当前位置:文档之家› 油田抽油机常见故障分析及处理方法

油田抽油机常见故障分析及处理方法

油田抽油机常见故障分析及处理方法
油田抽油机常见故障分析及处理方法

油田抽油机常见故障分析及处理方法

姚谋谋 王 煜

摘 要 抽油机是一种油田中很常用的采油的设备,由于其操作环境很复杂,长期在野外运转,造成了对抽油机的使用要求很高。本文对油田抽油机的常见的故障进行了分析,并提出了不同的处理方法。

关键词 油田;抽油机;故障;处理方法

作者单位 姚谋谋,王煜;陕西西安长庆油田机械制造总厂

抽油机是油田中的一个重要的设备,它的结构简单,使用可靠,操作维护方便,可以在恶劣的条件下长期,可靠的工作,在油田的开采中得到了广泛的应用。但是抽油机也有一些常见的故障,掌握这些常见的故障,进行分析,并掌握处理方法,对于延长抽油机的使用寿命是非常有效的。

一、抽油机曲柄销故障分析及处理方法

(一)曲柄销故障的原因。抽油机的曲柄销是用来连接曲柄和连杆的,以传递动力和运动。曲柄销不仅受到曲柄锥套的连接力,还承受着连杆的拉力。它的失效形式有断裂、脱扣,磨损等。在曲柄销的锥面上经常发生断裂,由于曲柄销和锥套一起转动,所以作用在连杆上的拉力的大小和方向都是变化的,这导致曲柄销有微小的振动。

导致曲柄销故障的原因有很多种,有时候是由于一种原因引起的,有时候是多种原因共同引起的。第一,在安装抽油机时,由于地基的处理情况不同,导致了不同的承压能力,虽然安装时是合格的,但是由于重力的作用,地基的水平度不合格,从而导致了曲柄销的断裂。第二,由于抽油机输出轴上的安装曲柄的键不在一条直线上,造成了安装在减速箱

行具体的实验研究及实验论证。

李刚推导出了在不同雷诺数下的通用公式,只要已知井底压力、油管截面积和出砂砂粒半径,就可以由公式计算出临界流速和临界流量。但其研究只研究了气固两相的理想状态,未涉及气液固三相,而在实际气井生产过程中多半是产液、出砂同时出现,也未对推导的气井携砂临界公式进行修正。

三、气井携砂模拟实验

2001年,张国荣借助自发研制的流体携砂实验装置,结合常规有杆泵抽油井生产参数优化设计的方法,以油井携砂安全生产为前提,提出了一套有杆泵抽油井在携砂生产条件下的参数优化设计理论,并在孤东油田应用,取得阶段成果。

2002年,李明忠利用自主研发的长4m、内径30mm的有机玻璃管,筛选了五组实际油井砂样进行了实验,研究出了不同粒径砂粒的沉降速度与流体的平均流速均成比较好的线性关系,经理论分析和实验研究而最终确定的用以描述某油田砂粒在井筒产液中沉降规律的统计计算式。

2006年,王治中利用自发研制的井筒携砂实验装置,模拟一定砂粒粒径配比关系下砂粒在不同斜度井筒(垂直井、定向井、大斜度井和水平井)中的携带运移规律,观察了颗粒在不同倾斜角度的井筒中的运移方式,测定了不同粒径的砂粒被携带出的临界流量,揭示了颗粒直径同流体流量关系变化规律。

2008年,李刚根据川西某气井的实际生产情况,取砂粒形状系数为0 7,阻力系数C为0 475,平均砂粒直径为0 5mm,根据理论分析得出的临界流量公式计算了该气井的生产情况,同时也对推导出的公式进行了验证。

2010年,焦艳红利用自发研制的垂直井筒条件下的携砂实验装置,分别以清水和白油为携砂介质,采用标准筛获得砂的当量直径,进行了静态沉降实验以测定不规则颗粒最小携砂速度的形状修正系数,并且进行了实验,通过分析实验结果得到了携带某油田一定粒径砂粒实际最小携砂速度计算式。

四、讨论与结论

(1)目前国内关于井筒气井携砂的研究甚少,并且都有所忽略。有些学者忽略了许多力的影响因素,仅考虑了重力和浮力等常见力,即使考虑了压差力、表面力等,也没有说明其原理及其他力能够忽略的原因。(2)现有气井携砂模拟实验都是在室内进行的,实验环境与真实气井携砂中有一定的差距,如果运用在真实气井中,会产生很多问题,有待进一步研究。(3)目前还没有学者能够编写出配套的计算机程序,能够计算气井携砂的临界流速及临界流量,使之更加方便、快捷与实用。

(指导老师:廖锐全,男,长江大学石油工程学院教授、博士生导师)。

参考文献

1.张国荣,黄煦,严锦根等.孤东油田油井携砂举升能力研究[J].钻采工艺,2002,25(5):48~50

2.李洪波.气砂两相流在天然气开采过程中的理论及实验研究[D].成都:四川大学,2004:29~51

3.邓绍强,胡明,肖莉.出砂气井携砂产能研究[J].特种油气藏,2008,15(3):87~89

107

的剪应力过大,最终导致了曲柄销的受力不均,从而发生断裂。第三,由于销子的质量不合格,销子和衬套的接触面积太小,而造成销子相对于衬套自己旋转的故障。第四,由于曲柄销的轴承保养不好,造成了抽油机的单臂运动,从而曲柄销断裂。第五,由于抽油机的不平衡,导致了抽油机处于长期超负荷运转的情况,销子发生了偏磨。 (二)曲柄销故障的处理方法

当发生故障时,不要急于去修理更换,首先要判断故障发生的原因上什么,进行对应的处理。首先要进行检查,如抽油机的剪刀差,纵向的水平率,横向的水平率,连杆的长度,冲程孔内是不是有不干净的物质等。检查完这些后,对于不符合要求的项目要一一的进行改造,使它们符合规定,可按照常规更换曲柄销的步骤进行处理。最重要的处理方式就是提前进行预防措施,减少故障的出现,要限制曲柄销和锥套之间的相对运动和曲柄销的摆动,这两种情况的发生都是由于曲柄销和锥套的接触质量和曲柄销尾部螺母的锁紧力。为避免这种情况的发生,要提高曲柄销和锥套的质量;增加垫片和曲柄销之间的接触面积;安装曲柄销时,要注意螺纹的旋向,不能安错;调节抽油机的冲程时,要将锥套内的污物洗净,再安装曲柄销。

