化气经转化气蒸汽发生器换热后,温度降至360℃,进入中温变换部分。 4、变换部分 来自转化气蒸汽发生器约360℃的转化气进入中温变换反应器,在催化剂的作用下发生变换反应,将变换气中CO含量降至3%左右。中变气经原料气-中变气换热器、中变气蒸汽发生器、中变气-脱氧水换热器、中变气-除盐水换热器进行热交换回收大部分余热后,再经中变气空冷器冷却至40℃,并经分水后进入中变气PSA单元。 5、热回收及产汽系统 来自装置外的脱盐水与来自酸性水气提塔的净化水混合并经中变气-除盐水换热器预热后进入除氧器。除氧水经锅炉给水泵升压后,再经中变气-脱氧水换热器预热后进入中压汽包。

锅炉水通过自然循环的方式分别经过转化炉对流段的产汽段及转化气蒸汽发生器产生中压蒸汽。所产生的中压蒸汽在转化炉对流段蒸汽过热段过热至440℃离开汽包。一部分蒸汽作为工艺蒸汽使用;另一部分进入全厂中压蒸汽管网。 (二)中变气PSA单元 来自造气单元压力约2.1MPa(G)、温度40℃中变气进入界区后,自塔底进入吸附塔中正处于吸附工况的塔(始终同时有两台),在其中多种吸附剂的依次选择吸附下,一次性除去氢以外的几乎所有杂质,获得纯度大于99.9 的产品氢气,经压力调节系统稳压后送出装置。 当吸附剂吸附饱和后,通过程控阀门切换至其它塔吸附,吸附饱和的塔则转入再生过程。在再生过程中,吸附塔首先经过连续四次均压降压过程尽量回收塔内死空间氢气,然后通过顺放步序将剩余的大部分氢气放入顺放气罐(用作以后冲洗步序的冲洗气源),再通过逆放和冲洗两个步序使被吸附杂质解吸出来。逆放解吸气进入解吸气缓冲罐,冲洗解吸气进入解吸气缓冲罐,然后经调节阀调节混合后稳定地送往造气单元的转化炉作为燃料气。

天然气制氢成本

天然气制氢 一、装置概况 20万吨/年天然气制硝酸铵装置配套,10万吨/年合成氨装置,需要氢气量25625Nm3/h. 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成,工艺路线及产品规格 该制氢装置已天然气为原料,采用干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 二、天然气制氢工艺原理 2.1 天然气脱硫 本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应: RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化吸收后,剩余的硫化氢,再在采用的氧化锌催化剂作用下发生下述脱硫反应而被吸收: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.2蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,主要反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积碳,增加收率,要控制较大的水碳比。

气制氢装置工艺流程简介及主要设备情况说明

制氢装置工艺流程简介及主要设备情况说明 天然气制氢装置于2008年从中石化洞氮合成氨车间原料气头部分搬迁至神华。当年设计、当年施工,当年投产。目前运行良好。 工艺流程简要说明如下。 界区来的1.5MPa压力等级的天然气或液化干气在0101-LM和116-F脱液和除去杂质,进入原料气压缩机102-J压缩至4.2MPa, 通过调节进入转化炉对流段加热至350℃左右,进入加氢反应器 101-D加氢(有机硫转化为无机硫),氧化锌脱硫反应器108- DA/DB除去无机硫(H2S),然后与装置内中压蒸汽管网来的 3.5MPa等级的蒸汽混合,在转化炉对流段加热至500±10℃,进入一段转化炉101-B,在镍系催化剂和高温的作用下反应,约80%左 右的原料气转化生成CO、CO2、H2,工艺介质的温度从810℃降至330℃,其中的热量在废热锅炉101-CA/CB、102-C中得到回收利用,副产10.0MPa压力等级的蒸汽,减压并入装置内3.5MPa蒸汽管网。降温后的工艺介质进入高变反应器104DA将大部分的CO变换成 CO2,回收部分氢气,再在低变反应器104DB中反应,将少量的 CO变换成CO2和H2,经过热量回收和液体脱除后,工艺介质进入脱碳系统吸收塔1101-E,与上部下来的碳酸钾溶液对流换热、脱除CO2,吸收了热量和CO2的碳酸钾溶液从塔底进入再生塔1101-E 再生,脱除CO2后的工艺介质(氢气含量大于93%)从吸收塔顶去PSA工序,经过变压吸附得到纯度为99.5%以上的氢气,经压缩至3.0MPa送至全厂氢气管网,经过变压吸附吸附下来的富甲烷气作为燃料送至装置内转化炉燃烧。流程简图如下:

