当前位置:文档之家› 微型光伏逆变器拓扑及相关技术研究综述

微型光伏逆变器拓扑及相关技术研究综述

微型光伏逆变器拓扑及相关技术研究综述
微型光伏逆变器拓扑及相关技术研究综述

光伏逆变器拓扑分析详解

变压器拓扑电网连接的单相光伏逆变器 Iván Patrao?, Emilio Figueres, Fran González-Espín, Gabriel Garcerá Grupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain 文章信息 文章历史:收到于2011年1月12日 接受于2011年3月21日 关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源 摘要 为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。 在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。一方面,它是替代经典拓扑结构的基础上提出的。另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。 2011爱思唯尔出版社有限公司版权所有 目录 1.前言 (3423) 2.共模电压问题 (3424) 3.桥拓扑功率变换器 (3425) 3.1.全H桥 (3425) 3.2.半H桥 (3425) 3.3.高效可靠的逆变器的概念(HERIC) (3426) 3.4.H5的拓扑 (3426) 3.5.带发电控制电路的半H桥(GCC) (3426) 4.基于多级拓扑的逆变器 (3427) 4.1.级联H桥(CHB) (3427) 4.2.中点钳位(NPC)半桥 (3427) 4.3.飞电容(FC) (3428) 4.4.电容分压器NPC半桥 (3428) 4.5.ConergyNPC (3428) 4.6.有源NPC(ANPC) (3429) 5. 无变压光伏逆变器基本特性 (3429) 6. 结论 (3429) 鸣谢 (3430) 参考文献 (3430)

双E类逆变器拓扑电路仿真研究

摘要 本科毕业设计(论文) (双E类逆变器拓扑电路仿真研究) *** 燕山大学 2012年6月

摘要 感应加热电源是利用电涡流对工件加热的一种装置,由于具有诸多优点而在工业中得到了广泛的应用。目前,国内中频电源已经非常成熟,高频电源在频率、容量等方面还有待提高。因此本文针对高频电源进行了理论分析和研究。 文中首先介绍了感应加热电源的工作原理并讲述了国内外的研究现状。接下来分析了E类逆变器的工作原理和双E类逆变器的工作原理,以及工作在最佳状态下MOSFET的电流电压波形,为接下来设计双E类逆变器做了准备。然后分析了谐振电路、E类逆变器的谐振频率等,设计计算了双E 逆变器电路的参数。根据双E类逆变器的原理,为使其工作在最佳状态,设计了闭环控制电路。最后用pspice仿真,验证设计方案的可行性。 关键词感应加热;MOSFET;E类逆变器;pspice

Abstract Abstract Power supply for induction heating is an equipment to heat the work piece by whirling current and it is applied widely in industry because of its many virtues. Now, intermediate frequency power supply is perfect, but high frequency power supply has defects in the aspects of frequency and capacity and so on. So high frequency power supply is developed in this thesis. Firstly, operation principle of induction heating is introduced and the actuality of the power supply for induction heating is summarized. Then analysis the operation principle of class-E inverter, double class-E inverter. and the MOSFET current and voltage waveforms in the best condition, which is preparation for design double class-e inverter next. Moreover series resonant inverter is selected as inverter circuit and explain the resonant frequency of class-E and double class-E via analysis. In order to simulation the circuit, the inverter circuit parameters are designed and calculated. According to the principle of double class-E inverter, in order to make it work in the best condition ,design closed-loop control circuit. Finally using pspice simulation to verify the feasibility of the design. Keywords induction heating; MOSFET; class-E inverter; pspice

太阳能逆变器开发思路和方案

内容摘要:摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研 究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言 由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高、最有发展前途的技术之一 。但是光伏发电系统存在着初期投资大、成本较高等缺点,因而探索高性能、低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减少光伏发电系统自身损耗、提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素, 研究其结构与控制方法对于提高系统发电效率、降低成本具有极其重要的意义[5] 。 本文从电网、光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟 待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列、逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量、防止孤岛效应和安全隔离接地3 个要求。为了避免光伏并网发电系统对公共电网的污染, 失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速DSP等新型处理 器,可明显提高并网逆变器的开关频率性能,它已成 逆变器应输出失真度小的正弦波。影响波形 为实际系统广泛采用的技术之一;同时, 逆变器主功率元件的选择也至关重要。小容量低压系统较多地使用功率场效应管(MOSFET),它具有较低的通态压降和较高的开关频率;但MOsFET随着电压升高其通态 电阻增大,因而在高压大容量系统中一般采用绝缘栅双极晶体管(IGBT);而在特大容量系 统中,一般采用可关断晶闸管(GTO)作为功率元件[6]。 依据IEEE 2000-929 [7]和UL1741[8]标准,所有并网逆变器必须具有防孤岛效应的功能。孤岛效应是指当电网因电气故障、误操作或自然因素等原因中断供电时,光伏并网发电系统 未能及时检测出停电状态并切离电网,使光伏并网发电系统与周围