二、抽油机偏磨的分析及处理方法

(一)抽油机偏磨的原因。抽油机的偏磨只要是在泵以上,它的类型可以分为:单面偏磨,双面偏磨。单面偏磨的油管偏磨的面积较大,是由于油管内壁和抽油杆产生的摩擦,磨损程度较轻。双面偏磨的油管偏磨的面积较小,但磨损较严重。造成偏磨的原因有以下几种:第一,由于井斜引起的,抽油杆由于重力的作用,与油管接触,在上下冲程中产生摩擦,严重的造成磨穿。就目前的技术条件下,套管在某一段会出现弯曲现象,进而造成油管的弯曲,从而造成磨损现象。第二,由于地层中的水的矿化程度高,含有微量的酸性,这样造成了水的腐蚀性很强,油管、抽油杆的磨损程度在腐蚀性的情况下更严重了。第三,原油中的含水率也严重影响着偏磨的程度,当含水率超过一定程度后,原油就变为了水包油,这样摩擦的润滑剂就变成了水,就失去了原来的润滑作用,使油管和抽油杆之间的磨损速度加快,另一方面,如果原油的含水率上升,导致了原油的密度增加,使抽油杆的轴向压力增加,当超过临界压力时,会造成杆柱弯曲,从而造成偏磨。

(二)抽油机偏磨的处理方法。为了有效的解决抽油机的偏磨问题,国内外研究了多种抽油机防偏磨的技术。第一种就是抽油机的旋转技术,由于抽油杆长时间的固定在油管上进行反复的运动,造成了抽油杆的磨损,如果使井下的抽油杆进行旋转,可以有效的解决偏磨的问题。第二种就是采用抽油杆防偏磨器,这是采用共有四排,每一排都有3个小滚轮,这样就减少了对于油管的伤害,所以就减少了抽油杆所造成的磨损,由于这种装置是由金属制成的,所以能够承受较大的载荷,可以应用到多种情况中。第三种就是安装抗弯防磨副,它是将抽油杆与油管之间的摩擦变成了滑套与摩擦杆之间的摩擦,滑套能够在抽油杆的运动中自主的定位于油管的合适位置上,所以就与摩擦杆形成了摩擦副,进而能够彻底的降低抽油杆与油管之间的摩擦。由于滑套与摩擦杆都具有较高的耐磨性,所以寿命都较高。第四种就是在活塞

的下部安装加重杆,依靠加重杆的重力作用,将活塞所受的阻力减小,将抽油杆的偏磨问题解决。第五种就是将杆柱优化,由于抽油机的底部的抽油杆受压,而造成与油管的摩擦,可以降低抽油杆在循环过程中的应变力,从而降低杆柱的偏磨。

三、抽油机减速箱渗漏的分析及处理方法

(一)减速箱渗漏的原因。减速箱是抽油机工作的传动系统的主要的组成部分,所以经常承受大的负荷,同时由于受到各种环境,天气的原因的影响,都容易造成减速箱出现润滑油泄露的情况。造成减速箱泄露的原因主要有以下几种。第一,由于减速箱内外的压力差引起,在减速箱的运转的过程中,齿轮之间的摩擦会产生大量的热能,从而造成了减速箱内的温度上升,进而压力也增加,当减速箱的透气孔堵塞的话,同时会造成减速箱的内压力会逐渐上升,减速箱的内部和外部形成了压力差,在这种情况下,会造成润滑油的泄露。第二,由于减速箱的箱体上没有回油孔,轴头的密封结构不好,或者是因为润滑油过多而引起的。有的减速箱上没有回油孔,造成了润滑油在结合面等处,形成了压力差,润滑油从间隙处向外泄露。轴头的密封作用是通过压紧起到密封的作用,,随着使用时间的加长,密封材料会由于外力的作用而发生变形,从而失去了密封的效果,进而造成了润滑油的泄露。当润滑油过多时,润滑油会积聚在轴封等处,造成了润滑油的泄露,严重的还会造成减速箱内的温度过高,起不到润滑的作用。

(二)减速箱渗漏的处理方法。减速箱的渗漏的部位可能发生在很多地方,针对不同的部位,应该采用不同的处理方法。当轴承端盖与箱体之间出现泄露问题时,主要是由于端盖和箱体之间结合部紧密而造成的泄露,所以应该制作专门的石棉垫工具,将石棉垫的毛边进行整修,同时将箱体与端盖的接触面清理干净,保持平整,将油孔对齐,来避免渗漏的发生。当在轴套与轴承端盖处发生泄露的时候,是由于密封失效,回油孔堵塞,从而造成了泄露,对于这种情况,首先要检查回油孔的情况,将回油孔疏通,当有渗漏情况发生时,要及时的更换密封装置。当在轴套与轴颈之间发生渗漏时,是由于密封圈达不到密封的效果,所以必须使用曲柄压紧轴套,使之与轴一起运动,这样就可避免渗漏的发生。当由于减速箱上下箱体之间的密封造成泄露的话,要用对称紧固的方法进行处理,及时的解决渗漏的问题,进行日常的维护保养。

本文通过对抽油机常见故障进行了分析,并对处理方法进行了简述,掌握好油田抽油机的常见故障的处理方法,使油田的抽油机在恶劣的条件下尽量的延长它的使用寿命,更好的利用抽油机。