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

天然气制氢装置工艺技术规范

天然气制氢装置工艺技术规程 1.1装置概况规模及任务 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成 1.2工艺路线及产品规格 该制氢装置已天然气为原料,采纳干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 1.3消耗定额(1000Nm3氢气作为单位产品) 2.1工艺过程原料及工艺流程 2.1.1工艺原理 1.天然气脱硫 本装置采纳干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采纳铁锰系转化汲取型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应:

RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化汲取后,剩余的硫化氢,再在采纳的氧化锌催化剂作用下发生下述脱硫反应而被汲取: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流淌方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,要紧反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,因此炉温不宜太高。为缓和

制氢装置工艺流程说明

制氢装置工艺流程说明 1.1 膜分离系统 膜分离单元主要由原料气预处理和膜分离两部分组成。 混合加氢干气经干气压缩机升压至 3.4MPa,升温至110℃,首先进入冷却器(E-102)冷却至45℃左右,然后进入预处理系统,预处理系统由旋风分离器(V-101)、前置过滤器(F-101AB)、精密过滤器(F-102AB)和加热器(E-101)组成。 预处理的目的是除去原料气中可能含有的液态烃和水,以及固体颗粒,从而得到清洁的饱和气体,为防止饱和气体在膜表面凝结,在进入膜分离器前,先进入加热器(E-101)加热到80℃左右,使其远离露点。 经过预处理的气体直接进入膜分离器(M-101),膜分离器将氢气与其他气体分离,从而实现提纯氢气的目的。 每个膜分离器外形类似一管壳式热交换器,膜分离器壳内由数千根中空纤维膜丝填充,类似于管束。原料气从上端侧面进入膜分离器。由于各种气体组分在透过中空纤维膜时的溶解度和扩散系数不同,导致不同气体在膜中的相对渗透速率不同,在原料气的各组分中氢气的相对渗透速率最快,从而可将氢气分离提纯。 在原料气沿膜分离器长度方向流动时,更多的氢气进入中空纤维。在中空纤维芯侧得到94%的富氢产品,称为渗透

气,压力为1.3 MPa(G),该气体经产品冷却器(E-103)冷却到40℃后进入氢气管网。 没有透过中空纤维膜的贫氢气体在壳侧富集,称为尾气,尾气进入制氢下工序。 本单元设有联锁导流阀(HV-103)和联锁放空阀(HV-104),当紧急停车时,膜前切断阀(HV-101)关闭,保护膜分离器,同时HV-103和HV-104自动打开,保证原料气通过HV-103直接进入制氢装置,确保制氢装置连续生产;通过HV-104的分流,可以保证通过HV-103进入制氢装置的气体流量不至于波动过大,使制氢装置平稳运行。 1.2 脱硫系统 本制氢装置原料共有三种:轻石脑油、焦化干气、加氢干气(渣油加氢干气、柴油加氢脱硫净化气、加氢裂化干气)。 以石脑油为原料时,石脑油由系统管网进入,先进入原料缓冲罐(V2001),然后由石脑油泵(P2001A、P2001B、P2001C、P2001D)抽出经加压至4.45MPa后进入原料预热炉(F2001)。钴-钼加氢脱硫所需的氢气,由柴油加氢装置来,但是一般采用南北制氢来的纯氢气或由PSA返回的自产氢经压缩机加压后在石脑油泵出口与石脑油混合,一起进入原料预热炉。 以加氢干气和焦化干气为原料时,干气首先进入加氢干气分液罐(V2002),经分液后进入加氢干气压缩机(C2001A、