光伏并网逆变器的研究概要

光伏并网逆变器的研究 【中文摘要】针对全球范围内能源紧张的局面,开发利用太阳能越来越受到重视。太阳能光伏并网发电是太阳能利用的主要形式,具有广阔的发展远景。本文就是在此背景下,对太阳能并网发电系统的核心器件并网逆变器进行重点研究。为此,论文主要对逆变器的电路拓扑结构、最大功率点跟踪、并网控制方案以及在并网过程中的反孤岛技术进行了分析研究。首先,简述了国内外光伏发电的现状和发展趋势,根据单相光伏并网发电系统的特点,本文选择了合适的主电路拓扑结构,该结构没有变压器,具有体积小、本钱低、控制方案易实现等优点。其次,通过比较分析目前太阳能电池进行最大功率跟踪的各种传统方法,运用了一种基于改进型Fibonacci线性搜索的最大功率跟踪算法。理论上证实了通过调节DC/DC升压电路的占空比可以改变太阳能电池的输出功率,以使太阳能电池工作于最大输出功率点上。本文阐述了添加反孤岛效应保护的必要性,通过对反孤岛效应的主动和被动检测方法的对比,最后采用了周期性扰动AFDPF检测方法并对其进行仿真验证。最后,本文对光伏并网逆变器的控制方案进行了分析,采用了基于SPWM的电流输出控制算法,该方法具有开关频率固定、物理意义清楚、实现方便等优点,通过MATLAB进行了仿真,结果表明了该方案的有效性和可行性。'); 【Abstract】 For the strenuous energy sources currently in the global scope,exploiting and utilizing the solar energy is paid more attention by many people than before. Photovoltaic(PV) generation,one important method of using solar energy,is very promising.Under this background,the dissertation deeply researches the PV grid-connected inverter,which is the hard core of the system.The *** analyzed the topology of the inverter,maximum power point tracing(MPPT),the control method of the inverter and the technology of grid-connected such as anti-island.Firstly,it briefly introduces the present situation and the development prospects of Photovoltaic generating at home and abroad.Based on the character of single-phase PV grid-connected system,the *** expatiated a suitable topological construction,which doesn\'t use the transformer with features which the small size, low cost and easy control strategy and so on.Secondly,by comparing many different traditional methods,this *** finds a new way to use a new Fibonacci search algorithm to realize the maximum power point tracking(MPPT).In this thesis,it is demonstrated theoretically that the maximum power-output can be matched by adjusting the duty ratio of the DC/DC circuit.This *** presents the needed of anti-islanding effect,analyses the active and passive detecting methods separately,then verifies the validity of the active frequency drift with periodical disturbance and positive feedback method.Finally,several popular control methods of inverter are simply analyzed.Based on SPWM,the scheme of current control have

光伏并网逆变器分类

光伏并网逆变器分类 并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。其性能,效率直接影响整个太阳能光伏系统的效率和性能。下面将从并网逆变器的分类来进行了解。 1、按照隔离方式分类 包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。 2、按照输出相数分类 可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。 3、按照功率流向进行分类 分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。 4、按照拓扑结构分类 目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

单相桥式光伏逆变器拓扑结构的比较与仿真

……………………. ………………. …………………山东农业大学毕业论文 单相桥式光伏逆变器拓扑结构的比较与仿真装 订 线

……………….……. …………. …………. ………院部机械与电子工程学院专业班级电气工程及其自动化3班 届次20**届 学生姓名张前进 学号 指导教师 二О一五年六月一日 二О一一年六月十日