参考文献

1.赵究理.庞井林.常规游梁式抽油机故障模式分析[J].石油机械,1994

2.陈楫国.杨洪茂.游梁式抽油机的状态监测与故障诊断[J].中国设备工程,2003

3.丛峰,杨建国,丛林,张奇.浅析游梁式抽油机故障及解决方法[J].中国设备工程,2009

108

油田抽油机案例

海利普变频器在油田抽油机上的应用 进入21世纪,变频调速技术得益于其优异的节能特性和调速特性,在我国油田中得到广泛应用,中国产值能耗是世界上最高的国家之一。要解决产品能耗问题,除其它相关的技术问题需要改进外,变频调速技术已成为节能及提高产品质量的有效措施。油田作为一个特殊行业,有其独特的背景,油田中变频器的应用主要集中在游梁式抽油机控制、电潜泵控制、注水井控制和油气集输控制等几个场合。游梁式抽油机俗称“磕头机”,是目前各个油田所普遍采用的抽油机,但是目前的抽油机系统普遍存在着效率低、能耗大、冲程和冲次调节不方便等明显的缺点。 一、磕头机的工作原理: 图1 磕头机 如图1游梁式抽油机实物图所示,当磕头机工作时,驴头悬点上作用的载荷是变化的。上冲程时,驴头悬点需提起抽油杆柱和液柱,在抽油机未进行平衡的条件下,电动机就要付出很大的能量。在下冲程时,抽油机杆柱转而对电动机做功,使电动机处于发电机的运行状态。抽油机未进行平衡时,上、下冲程的载荷极度不均匀,这样将严重地影响抽油机的四连杆机构、减速箱和电动机的效率和寿命,恶化抽油杆的工作条件,增加它的断裂次数。为了消除这些缺点,一般在抽油机的游梁尾部或曲柄上或两处都加上了平衡重,如图1所示。这样一来,在悬点下冲程时,要把平衡重从低处抬到高处,增加平衡重的位能。为了抬高平衡配重,除了依靠抽油杆柱下落所释放的位能外,还要电动机付出部分能量。在

上冲程时,平衡重由高处下落,把下冲程时储存的位能释放出来,帮助电动机提升抽油杆和液柱,减少了电动机在上冲程时所需给出的能量。目前使用较多的游梁式抽油机,都采用了加平衡配重的工作方式,因此在抽油机的一个工作循环中,有两个电动机运行状态和两个发电机运行状态。当平衡配重调节较好时,其发电机运行状态的时间和产生的能量都较小。 二、变频器在抽油机的应用控制问题: 我国大部分油田采用的抽油设备中,以游梁式抽油机最为普遍,数量也最多。但是游梁式抽油机运行效率非常低,电能浪费大。因此,抽油机节能潜力非常巨大。 1. 变频器在抽油机的控制问题主要体现在如下几个方面: (1)再生能量的处理问题, 游梁式抽油机运动为反复上下提升,一个冲程提升一次,其动力来自电动机带动的两个重量相当大的钢质滑块,当滑块提升时,类似杠杆作用,将采油机杆送入井中;滑块下降时,将采油杆提出带油至井口,由于电动机转速一定,滑块下降过程中,负荷减轻,电动机拖动产生的能量无法被负载吸引,势必会寻找能量消耗的渠道,导致电动机进入再生发电状态,将多余能量反馈到电网,引起主回路母线电压升高,势必会对整个电网产生冲击,导致电网供电质量下降,功率因数降低的危险;频繁的高压冲击会损坏电动机,造成生产效率降低、维护量加大,极不利于抽油设备的节能降耗,给企业造成较大经济损失 (2)冲击电流问题 如图1所示游梁式抽油机是一种变形的四连杆机构,其整机结构特点像一架天平,一端是抽油载荷,另一端是平衡配重载荷。对于支架来说,如果抽油载荷和平衡载荷形成的扭矩相等或变化一致,那么用很小的动力就可以使抽油机连续不间断地工作。也就是说抽油机的节能技术取决于平衡的好坏。在平衡率为100%时电动机提供的动力仅用于提起1/2液柱重量和克服摩擦力等,平衡率越低,则需要电动机提供的动力越大。因为,抽油载荷是每时每刻都在变化的,而平衡配重不可能和抽油载荷作完全一致的变化,从而造成过大的冲击电流,冲击电流不仅无谓浪费掉大量的电能,而且严重威胁到设备的安全,同时也给变频器调速控制带来很大的困难:一般变频器的容量是按电动机的额定功率来选配的,过大的冲击电流会引起变频器的过载保护动作而不能正常工作。 除上述两方面问题外,油田采油的特殊地理环境决定了采油设备有其独特的运行特点:在油井开采前期储油量大,供液足,为提高功效可采用工频运行,保证较高产油量;在中后期,由于石油储量减少,易造成供液不足,电动机若仍工

油田抽油机日常维护保养

龙源期刊网 https://www.doczj.com/doc/821822396.html, 油田抽油机日常维护保养 作者:张骅 来源:《科学与财富》2020年第01期 摘要:为了提升油田抽油机工程的效率,本文结合实际,在分析抽油机井现场异常状况判断内容的同时,对它的日常维护保养方案进行总结分析。希望相关方案的提出,可以提升油田抽油机的工作效率。 关键词:网油田;抽油机;日常维护;保养 前言 在井下进行作业时,对于施工人员来说,抽油机井的运行参数需要进行严格的检查,并对参数进行核对,保证参数的准确性,通过这样的方式,能够为抽油机井提供更加稳定的安全保障。在井下作业的过程中,许多步骤以及工具都需要进行检查工作,除了机井的油管需要进行分析工作以外,抽油泵也需要对运营状况进行检测工作。抽油机井需要进行维护工作,因此,只有对抽油机井可能出现的故障问题进行深入的理解,才能够保证各项维护工作能够达到预期的目的。 1抽油机井现场异常状况判断 1.1当前抽油机井的分类 当前在我国,油田事业正在不断发展的过程中,实际的运行中,主要是通过抽油机和井下油杆泵之间的结合进行的。当前在开采油田时,抽油机与井下油杆泵相结合的方式是最常见的作业方式,除此之外,根据抽油杆的不同,可以进行分类,例如普通钢杆井以及连续杆井等等。抽油机的不同,会产生不同的效果,然而所有抽油机的的原理大致是相同的,油杆通过上下运动进行原油的采取。 1.2抽油机井异常状况分析 在对抽油机进行维护时,需要对部分情况进行严格的检查工作,例如电流、流量以及压力的变化等等。对电流情况进行分析,能够对抽油机进行分析,如果出现故障问题能够及时进行故障的分析工作。对流量情况进行分析,能够对抽油机的运行工作进行检查,如果出现流量下降的情况,则需要及时进行处理。 1.3抽油机井抽油泵故障判断