1500Nm3-h天然气转化制氢装置项目建议书

xxxx集团有限公司 1500Nm3/h天然气转化制氢装置 项目建议书 编号:xxxx-xxxx-1112

一、总论 1.1 装置名称及建设地点 装置名称:1500Nm3/h 天然气制氢装置 建设地点:xxxx 1.2 装置能力和年操作时间 装置能力: :1500Nm3/h; H 2 纯度: ≧99.99(V/V) 压力≧2.0 MPa(待定) 年操作时间:≧8000h 操作范围:40%-110% 1.3 原料 天然气(参考条件,请根据实际组分修改完善): 1.4 产品 氢气产品

1.5 公用工程规格 1.5.1 脱盐水 ●温度:常温 ●压力:0.05MPa(G) ●水质:电导率≤5μS/cm 溶解O2 ≤2 mg/kg 氯化物≤0.1 mg/kg 硅酸盐(以SiO2计) ≤0.2 mg/kg Fe ≤0.1 mg/kg 1.5.2 循环冷却水 ●供水温度:≤28℃ ●回水温度:≤40℃ ●供水压力:≥0.40MPa ●回水压力:≥0.25MPa ●氯离子≤25 mg/kg 1.5.3 电 ●交流电:相数/电压等级/频率 3 PH/380V/50Hz ●交流电:相数/电压等级/频率 1 PH/220V/50Hz ● UPS交流电:相数/电压等级/频率 1 PH/220V/50Hz 1.5.4 仪表空气 ●压力: 0.7MPa

●温度:常温 ●露点: -55 ℃ ●含尘量: <1mg/m3,含尘颗粒直径小于3μm。 ●含油量:油份含量控制在1ppm以下 1.5.5 氮气 ●压力: 0.6MPa ●温度: 40℃ ●需求量:在装置建成初次置换使用,总量约为5000 Nm3 正常生产时不用 1.6 公用工程及原材料消耗 注:电耗与原料天然气压力有关。

水电解制氢装置工作原理结构及工艺流程

水电解制氢装置 工作原理结构及工艺流程 1.水电解制氢装置工作原理 水电解制氢的原理是由浸没在电解液中的一对电极中 间隔以防止气体渗透的隔膜而构成的水电解池 ,当通以一定 的直流电时,水就发生分解,在阴极析出氢气 ,阳极析出氧气。 其反应式如下: 阴 极: 2H 2O +2e →H 2↑+2OH - 阳 极: 2OH - -2e →H 2O +1/2O 2↑ 直流额定电压(V ) 28 56 总反应: 2H 2O →2H 2↑+O 2↑ 产生的氢气进入干燥部分,由干燥剂吸附氢气携带的水 分,达到用户对氢气湿度的要求。 本装置干燥部分采用原料氢气再生,在一干燥塔再生的 同时,另一干燥塔继续进行工作。 2.水电解制氢装置的用途与技术参数

纯水耗量(kg/h) 5 10 主电源动力电源容量40 75 (KVA) 原料水水质要电导率≤5μs/cm 氯离子含量<2mg/l 悬浮求物<1mg/l 3 冷却水用量(m/h) 3 整流柜冷却水出口背压<0.1Mpa 电解槽直流电耗≤4.8KWh/m3H2 碱液浓度26~30%KOH 自控气源压力0.5~0.7Mpa 气源耗量 3.5m3/h 主电源动力电电压N380V50HzC相~220V50Hz 整流柜电源0.5KV380 三相四线50Hz 控制柜电源AC220V50Hz 冷却水温度≤32℃ 冷却水压力0.4~0.6MPa