摘要................................................................................................................................. I Abstract ......................................................................................................................... II 1绪论.. (1) 1.1 课题背景与意义 (1) 1.2 光伏发电简介 (2) 1.3 本文研究的主要内容 (3) 2 逆变器及其分类 (3) 2.1 逆变器简介 (3) 2.2 逆变器的分类 (3) 2.2.1 依据直流侧直流电源的性质 (3) 2.2.2 根据输出交流电压的性质 (4) 2.2.3 根据逆变主电路的结构 (4) 2.2.4 根据开关器件及其关断方式的不同 (4) 2.3 独立光伏逆变器 (4) 2.4 并网光伏系统逆变器 (5) 3 光伏并网逆变器的设计要求 (5) 3.1 逆变原理 (6) 3.2 隔离型光伏并网逆变器 (6) 3.2.1 隔离型光伏并网逆变器的特点 (6) 3.2.2 隔离型光伏逆变器的拓扑结构 (7) 3.3 非隔离型光伏并网逆变器 (8) 3.3.1 非隔离型光伏并网逆变器的优缺点 (8) 3.3.2 非隔离型光伏并网逆变器的典型拓扑结构 (8) 4 仿真分析 (9) 5 总结与展望 (16) 参考文献 (17) 致谢 (18)

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

光伏逆变器分类

逆变器作为光伏发电的重要组成部分,主要的作用是将光伏组件发出的直流电转变成交流电。目前,市面上常见的逆变器主要分为集中式逆变器与组串式逆变器,还有新潮的集散式逆变器。今天就针对三种逆变器来谈一谈各自的特点。 一、集中式逆变器 集中式逆变器顾名思义是将光伏组件产生的直流电汇总转变为交流电后进行升压、并网。因此,逆变器的功率都相对较大。光伏电站中一般采用500kW 以上的集中式逆变器。 (一)集中式逆变器的优点如下: 1.功率大,数量少,便于管理;元器件少,稳定性好,便于维护; 2.谐波含量少,电能质量高;保护功能齐全,安全性高; 3.有功率因素调节功能和低电压穿越功能,电网调节性好。 (二)集中式逆变器存在如下问题: 1.集中式逆变器MPPT电压范围较窄,不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,组件配置不灵活; 2.集中式逆变器占地面积大,需要专用的机房,安装不灵活; 3.自身耗电以及机房通风散热耗电量大。 二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。

(二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起, 稳定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。 三、集散式逆变器 集散式逆变器是近两年来新提出的一种逆变器形式,其主要特点是“集中 逆变”和“分散MPPT跟踪”。集散式逆变器是聚集了集中式逆变器和组串式逆变器两种逆变器优点的产物,达到了“集中式逆变器的低成本,组串式逆变器 的高发电量”。 (一)集散式逆变器优点: 1.与集中式对比,“分散MPPT跟踪”减小了失配的几率,提升了发电量; 2.与集中式及组串式对比,集散式逆变器具有升压功能,降低了线损; 3.与组串式对比,“集中逆变”在建设成本方面更具优势。 (二)集散式逆变器问题; 1.工程经验少。较前两类而言,尚属新形式,在工程项目方面的应用相对 较少; 2.安全性、稳定性以及高发电量等特性还需要经历工程项目的检验; 3.因为采用“集中逆变”,因此,占地面积大,需专用机房的缺点也存在 于集散式逆变器中。

光伏逆变器行业现状及发展趋势前景

一、光伏逆变器产业链结构分析 图表光伏发电用逆变器产业链结构 资料来源:产研智库 一、上游原材料 逆变器企业主要外购产品包括各种电子元器件、结构件、电气元器件、电线电缆等。 逆变器的主功率元件的选择至关重要,使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,在大容量系统中一般均采用IGBT模块,而在高压特大容量(1000KVA以上)系统中,一般均采用IGCT、GTO等作为功率元件。 图表光伏发电用逆变器主要原料 资料来源:产研智库 二、下游需求领域 图表光伏发电逆变器国内主要应用领域