抽油机节能

一、游梁式抽油机的工作原理和能耗分析 1.工作原理游梁式抽油机的工作原理是动力机经由传动皮带将高速旋转运动传递到减速箱,做三轴减速,后由曲柄连杆将动力机产生的高速旋转运动转变为使游梁上下摆动的垂直运动,最后悬绳器通过抽油杆带动抽油泵柱塞上、下循环往复运动,将原油汲取上来。 2.能耗分析电动机损耗:包含各种热损失,摩擦损失以及材质损失。电动机功率越大,铜损越大,影响抽油机平衡。经测算,多数抽油机仅能达到最佳状态的六七成,具有巨大节能潜力。传动损失:机械摩擦传动损耗与润滑条件和抽油机平衡有关。但目前使用的传动皮带转动效率高,在润滑条件好的状态下节能空间有限。减速箱损失:主要有减速箱的齿轮与轴承之间的摩擦造成。减少减速箱损失最关键在于润滑,润滑不足不仅会使能耗上升,还会加速齿轮跟轴承的磨损,缩短使用寿命。换向及平衡损失:在换向结构一定的条件下,能量损耗较小,运行速率高,节能空间不大,而平衡方式的选择不同,对扭矩曲线的峰值有重要影响。 二、游梁式抽油机的节能指标和思路 1.节能衡量指标(1)电控技术水平包含电动机特性,负荷率,功率因素等指标。目前游梁式电动机主要通过改良电源频率,机械性能来提高节能水平。 (2)光杆载荷由抽油机本身的运动性能影响,可以通过改变抽油机的结构,以降低光杆最大载荷值,实现节能的目的。 (3)曲柄轴净扭矩由抽油机的平衡性能影响,改善平衡性的主要方法是改变抽油机平衡方式,如由原来游梁,曲柄及复合平衡改为连杆,随动等新的平衡方式。 2.节能思路(1)通过改进抽油机的结构来实现节能这种思路的重点在于完善抽油机四杆机构的优化设计和改进抽油机平衡方式来使曲柄轴净扭矩曲线的形状以

抽油机井常见井下故障判别及处理方法

抽油机井常见井下故障判别及处理方法 摘要:阐述了如何利用技术方法来对井下故障进行判别,同时在井下故障分析与判断过程中,还要同地面故障分析相结合,只有这样才能保证井下故障的诊断准确率,并提出了处理方法。 关键词:抽油机井下故障判别处理方法 一、常见井下故障判别方法及处理 1.1抽油泵故障 (1)游动凡尔漏失。油产量下降、示功图增载缓慢,液面上升,上电流比正常时小,下电流正常,蹩压时,上冲程压力上升缓慢。 (2)固定凡尔漏失。油产量下降,上电流正常,下电流稍大。抽蹩时上冲程压力上升,下冲程压力下降,压力蹩得越高,上下冲程压力变化越大,待压力升起后再将驴头停在下死点稳压,若固定凡尔漏失则稳不住压。 (3)双凡尔漏失。量油产量下降,液面上升,增载卸载都很缓慢,图形圆滑,双凡尔漏失严重时的功图与断脱功图相类似,上电流较低,下电流稍大,严重漏失时不出油,抽蹩压力上升缓慢,严重时不升,驴头停在上、下死点都稳不住压力。蹩压时,先停蹩压力稳定不升时再启抽蹩压,以检验泵的工况。停蹩时要记录每分钟压力值,抽蹩时要注意上下冲程时压力变化情况。处理方法:一般来讲,造成游动凡尔漏失,由于结蜡严重,蜡卡游动凡尔,也可能是由于凡尔球与球座磨损漏失,对于前种情况可采取长时间热洗方法处理,洗后在管柱内充满洗井液的情况下,再进行测示功图和蹩压工作以确定是否还漏失。 (4)凡尔未打开。游动凡尔打不开:不出油,液面到井口,示功图与固定凡尔失灵差不多,载荷卸不下来。蹩压时上冲程压力上升,下冲程压力下降,变化值基本不变。这类井热洗时将活塞提出泵筒能洗通,放入泵筒内就洗不通,电流:上电流正常,下电流比正常时要小。固定凡尔打不开:不出油,液面在井口,示功图不能卸载,类似于游动凡尔打不开,电流上冲程大,下冲程小(因为泵抽空产生吸力)。对于这类井应查清是否有井下开关,若有井下开关则按井下开关失灵处理,若无井下开关采取高压热洗处理,无效后作业检泵。 (5)凡尔关不上。游动凡尔关不上:示功图不能增载,图形与抽油杆底部断脱类似。蹩压时,上冲程压力不升,下冲程压力上升,井口下冲程出油,电流上冲程减小,下冲程正常。固定凡尔关不上:示功图不能卸载,井口不出油,液面在井口,上下冲程电流均小于正常时电流,洗井正常。措施:大排量热洗,并在洗井过程中开关回压闸门,再测试功图,蹩压,若无效则报作业。固定阀罩变形,使阀球在开启时堵塞油流通道,造成井液不能入泵,泵抽真空,不出油。这类问题多数是由于固定凡尔罩材质不合格造成,另外碰泵生产也能造成固定阀罩变形。这类问题多发生在修复泵上

抽油机的开题详细报告.doc

抽油机的开题报告 抽油机是开采石油的一种机器设备,俗称“磕头机”,通过加压的办法使石油出井,常见抽油机即游梁式抽油机是油田广泛应用的传统抽油设备,通常由普通交流异步电动机直接拖动。 一、课题的意义。 抽油机的产生和使用由来已久,迄今已有百年历史。应用最早,普及最广的属常规型游梁式抽油机,早在140年前就诞生了,至今在世界各产油国中仍占绝对优势。其结构简单、可靠耐用、易损件少、操作简单、维修方便、维护费用低,使其经久不衰。然而,随着油田的不断开发,要求抽油机具有长冲程、大负载、能耗低、体积小、重量轻等性能特点来满足日益发展的油田开发的需要。 游梁式抽油机井数量多,其工作性能,特别是节能性能直接影响采油成本。在采油成本中,抽油机电费占30%左右,年耗电量占油田总耗电量的20%——30%,为油田电耗的第2位,仅次于注水。游梁式抽油机抽油系统的总效率在国内一般地区平均只有%——23%,先进地区至今也不到30%,可见降低抽油系统高能耗的迫切程度与难度。 自动调节平衡式抽油机的结构特点决定了其节能特性,具有平衡效果好、光杆最大载荷减小、节能效果好等特点。与同级常规抽油机相比,所配备电动机功率可小20%;以相同挂泵深度