冷却水水质≤6德国度 氢气出口温度≤40℃ 干燥温控温度250℃~350℃ 干燥加热终止温度180℃ 干燥器再生周期24h 环境温度0~45℃ 表1 制氢装置主要技术参数表 2.1设备的用途 CNDQ系列水电解制氢干燥装置是中国船舶重工集团 公司第七一八研究所新研制 成功并独家生产的全自动操作的制氢干燥设备,其主要技术指标达到或超过九十年代末世界先进水平,适用于化工、冶金、电子、航天等对氢气质量要求高的部门,是目前国内最先进的并可替代进口的制氢设备。 2.2主要技术参数 CNDQ5~10/3.2型水电解制氢干燥装置的主要技术参数 如表1

氨分解炉的氨分解制氢设备工艺流程简述

一、氨分解制氢流程简述: 利用液氨为原料,氨经裂解后,每公斤液氨裂解可制得2.64Nm3混合气体,其中含75%的氢气和25%的氮气。所得的气体含杂质较少(杂质中含水汽约2克/立方米,残余氨约1000ppm),再通过分子筛(美国UOP)吸附纯化器,气体的露点可降至-60℃以下,残余氨可降至3PPM以下.氨裂解制氢炉可用于有色金属,硅钢、铬钢和不锈钢等金属材料和零件的光亮退火、硅钢片的脱碳处理、铜基、铁基粉末冶金烧结、电真空器件的金属零件烧氢处理、半导体器件的保护烧结和封结、钯合金膜扩散纯化氢气的原料气等。 原料氨容易得到,价格低廉,原料消耗较少。氨裂解来制取保护气体具有投资少,体积小,效率高等优点(苏州宏博净化设备提供氨分解制氢一站式气体解决方案) 二、氨分解制氢工作原理: 氨(气态)在一定温度下,经催化剂作用下裂解伟75%的氢气和25%的氮气,并吸收21.9千卡热量,其主要反应为:2NH3=3H2+N2-21.9千卡,整个过程因是吸热膨胀反应,提高温度有利于氨裂解,同时它又是体积扩大的反应,降低压力有利于氨的分解,氨分解制氢设备为使用最佳状态。 三、氢气纯化工作原理: 当氨分解制氢设备所产生的氢气合格时再进入氢气纯化作进一步提纯处理,裂解氢气的纯度很高,其中挥发性杂质只有微量的残氨和水分,可见只须除去微量残氨和水分,即可获得高纯度气体。 气体提纯采用变温吸附技术。变温吸附(TSA)技术是以吸附剂(多孔固体物质),内部表面对气体分子在不同温度下吸附性能不同为基础的一种气体分离纯化工艺。常温时吸附杂质气,加温时脱付杂质气,分子筛表面全是微孔,在常温常压下可吸附相当于自重20%静态时吸附的水分和杂质,

制氢装置

天然气制氢 天然气制氢 由天然气蒸汽转化制转化气和变压吸附(PSA)提纯氢气两部分组成。压缩并脱硫后天然气与水蒸汽混合后,在镍催化剂的作用下于高温下将天然气烷烃转化为氢气、一氧化碳和二氧化碳的转化气,转化气可以通过变换将一氧化碳变换为氢气,成为变换气,然后,转化气或者变换气通过变压吸附过程,得到高纯度的氢气。 1.1.1.1 工艺原理 1)原料气脱硫 原料天然气经转化炉对流段加热到300~380℃后,原料气通过加氢催化剂, 完成烯烃加氢饱和,同时将有机硫转化成无机硫;原料经过加氢饱和及有机硫转 化后,再通过氧化锌脱硫剂,将原料气中的H2S脱至0.1PPm以下,以满足镍 系蒸汽转化催化剂对硫的要求,其主要反应(以硫醇和噻酚为例)如下: RSH+H2→H2S+RH C4H4S+4H2→H2S+C4H10 H2S+ZnO→ZnS+H2O 2)烃类的蒸汽转化 天然气硫脱至0.1PPm以下后与工艺蒸汽按3.2~3.8比例混合,进入混合 气预热盘管进一步预热至530~580℃进入转化管,在催化剂床层中,甲烷与水 蒸汽反应生成H2和CO,CO继续与水蒸汽反应生成CO2。甲烷转化所需热量 是由燃烧燃料混合气提供。在镍催化剂存在下其主要反应如下: CH4+H20(汽) = CO +3H2-49200Kcal/Kmol(转化反应) CO+H20(汽) = CO2 +H2+9840Kcal/Kmol (变换反应) 高级烷烃的裂解反应(400~600℃) CnH2n+2+nH2O(蒸汽) =(2n+1) H2 + n CO 3)一氧化碳变换反应 转化气经废热锅炉回收热量后,温度降至360℃左右进入中温变换炉,在铁