资料来源:产研智库 三、产业链各环节传导机制 光伏逆变器上游为电力电子元器件、微电子芯片、集成电路、电力电容器、电抗器、变压器、机柜、机箱壳体制造等行业。该行业与上游行业的关联性较低,上游行业的影响主要体现在本行业采购成本。 逆变器行业与下游行业的发展密切相关,下游行业对本行业的发展具有较大的牵引和驱动作用,国家光伏项目建设与投资是决定本行业未来需求的重要部分,其需求变化直接决定了本行业未来的发展状况。 二、国外光伏逆变器市场格局 光伏逆变器的主要厂商分布在光伏安装的主要区域,包括德国、中国、美国等地。2015年,全球逆变器的主要产能集中在德国、中国、美国,其中SMA、阳光电源、华为占据前三位。国外厂商逆变器项目经验丰富,产品质量高,成本也相对较高。国内自主研发的光伏逆变器,成本较低、售后服务效率更高。从地域来看,预计未来新增光伏逆变器需求将主要来自美国、日本和中国等新兴市场国家。 2015年全球逆变器市场格局在领先厂商之间日趋巩固。全球逆变器需求在2015年上涨了33%,排名前10的光伏逆变器厂商市场份额提高到了75%,产业集中度不断提高,全球光伏逆变器出货量达2010年以来的最高值。 德国SMA继续保持其2015年全球最大光伏逆变器供应商的地位,但在出货量上继续损失市场份额。虽然SMA仍然在光伏逆变器收入上处于全球领导者地位,但其从逆变器出货排行榜流失的全球需求已转向中国。2015年出货量前十名厂商中有四个是中国企业,其中华为出货量领先。SMA业绩提升的主要得益于美国和其他快速增长的公用事业规模市场,该公司还更新了其逆变器产品组合,表示其在住宅、商业和公用事业规模市场都有竞争力产品推出。 图表2015全球10大光伏逆变器厂商出货量排名

大功率光伏逆变器介绍

大功率光伏逆变器 (100kwp~500kwp) 一、光伏逆变器简介 逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正 弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器 又可分为变压器型逆变器和无变压器型逆变器。 (1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。通过控制器可以实现对蓄电池的控制。对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。 二、产品型号 ESI——————————光伏逆变器 5———————————额定输入电压 1.24vdc 2.48vdc 3.450vdc 3———————————输出电压 2.220vac 3.380vac B———————————变压器功能B可并联N不可并联 100——————————额定输出功率100kw、250kw、500kw X———————————厂商代码X希望电子有限公司T—— —————————T有隔离变压器N无隔离变压器 三、执行标准 .GB/T19939 光伏系统并网技术要求 .GB/T20046 光伏(PV)系统电网接口特性 .GB/T20513 光伏系统性能监测测量、数据交换和分析导则 .GB/Z19964 光伏发电站接入电力系统的技术规定 .GB/T3859.1 半导体变流器基本要求的规定 .GB/T3859.2 半导体变流器应用导则

华为光伏逆变器可靠性分析_解密华为光伏逆变器如何炼成

华为光伏逆变器可靠性分析_解密华为光伏逆变器如何炼成 太阳能发电系统通常直接暴露在室外环境工作,经常遇到高温、高寒、高湿、大风沙,淋雨,盐雾等恶劣气象条件。华为可靠性实验室业界首创开发出了温度、湿度、腐蚀性粉尘三综合应力试验设备,使得逆变器产品在恶劣场景应用具有卓越的适应能力。针对户外应用,采用高温、淋雨、带电温循、外场暴露等加速方法,验证了逆变器的长期可靠性,保证设备长期稳定运行。 一、温变影响机理温度不同,材料结构的分子运动的速度不同,在不同材料之间就出现膨胀系数、热传递性能的匹配差异,容易导致部件的卡紧件松弛。IGBT模块和散热器之间的热不匹配、不同材料的收缩或膨胀率不同,可诱发部件的变形或破裂、表面涂层开裂、气密性变差或泄漏、绝缘保护失效等。通常温度变化慢,影响不明显。急剧的温度变化可能会暂时或永久的影响设备的正常工作。 同时温度的快速变化,容易在单板,机壳等位置形成凝露,结水或结冰等现象,这对逆变器的运行带来较大的风险。 二、温变影响案例影响逆变器温度的主要是地域温差、昼夜温差、季节温差、天气变化如太阳、风、雨等形成的温差。同时自然散热在热源和器件、外壳之间也形成温差,导致逆变器个部件之间形成温差。在北方地区冬季温度较低,很多地方低于-20℃,夏季温度超过40℃,昼夜温差20℃、季节温差60℃,同时逆变器外壳的温升在20~30℃,内部IGBT 的温升在40~50℃。这样容易在内部腔体内形成温度差和各个部位的温度差,并且温度变化频繁,这些对产品材料的选择提出了严峻的挑战。 此外早晚开机功率输出,突变的阵雨及恶劣的天气变化,温变速率大,容易在一些部件上形成凝露,这也将影响逆变器的安全运行。 三、应对解决方案产品设计上要考虑温差的影响,同时考虑凝露风险,如单板集中、涂覆保护、内部风扇散热等多项措施。在验证方面一般采用高温淋雨试验和PTC带电温循试验来验证整机性能,作为查找薄弱点的主要方法。同时通过外场暴露来补充验证严酷环境的长期适应能力。