条件下油井每度电的出油量相比,比常规抽油机节约能耗35%左右。美国前置型抽油机比常规型抽油机节能31.9%~39.60%,我国该型机比常规型抽油机节能34.9%。因此,完善和发展游梁式抽油机设计理论,研制节能效果显著的节能型游梁式抽油机对于抽油机井节能降耗、提高举升系统的经济效益和我国石油工业发展具有重要的实际意义和极大的深远影响。 二、国内外发展现状及方向。 在世界范围内,研究与应用抽油机已有100多年历史。在百余年的采油实践中,抽油机发生了很大变化。特别是近20年来,世界抽油机技术发展较快,先后研发了多种新型抽油机。抽油机的各项技术经济指标达到了有史以来的最高水平。目前,世界上生产抽油机的国家主要有美国、俄罗斯、法国、加拿大和罗马尼亚等。美国石油学会APISpec11E《抽油机规范》中规定,抽油机共有77中规格。美国Lufkin公司生产B,C,M,A等四种系列抽油机:B系列游梁平衡抽油机8种规格;C系列曲柄平衡抽油机64种规格;M系列前置式抽油机46种规格;A系列前置式气动平衡抽油机26种规格。 俄罗斯生产13种规格游梁抽油机。法国Mape公司生产种规格曲柄平衡游梁抽油机以及立式斜井抽油机和液缸型抽油机。加拿大生产液、电、气组合一体式HEP抽油机。罗马尼亚按美国API标准生产51种规格的游梁抽油机,35种规格的前置式抽油机及前置式气动平衡抽油机。目前,世界上抽油机最大下泵深度

抽油机常见故障的判断和排除

抽油机常见故障的判断与排除 (一)抽油井故障的判断 1.利用示功图 示功图是目前检查深井泵工作状态的有效方法。根据对示功图的分析可判断砂、蜡、气等对深井泵的影响,能判断泵漏失、油管漏失、抽油杆的断脱、活塞与工作筒的配合状况,以及活塞被卡等故障。应用示功图时还必须结合平时油井管理中积累的资料(如油井产量、动液面、砂面、含砂情况,抽油机运转中电流的变化及井下设备的工作期限等资料)进行综合分析。 2.试泵法 这种方法是往油管中打入液体,根据泵压变化来判断抽油泵故障。试泵方法有两种:一种方法是把活塞放在工作筒内试泵,若泵压下降或没有压力,则说明泵的吸入部分和排出部分均漏失。另一种方法是把活塞拔出工作筒,打液试泵,如果没有压力或压力升不起来,则说明泵的吸入部分漏失严重。 3.井口呼吸观察法 这种方法是把井口回压闸门、连通闸门都关上,打开放空闸门,用手堵住放空闸门出口,也可以在放空处蒙张薄纸片,这样凭手的感觉或纸片的活动情况,也就是观察抽油泵上、下"呼吸"情况来判断泵的故障。一般可分为以下几种情况: (1)油井不出油且上行时出气,下行时吸气,说明固定阀

严重漏失或进油部分堵塞。 (2)油井不出油,且上行时稍出气,随后又出现吸气现象,说明主要是游动阀漏失。 (3)上行程时出气大,下行程时出气小,这种现象说明抽油泵工作正常,只是油管内液面低,油液还未抽到井口。 4.井口憋压法 憋压法是通过抽憋和停憋两种情况来分析和判断抽油泵的工作状况、油管漏失等。该方法是目前油田现场普遍采用的一种方法。 具体操作方法是:抽油机运行中关闭回压闸门和连通闸门,然后在井口观察油管压力变化情况(最高憋到2.5MPa) ,从压力上升情况可以分析判断井下故障,称为抽憋(应注意压力超过2.5MPa时必须立即打开回压闸门);当抽憋压力达到2.5MPa时停抽,再憋10~15min,观察压力的下降情况称为停憋,若压力不变或略有下降,说明没有漏失;若压力下降明显,说明有漏失,压力下降越快,说明漏失越严重。 (1)上冲程时压力上升较快,下冲程时压力不变或略有上升,说明泵的工作状况良好。 (2)上冲程时压力上升较快,下冲程时压力下降,经抽油数分钟后,压力变化范围不变。这种情况说明游动阀始终关闭打不开,说明泵内不进油。其原因有以下几种: ①固定阀严重漏失或完全失效; ②泵的进油部分堵塞; ③气体影响大,造成气锁;

油田抽油机节能

油田抽油机节电器特点: ·油田抽油机节电器优化油泵运行,精确控制停机时间,有效提高产量。 ·油田抽油机节电器大幅降低高峰电力需求和无效抽取时间,节电效果显著。 ·油田抽油机节电器有效消除液锤效应,降低机械系统故障。 ·油田抽油机节电器延长设备使用寿命,降低维护保养费用。 ·产量预测算法,可对油井状态精确评测。 ·井下、地面、电机全方位控制 ·高峰及最小负荷保护 ·变频控制选项 ·自动能量优化控制 ·故障旁路系统 油田抽油机节电器产品性能 1.自动的能量优化控制 2.具有完善的保护及故障显示功能 3.软启动软停车大大降低了启动电流,同时由于提高了功率因素,从而改变了电网的运行状态,使现在的供电系统可以给增加一倍以上数量的抽油机供电。 油田抽油机节电器工作环境: ·适用于各种恶劣的自然环境 ·适合于抽油机电机节电 油田抽油机节电器技术参数: 电源电压:约380V±10% 电源频率: 50Hz~60Hz 节电率: 20%~60% 功率因素提高:≥0.8 功率控制范围: 7.5KW~90KW 一、概述 自从100多年前,以燃烧石油制品为动力的机器诞生以来,对石油的需求量飞速增长,也为石油工业的发展提供了契机。随着采油业的发展,产生了被广泛使用的油井举升设备——抽油机。抽油机的种类繁多,技术发明有数百种。从采油方式上可分为两类,即有杆类采油设备和无杆类采油设备。有杆类采油设备又可分为抽油杆往复运动类(国内外大量使用的游梁式抽油机和无游梁式抽油机)和旋转运动类(如电动潜油螺杆泵);无杆类采油设备也可分为电动潜油离心泵,液压驱动类(如水力活塞泵)和气举采油设备。 我国的油田不像中东的油田那样有很强的自喷能力,多为低渗透的低能、低产油田,大部分油田要靠注水压油入井,再用抽油机把油从地层中提升上来。以水换油或者以电换油是我国油田的现实,因而,电费在我国的石油开采成本中占了相当大的比例,所以,石油行业十分重视节约电能。目前,我国抽油机的保有量在10万台以上,电动机装机总容量在3500MW,每年耗电量逾百亿kWh。抽油机的运行效率特别低,在我国平均效率为25.96%,而国外平均水平为30.05%,年节能潜力可达几十亿kw·h。除了抽油机之外,油田还有大量的注水泵、输油泵和潜油泵等设备,总耗电量超过油田总用电量的80%,可见,石油行业也是推广“电机系统节能”的重点行业。