天然气制氢工艺与技术

天然气制氢工艺与技术 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力: 1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题

天然气制氢

天然气制氢 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力:1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题 天然气水蒸汽重整制氢需吸收大量的热,制氢过程能耗高,燃料成本占生产成本的50-70%。辽河油田在该领域进行了大量有成效的研究工作,在油气集输企业建有大批工业生产装置,考虑到氢在炼厂和未来能源领域的应用,天然气水蒸气转化工艺技术不能满足未能满足大规模制氢的要求。因此研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证,新工艺技术应在降低生产装置投资和减少生产成本方面应有明显的突破。 4、天然气制氢新工艺和新技术分析 天然气绝热转化制氢。该技术最突出的特色是大部分原料反应本质为部分氧化反应,控速步骤已成为快速部分氧化反应,较大幅度地提高了天然气制氢装置的生产能力。天然气绝热转化制氢工艺采用廉价的空气做氧源,设计的含有氧分布器的反应器可解决催化剂床层热点问题及能量的合理分配,催化材料的反应稳定性也因床层热点降低而得到较大提

天然气制氢技术的不同方法

几种天然气制氢技术的介绍 1、天然气部分氧化制氢技术 天然气氧化制氢技术和传统的蒸汽重整方法相比,其能耗相比较而言是低的,主要采用比较低廉的耐火材料堆砌反应,但是这个过程也需要纯度比较高的氧气,这也无形中增加了制氧成本和设备成本,天然气催化部分的氧化器主要是采用了高温无机陶瓷,这样能够将廉价制氧和制氢相结合。 2、自热重整制氢 这个工艺流程转变了由外部供热到内部自己提供热源,对能源利用比较合理,这个过程主要是在反应产生的热量能够被其他反应需要热量所利用,实现自身供热。这个技术的工作原理就是在反应器中耦合了一些热量,这些热量主要是天然气燃烧反应所产生,同时还可以天然气水蒸气进行反应,能够实现反应的自供热。另外,由于自热重整反应器中强放热反应和强吸热反应分步进行,这个过程仍然需要一些高端抗高温的仪器,这些仪器主要有不锈钢管,在也就增加了天然气制氢的成本,同时还有生产力低下等一下缺点。 3、高温裂解制氢技术 天然气高温裂解制氢是天然气经高温催化分解为氢和碳该过程由于不产生 二氧化碳,被认为是连接化石燃料和可再生能源之间的过渡工艺过程。辽河油田对于天然气高温催化裂解制氢,广泛开展了大量研究工作,所产生的碳能够具有特定的重要用途和广阔的市场前景。 4、绝热转化制氢技术 绝热转化制氢技术在当前比较先进,这种技术最大的特点就是其反应原料为部分氧化反应,能够提高天然气制氢装置的能力,可以更好地控制速度步骤。天然气转化制氢工艺主要采用的是空气痒源,设计的含有氧分布器的反应器可解决催化剂床层热点问题及能量的合理分配,催化材料的反应稳定性也因床层热点降低而得到较大提高,天然气绝热转化制氢在加氢站小规模现场制氢更能体现其生产能力强的特点,并且该新工艺具有流程短和操作单元简单的优点,通过该工艺能够降低投资成本和制氢成本,能够提高企业的经济效益。