光伏逆变器概述(完整版)

光伏逆变器概述 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。

1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGB T功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。 3、微型逆变器 在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,情况非常普遍。而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。在实际应用中,若组串型逆变器出现故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。 4、功率优化器 太阳能发电系统加装功率优化器(Optimizer)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。为实现智慧型太阳能发电系统,装置功率优化器可确实让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器及其拓扑结构的设计 对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。 图1: 欧洲效率计算比重 1、功率器件的选型 在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。因为IGBT 导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。因为欧洲效率主要和逆变器不同轻载情况下效率的有关。在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。 为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。典型的电路是通过一个boost电路来实现。然后再通过逆变器把直流电逆变为可并网的正弦交流电。 2、单相无变压器式光伏逆变器拓扑结构的设计: 拓扑结构的选择和光伏逆变器额定输出功率有关。对于4kw以下的光伏逆变器,通常选用直流母线不超过500V,单相输出的拓扑结构,如图2所示:

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

风力发电机逆变器综述

1 引言 DC/AC逆变器是应用功率半导体器件,将直流电能转换成恒压恒频交流电能的一种静止变流装置,供交流负载用电或与交流电网并网发电。随着石油、煤和天然气等主要能源的大量使用,新能源的开发和利用越来越得到人们的重视。利用新能源的关键技术一逆变技术能将风能、蓄电池、太阳能电池和燃料电池等其它新能源转化的电能变换成交流电能与电网并网发电。因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。随着具有快速开关功能的大功率器件GTO、GTR的问世,高速.多位微机的发展,脉宽调制(PWM)技术已成为目前中,小功率交流垫丕笾自勺主要方向。采用PWM技术的逆变器来控制电机的电压和频率阮成的系统,其运行特性很大程度上要受控制所选用的调制方法的影响。在器件允许的开关频率下,逆变器开关方式选择得合适,就能有效地消除波形失真、尖峰电流、转矩脉动,避免电矾带负载工作时发生振动和过热现象。在调制过程中频率和电压配合得好,调节速度快,能够提高系统的解耦控制效果,改善系统的动态性能。交流伺服系统要求PWM 逆变器低频性能优良。而一般风机调速系统要求PWM逆变器的实现可靠、简单.因此工程上评价PWM技术属于一种综合性指标。 国内在大功率涌速系统方面已做了不少研究工作,目前研究应用比较成熟的有晶闸管直流电机调速,晶闸管交交变频调速,降压普通变频一升压的晶闸管变频装置等这些装置不但结构复杂,而且大多采用SCR或GTO作为开关元件.由于开关频率只有几百Hz,引起电机电流、转矩的脉动.动态性能差等问题一此外,此类系统网侧谐波较大.对电网污染严重.尚需附加电网滤波装置.使得系统成本增加加上近年来国外产品的冲击.国产大功率逆变器发展前景不容乐观。因此,研究大功率的高性能变频器对于能源利用和我国的工业节能具有重要意义。 2 低频环节逆变技术 传统的DC/AC逆变器采用低频环节逆变技术,主要有方波逆变器、阶梯波合成逆变器、正弦脉宽调制SPWM 逆变器。 2.1 方波逆变器 方波逆变器主要有推挽式、全桥式电路结构。 推挽式方波逆变器由推挽逆变器、交流调压开关和输出滤波器构成,如图1(a)所示。推挽式方波逆变器主要是通过调节逆变器输出电压脉宽来实现调压功能的。一种调压方法是调

相关主题
文本预览
相关文档 最新文档