抽油机常见故障的判断与处理措施

抽油机常见故障的判断与处理措施 【摘要】抽油机是机械采油的主要设备之一,加强对抽油机的维护保养,避免抽油机发生故障,提高抽油机系统的效率,开采出更多的油流,满足油田生产的技术要求。对抽油机常见的故障进行判断和处理,恢复抽油机的正常运行状态是非常必要的。 【?P键词】抽油机;故障;判断;处理措施 引言 综合分析抽油机的运行状况,通过抽油机井生产参数的变化,判断抽油机系统的故障,采取有效的治理措施,保证抽油机系统安全运行,达到预期的采油生产效率。提高对抽油机故障的判断与处理的能力,加强对抽油机系统的维护,使其更好地为采油生产服务。 一、抽油机采油技术措施 抽油机采油生产过程中,利用电动机将电能转化为机械能,通过三角皮带的传动,将电动机的高速旋转运动,传递给减速箱的输人轴,经过减速处理后,输出为曲柄齿的低速圆周运动。如何经过曲柄连杆结构的处理,将圆周运动转化为直线运行,引起抽油机驴头的上下往复运动,通过抽油杆传递动力,带动井下的抽油泵活塞运行,将井内的液体开采到地面上来。

在日常的生产管理过程中,如果不重视抽油机的维护保养,会导致抽油机系统故障频发,影响到抽油机的安全运行。通过观察抽油机运行参数的变化,及时发现抽油机的故障问题,采用科学的故障诊断方式,确定抽油机系统的故障,并及时采取最佳的处理措施,解除故障状态,保证抽油机系统安全平稳运行,达到预期的抽油效率。 加强对抽油机系统的循环检查,及时发现机械故障,紧固各部位的螺栓,保证动力的正常传递,促使抽油机系统各个部件安全运行。结合抽油杆传递动力的作用,判断抽油杆是否存在偏磨的情况,通过示功图等测试资料,判断抽油杆的弯曲变形及断脱的故障,采取修井作业技术措施,及时解决抽油杆的故障问题。 通过油井的动态分析,油井生产压力的变动等情况,分析井下抽油泵的运行状况,及时解决抽油泵的故障,如抽油泵漏失、泵充不满、气体影响等,采取最优化的采油工程技术措施,提高抽油泵的泵效,满足采油生产的需要。对抽油泵发生卡钻的情况进行处理,通过修井检泵作业的方式,恢复抽油泵的正常运行状态,保证抽油泵发挥自身优势,达到更高的泵效。 二、抽油机常见故障的判断与处理措施 抽油机系统运行过程中,会由于各种原因出现故障状态,为了判断抽油机的故障,采取最佳的故障判断方法,确定故

抽油机设计

摘要 抽油机是将石油从地下开采到地上的采油设备,它的产生和使用由来已久,已有百年历史。其中应用最早、普及最广的是游梁式抽油机,早在130年前就诞生了。常规游梁式抽油机具有结构简单、容易制造、可靠性高、耐久性好、维修方便、适应现场工况等优点,在采油机械中占有举足轻重的地位,在今后相当长的一段时间内仍是油田首选的采油设备。但是由于常规游梁式抽油机本身的结构特征,决定了其具有平衡效果差,曲柄轴净扭矩波动大,存在负扭矩、工作效率低和能耗大等缺点。本文主要是针对一种节能效果较好的双驴头抽油机进行设计。双驴头抽油机是将常规游梁式抽油机的游梁后臂加装后驴头, 用驱动绳来代替连杆的硬连接, 以满足变力臂的工作要求。这种抽油机节能效果较好, 是目前除常规机外发展最迅速的机型,应为油田新井投产首选机型。 关键词:抽油机;双驴头;节能效果

Abstract Pumping units is the production of oil from the ground to the ground equipment, generation and use of it for a long time, has a history. Is one of the earliest and most widely popular of beam-pumping unit, was born as early as 130 years ago. Conventional beam pumping unit with a simple structure, easy to manufacture, high reliability, durability, easy maintenance, adapt to the conditions and so on, play a vital role in the production machinery, quite a long time in the future is still the preferred oil production in oil field equipment. But due to the structural characteristics of conventional beam pumping unit itself, determines that they have poor balance, net torque fluctuation of crank shaft, torque, efficiency, low energy consumption and other disadvantages. This article is intended for a better design of dual Horsehead pumping unit energy saving effect. It will beam of conventional beam pumping unit rear arm fitted horse head, by driving rope to replace the hard-link connection, to meet the requirements of arm. This energy-saving pumping unit works well, is at present apart from the General model of the fastest. This system efficiency and power saving rate for energy saving effect evaluation indicators, undertake a study on energy saving effect of double horse head, results showed that average power saving rate of 13 per cent of dual Horsehead pumping unit. 53%, energy-saving effect is good, for the production of a new oil well preferred models. Keywords: pumping unit;double horse head;energy saving effect