制氢流程

10000Nm3/h制氢装置 装置概况 装置建设规模10000Nm3/h纯氢,按年开工8000小时计算,相当于年产纯氢0.72万吨;装置上线为13000Nm3/h纯氢。 装置组成 本装置有以下几部分装置组成 原料压缩、预热; 原料加氢、脱硫; 原料气转化及中温变换; 中变气换热、冷却及换热分液 中变气变压吸附提纯; 酸性水处理及蒸汽发生; 生产方法及流程特点 本装置采用烃类水蒸气转化法造气和变压吸附氢提纯的工艺流程,该流程简单、成熟可靠、产品氢气纯度高。 主要产品及副产品 本装置产品为工业氢气,产量为10000Nm3/h纯氢;装置副产变压吸附尾气全部用作转化炉燃料。 原材料及产品性质 原材料性质 本装置的主要原料为脱硫后的焦化干气及加氢干气(称为混合干气)催化干气作为本装置的备用原料,主要原料性质如下: 产品性质 工业氢气温度40℃压力2.0MPa 组成见表 物料平衡

制氢装置物料平衡 主要设备: 设备总台数77台 反应器:5台塔:1座加热炉:2座换热器:7台 空冷器:2片废热锅炉:1台(即转化炉对流段)蒸汽发生器:2台 压缩机:2台泵:6台(两台磷酸盐加药泵与溶解槽撬装)风机:4台 容器:17台(包括两台磷酸盐溶解槽)烟囱:1座蒸汽减温器:1台 其他小型设备:26台 工艺流程说明 来自焦化装置的压力为0.6MPa(G)的脱硫后混合干气在压缩机入口分液罐分液后,通过原料气压缩机(K-2201)升压到 3.1MPa后,经原料气-中变气换热器或开工加热炉(F-2201)升温到280℃左右进入绝热加氢反应器(R-2201),在其中有机硫加氢转化为硫化氢,烯烃加氢饱和后,出口温度达到约360℃,进入脱硫反应器(R-2202)吸附其中的氯化物和硫化氢后总硫含量小于0.5ppm,氯化氢小于1ppm。 当采用催化干气做原料时,来自界区外的0.6MPa(G)催化干气在压缩机入口分液罐分液后,通过原料气压缩机(K-2201)升压到3.1MPa后,经原料气-中变气换热器或开工加热炉(F-2201)升温到230℃左右进入变温反应器(R-2204),在其中有机硫加氢转化为硫化氢,大部分烯烃加氢饱和,该反应器反应放热由来自汽柴油加氢装置的加氢柴油取走,使反应出口温度为270℃左右;然后再进入绝热加氢反应器(R-2201)。 经过上述预处理后的原料气与装置自产蒸汽混合(按H2O/C比3.7的比例)后,在转化炉(F-2202)原料预热段加热到480~520℃进入转化炉管,原料气和蒸汽在管内的催化剂作用下反应生成H2,CO,CO2和部分甲烷,转化炉出口温度为800~820℃,压力为2.4MPa(G),残余甲烷约为6.08%(干基)。 820℃左右的转化气在转化气蒸汽发生器(E-2211)中发生3.5MPa中压蒸汽,同时自身冷却到360℃左右进入中变反应器(R-2203),在反应器中,转化气的CO与水蒸气继续进行变换反应生成H2和CO2,出口的CO小于3%(干基V%)。中变反应器出来的中变气经与原料气换热、中变气蒸汽发生器(E-2205)发生3.5MP中压蒸汽后,经过中变气-脱氧水换热器(E-2201)换热后进入中变气第一分液罐(D-2203),分液后的中变气再与除盐水在中变气-除盐水换热器(E-2202)换热并在中变气第二分液罐(D-2204)分液,分液后的中变气再经中变气空冷器(EC-2201)冷却至65℃后进入中变气第三分液罐(D-2205)分液,分液后的中变气最后经中变气后冷器(E-2206)冷却至40℃后进入中变气第四分液罐(D-2206)分液,分液后的中变气进入变压吸附部分。 中变气在变压吸附部分中经物理吸附,在吸附罐顶引出产品氢气送出装置。PSA排出的