变频器在油田磕头机上的节能与能量

变频调速技术得益于其优异的节能特性和调速特性,在我国油田中得到广泛应用,中国产值能耗是世界上最高的国家之一。要解决产品能耗问题,除其它相关的技术问题需要改进外,变频调速技术已成为节能及提高产品质量的有效措施。 油田作为一个特殊行业,有其独特的背景,油田中变频器的应用主要集中在游梁式抽油机控制、电潜泵控制、注水井控制和油气集输控制等几个场合。游梁式抽油机俗称“磕头机”,是目前各个油田所普遍采用的抽油机,但是目前的抽油机系统普遍存在着效率低、能耗大、冲程和冲次调节不方便等明显的缺点。具体怎么样应用可以参照SAJ变频器在游梁式抽油机上的应用。 1.磕头机工作原理 当磕头机工作时,驴头悬点上作用的载荷是变化的。上冲程时,驴头悬点需提起抽油杆柱和液柱,在抽油机未进行平衡的条件下,电动机就要付出很大的能量。在下冲程时,抽油机杆柱转而对电动机做功,使电动机处于发电机的运行状态。抽油机未进行平衡时,上、下冲程的载荷极度不均匀,这样将严重地影响抽油机的四连杆机构、减速箱和电动机的效率和寿命,恶化抽油杆的工作条件,增加它的断裂次数。为了消除这些缺点,一般在抽油机的游梁尾部或曲柄上或两处都加上了平衡重,如图1所示。这样一来,在悬点下冲程时,要把平衡重从低处抬到高处,增加平衡重的位能。为了抬高平衡配重,除了依靠抽油杆柱下落所释放的位能外,还要电动机付出部分能量。在上冲程时,平衡重由高处下落,把下冲程时储存的位能释放出来,帮助电动机提升抽油杆和液柱,减少了电动机在上冲程时所需给出的能量。目前使用较多的游梁式抽油机,都采用了加平衡配重的工作方式,因此在抽油机的一个工作循环中,有两个电动机运行状态和两个发电机运行状态。当平衡配重调节较好时,其发电机运行状态的时间和产生的能量都较小。 2. 变频器在抽油机的控制问题主要体现在如下几个方面 一方面是再生能量的处理问题,游梁式抽油机运动为反复上下提升,一个冲程提升一次,其动力来自电动机带动的两个重量相当大的钢质滑块,当滑块提升时,类似杠杆作用,将采油机杆送入井中;滑块下降时,采油杆提出带油至井口,由于电动机转速一定,滑块下降过程中,负荷减轻,电动机拖动产生的能量无法被负载吸引,势必会寻找能量消耗的渠道,导致电动机进入再生发电状态,将多余能量反馈到电网,引起主回路母线电压升高,势必会对整个电网产生冲击,导致电网供电质量下降,功率因数降低的危险;频繁的高压冲击会损坏电动机,造成生产效率降低、维护量加大,极不利于抽油设备的节能降耗,给企业造成较大经济损失。 另一方面是冲击电流问题,如图二所示游梁式抽油机是一种变形的四连杆机构,其整机结构特点像一架天平,一端是抽油载荷,另一端是平衡配重载荷。对于支架来说,如果抽油载荷和平衡载荷形成的扭矩相等或变化一致,那么用很小的动力就可以使抽油机连续不间断地工作。也就是说抽油机的节能技术取决于平衡的好坏。在平衡率为100%时电动机提供的动力仅用于提起1/2液柱重量和克服摩擦力等,平衡率越低,则需要电动机提供的动力越大。因为,抽油载荷是每时每刻都在变化的,而平衡配重不可能和抽油载荷作完全一致的变化,才使得游梁式抽油机的节能技术变得十分复杂。因此,可以说游梁式抽油机的节能技术就是平衡技术。对长庆油田几十口油井的调查显示,只有1~2口井的配重平衡较好,绝大部分抽油机的配重严重不平衡,其中有一半以上口井的配重偏小,另有几口

变频器在油田磕头机上的应用

三晶变频器在油田磕头机上的应用 一、 前言 进入21世纪,变频调速技术得益于其优异的节能特性和调速特性,在我国油田中得到广泛应用,中国产值能耗是世界上最高的国家之一。要解决产品能耗问题,除 其它相关的技术问题需要改进外,变频调速技术已成为节能及提高产品质量的有效措施。 油田作为一个特殊行业,有其独特的背景,油田中变频器的应用主要集中在 游梁式抽油机控制、电潜泵控制、注水井控制和油气集输控制等几个场合。游梁式抽油机俗称“磕头机”,是目前各个油田所普遍采用的抽油机,但是目前的抽油机 系统普遍存在着效率低、能耗大、冲程和冲次调节不方便等明显的缺点。本文主要介绍SAJ 变频器在游梁式抽油机上的应用。 一、 磕头机的工作原理 图1 游梁式抽油机实物图 如图1,游梁式抽油机实物图所示,当磕头机工作时,驴头悬点上作用的载荷是变化的。上冲程时,驴头悬点需提起抽油杆柱和液柱,在抽油机未进行平衡的条件 下,电动机就要付出很大的能量。在下冲程时,抽油机杆柱转而对电动机做功,使电动机处于发电机的运行状态。抽油机未进行平衡时,上、下冲程的载荷极度不均 匀,这样将严重地影响抽油机的四连杆机构、减速箱和电动机的效率和寿命,恶化抽油杆的工作条件,增加它的断裂次数。为了消除这些缺点,一般在抽油机的游梁 尾部或曲柄上或两处都加上了平衡重,如图1所示。这样一来,在悬点下冲程时,要把平衡重从低处抬到高处,增加平衡重的位能。为了抬高平衡配重,除了依靠抽 油杆柱下落所释放的位能外,还要电动机付出部分能量。在上冲程时,平衡重由高处下落,把下冲程时w w w .s a j b p .c o m

储存的位能释放出来,帮助电动机提升抽油杆和液柱,减少了 电动机在上冲程时所需给出的能量。目前使用较多的游梁式抽油机,都采用了加平衡配重的工作方式,因此在抽油机的一个工作循环中,有两个电动机运行状态和两 个发电机运行状态。当平衡配重调节较好时,其发电机运行状态的时间和产生的能量都较小。 二、 变频器在抽油机的控制问题 目前,在胜利油田采用的抽油设备中,以游梁式抽油机最为普遍,数量也最多。其数量达十万台以上。抽油机用电量约占油田总用电量的40%,运行效率非常低, 平均运行效率只有25%, 功率因数低,电能浪费大。因此,抽油机节能潜力非常巨大,石油行业也是推广“电机系统节能”的重点行业。 2.1 变频器在抽油机的控制问题主要体现在如下几个方面 一方面是再生能量的处理问题,如图2所示,游梁式抽油机运动为反复上下提升,一个冲程提升一次,其动力来自电动机带动的两个重量相当大的钢质滑块,当滑块 提升时,类似杠杆作用,将采油机杆送入井中;滑块下降时,采油杆提出带油至井口,由于电动机转速一定,滑块下降过程中,负荷减轻,电动机拖动产生的能量无法被负载吸引,势必会寻找能量消耗的渠道,导致电动机进入再生发电状态,将多余能量反馈到电网,引起主回路母线电压升高,势必会对整个电网产生冲击,导致 电网供电质量下降,功率因数降低的危险;频繁的高压冲击会损坏电动机,造成生产效率降低、维护量加大,极不利于抽油设备的节能降耗,给企业造成较大经济损失。 图2 常规曲柄平衡抽油机 另一方面是冲击电流问题,如图二所示游梁式抽油机是一种变形的四连杆机构,其整机结构特点像一架天平,一端是抽油载荷,另一端是平衡配重载荷。对于支架来说,如果抽油载荷和平衡载荷形成的扭矩相等或变化一致,那么用很小的动力就可以使抽油机连续不间断地工作。也就是说抽油机的节能技术取决于平衡的好坏。在平衡率为100%时电动机提供的动力仅用于提起w w w .s a j b p .c o m