天然气制氢(静设备)操作规程一

第一章概述 一、简介 神华煤制油天然气制氢装置为搬迁项目,主要利用巴陵石化洞庭氮肥厂日产1100吨合成氨装置中的脱硫造气、中低变和脱碳工序的设备、管道以及钢结构等,新增PSA制氢工序。 巴陵石化洞庭氮肥厂合成氨装置是七十年代初从美国凯洛格公司引进的、以石脑油为原料日产850吨合成氨的“气改油”装置。为了扩大生产能力与降低能耗,先后在1988年、1996年对合成氨装置进行了两次改造,最终达到日产1100吨合成氨的生产能力。2004年装置停车。 原巴陵石化洞庭氮肥厂天然气制氢,绝大部分设备为从国外引进的设备。本次神华煤制油天然气制氢装置为巴陵石化洞庭氮肥厂天然气制氢整体搬迁。设备型式包括:转化炉、塔、换热器、反应器、废热锅炉、罐、分离器、储槽、过滤器、离心式压缩机、往复式压缩机、螺杆式压缩机、离心泵、隔膜泵、天车等。机泵驱动方式主要以蒸汽透平、水力透平为主,辅以电机。 二、工艺流程简述 来自界区的天然气经天然气过滤器(0101-LM)除尘后,进入原料气压缩吸入罐(116-F)分离掉其中的液体,分为两股,一股作为燃料气与来自PSA制氢工序的尾气在燃料气混合器(0103-FM)混合后去对流段预热;一股作为原料天然气,配入来自脱碳工序的返氢气后,进入原料气压缩机(0102-J)压缩至4.2MPaA,在对流段预热至400℃,依次进入加氢转化器(101-D)、氧化锌脱硫槽(108-DA/B)脱硫,使天然气中的硫含量降低至0.1ppm以下。脱硫后的天然气按3.5的水碳比配入工艺蒸汽,混合气经一段转化炉对流段的混合气盘管预热到510℃后进入一段转化炉辐射段转化管,在镍触媒的作用下进行蒸汽转化反应生成氢气和一氧化碳。转化反应需要的热量靠一段转化炉辐射段燃烧燃料天然气提供。一段炉出口的转化气温度约813℃,甲烷含量约9.7%(干基),经输气管

天然气制氢装置催化剂装填及使用

天然气制氢装置催化剂装填及使用 1.1加氢和脱硫催化剂装填及使用 铁锰脱硫剂和氧化锌脱硫剂的装填 脱硫剂的装填,请严格按照催化剂厂商的说明书进行,以下装填方法仅供参考。 1、脱硫剂装填所需设备 (1)具有翻板阀的漏斗,用一根长度适当的帆布软管接在阀的底部。 (2)木塔板 (3)安全灯、空气源等 2、检查及准备 (1)先在底部装大直径耐火球,装至高标线100mm处,然后再装较小直径耐火球至标线并在其上放好筛网。 (2)用帆布筒将催化剂装入设备内,注意催化剂落下高度不超过1.5米,人站在放在催化剂上的木塔板上,边装边扒平催化剂,直到标线处为止。 (3)做好整个装填过程的记录

1.2转化催化剂的装填及使用 a、装填所需设备 (1)催化剂计量桶 (2)磅秤>50Kg。三个细帆布装料袋。 (3)桶子,每个10升,三个。 (4)装料漏斗二个,漏斗直径最大处为20mm,漏斗嘴内径50mm,外径<60mm (5)真空卸触媒设备 (6)振荡器、压力表及专用测压装置 (7)带有刻度的测深尺或尺杆,长度最短为12米。 (8)空气源,压力为0.7MPa左右,5.5m3/min (9)空气压差测试装置 (10)有铁丝网保护罩的吊灯或防爆型吊灯及电线 (11)检查催化剂用的筛网 (12)8倍左右的望远镜 为确保无杂物遗留在管内或催化剂托盘上,可采用真空卸触媒装置吸净异物,卸触媒的软管()放入每根炉管底部,

同时使用真空装置,就能保证把掉在里面的松散东西吸出。然后把吊灯放到每根转化管中去,建议使用8倍左右的望远镜来帮助检查。 C、检查催化剂 用一个孔眼为3mm的筛网过滤催化剂,除去触媒碎片并检查有无异物。 d、炉管的测量 用测深游标尺进行测量,装填前先测定总装填高度,确定每次装填高度,每装填一次后要测定剩下高度,经振荡后再测量,做好记录,并作为永久性记录保存,对于同一转化管分装两种催化剂时应先测量并记下底层触媒要求的深度。 e、装催化剂 每根转化炉管的催化剂装填量是按装满的计量桶来计算的,每一次装填桶数应做好记录。 用漏斗将催化剂倒入帆布筒内,再将帆布筒伸入到转化管内使其底部接近装填起始位置,布袋操作的关键是将布袋下端折叠200mm,只要把伸入到炉管的布袋轻轻一提,触媒

氨分解制氢设备工艺流程

氨分解制氢设备工艺流程 添加日期:2012-10-20 一.氨分解制氢流程简述: 利用液氨为原料,氨经裂解后,每公斤液氨裂解可制得2.64Nm3混合气体,其中含75%的氢气和25%的氮气。所得的气体含杂质较少(杂质中含水汽约2克/立方米,残余氨约1000ppm), 再通过分子筛(美国UOP)吸附纯化器,气体的露点可降至-600C以下,残余氨可降至3PPM以下. 氨裂解制氢炉可用于有色金属,硅钢、铬钢和不锈钢等金属材料和零件的光亮退火、硅钢片的脱碳处理、铜基、铁基粉末冶金烧结、电真空器件的金属零件烧氢处理、半导体器件的保护烧结和封结、钯合金膜扩散纯化氢气的原料气等。 原料氨容易得到,价格低廉,原料消耗较少。氨裂解来制取保护气体具有投资少,体积小,效率高等优点 二.氨分解制氢工作原理: 氨(气态)在一定温度下,经催化剂(西南院Z204)作用下裂解为75%的氢气和25%的氮气,并吸收21.9千卡热量,其主要反应为: 2NH3—3H2+N2-21.9千卡 整个过程因是吸热膨胀反应,提高温度有利于氨裂解,同时它又是体积扩大的反应,降低压力有利于氨的分解,氨分解制氢设备为使用最佳状态。 三.氢气纯化工作原理: 当氨分解制氢设备所产生的氢气合格时再进入氢气纯化作进一步提纯处理,裂解氢气的纯度很高,其中挥发性杂质只有微量的残氨和水份,可见只须除去微量残氨和水份即可获得高纯度气体. 气体提纯采用变温吸附技术。变温吸附(TSA)技术是以吸附剂(多孔固体物质)内部表面对气体分子在不同温度下吸附性能不同为基础的一种气体分离纯化工艺.常温时吸附杂质气,加温时脱附杂质气, 分子筛表面全是微孔,在常温常压下可吸附相当于自重20%(静态吸附时的水份和杂质,而在350℃左右的温度下,可以再生完全,每24小时切换一次,以得到纯度和杂质含量均合格的产品气体。

相关主题
相关文档 最新文档