油田抽油机节能方式综述及解决方案

前言 目前,抽油机是应用最普遍的石油开采机械之一,也是油田耗电大户,其用电量约占油田总用电量的40%,且总体效率很低,据调查一般在30%左右。油田抽油机负载是独具特点的时变负载:有动、静负载特性之分。起动初始状态要求拖动电机的起动力矩是抽油机实际负载的3-4倍,甚至更大,起动力矩是抽油机选配电机的第一要素。当起动力矩适用则负载功率必然匹配不佳,运行负载功率都远小于电机的额定功率,即所谓“大马拉小车”现象。过剩的抽油能力令抽油机的无功抽取时间增加,造成油井开采的电费成本居高不下,能源浪费十分严重。可见抽油机的节能潜力非常可观。 1抽油机井节能技术 抽油机-深井泵举升本身是一种耗能的举升工艺,一旦在测试中发现能耗为负,则一定说明测试中存在问题。但是由于抽油机-深井泵举升过程中由于悬点载荷呈周期性变化,悬点载荷的不均匀性,必然导致在其能耗过程中表现出了一定的特殊性。正是由于这种特殊性,也为抽油机井实施节能降耗带来了一定的前提条件,也可以肯定地说,目前抽油机井节能措施无不针对其能耗的特殊性而采取的。 抽油机节能技术主要是围绕上述三个特点实现的。从目前应用的抽油机井节能技术主要有三大类: 一是提高功率因数类。如电容补偿、永磁电机。

二是提高电机功率利用率类。如高转差电机、多速电机、Y-Δ转换控制箱。 三是改善电机消耗功率不均衡类。主要是液力藕合器、离合器等。 1.1其它节能技术 其它节能技术中主要介绍液力藕合器、离合器的工作原理。其实这两种技术的工作原理相同,就是改善电机消耗功率不均衡。不同点是前者安装在电机的输出端,后者安装在抽油机减速箱的输入端,取代大带轮。 其原理是电机启动后,液力藕合器或离合器开始积蓄能量,当积蓄的能量足够大时,便释放能量帮助电机带动了抽油机减速箱齿轮旋转,实现了电机的软起动。在抽油机动转过程中,当负荷小时,液力藕合器或离合器积蓄能量,当负荷大时释放能量,从而使电机工作在负荷较为均衡的工作条件之下,从而实现节能。 1.2抽油机的电能消耗的特点 由于抽油机井悬点载荷呈周期性变化,因而从能耗上也会呈现出周期性变化的特点。一般情况下,我们认为抽油机井的悬点载荷在一定的时间内有着很好的重复性,因而从能耗角度也会很直接地反映其重复性。抽油机在运转过程中其能量消耗主要有以下几个方面的特点: 一是其能耗的不均衡性。主要表现在上下冲程过程能量消耗

油田抽油机结构

抽油机结构 1 引言 石油化工行业是国民经济发展的基础行业,同时也是耗能大户。目前,我国石油化工行业中抽油机的保有量在10万台以上,电动机装机总容量在3500MW,每年耗电量逾百亿kW·h。抽油机的运行效率特别低,在我国平均效率为25.96%,而国外平均水平为30.05%,年节能潜力可达几十亿kW·h。我国的油田不像中东的油田那样有很强的自喷能力,多为低渗透的低能、低产油田,大部分油田要靠注水压油入井,再用抽油机把油从地层中提升上来。以水换油或者以电换油是我国油田的现实,因而,电费在我国的石油开采成本中占了相当大的比例,所以,石油行业十分重视节约电能。多年来,各采油厂一直在抽油机节能的问题上下功夫,近几年的实践证明,变频调速是最理想的高效调速节电技术。在油田生产中,应用变频技术,一是改造“大马拉小车”设备,适应变工况运行,二是生产工艺自动化的需要,作为闭环系统中理想的执行器。因为油田生产的特殊性,选用变频器常重点考虑操作简单化,运行的安全性、可靠性、经济性,出现故障后系统处理的灵活性。变频技术的发展日新月异,在油田生产中也由过去的简单应用发展到系统集成,自动控制。所以,我们面临的问题是怎样做到变频、电机、负载整个系统应用最优化,节电效益最大化。 2 抽油机介绍及相关功能需求 抽油机(俗称叩头机)是石油开采中的必备设备。一般,每个原油生产井都至少使用一台抽油机,将深藏在地下(或海水中)的石油通过抽油管抽出。图1给出了抽油机的结构图。抽油机的每个工作循环可分为上提抽油杆,下放抽油杆,从上提抽油杆转换为下放抽油杆,从下放抽油杆转换为上提抽油杆四个阶段。

图1 抽油机结构图 图1中: 1—底座; 2—支架; 3—悬绳器; 4—驴头; 5—游梁; 6—横梁轴承座; 7—横梁; 8—连杆; 9—曲柄销装置; 10—曲柄装置; 11—减速器; 12—刹车保险装置; 13—刹车装置;14—电动机;15—配电箱。 抽油机的负荷电流曲线如图2所示。显然抽油机的负载为一周期性变化的负载。抽油机由于其特殊的运行要求,所匹配的拖动装置必须同时满足三个最大的要求,即最大冲程,最大冲次,最大允许挂重。另外,还须具有足够的堵转转矩,以克服抽油机启动时严重的静态 不平衡。因此,往往抽油机在设计时确定的安装容量裕度较大。

抽油机运行状态监控与故障处理对策

抽油机运行状态监控与故障处理对策 摘要:抽油机设备是油田机械采油过程中重要的生产设备,抽油机设备状态好 坏直接影响油田的原油生产。由于其操作环境很复杂,长期在野外运转,造成了 对抽油机的使用要求很高。本文对油田抽油机的常见故障进行了分析,并提出了 不同的维护管理对策。 关键词:油田;抽油机;故障分析;维护管理前言设备是企业生产的物质基础,是企业发展水平与现代化程度的主要标志。设备管理是实现安全生产和环境 保护的前提,是降低管理成本、提高企业经济效益的重要途径。抽油机井是依靠 抽油机和井下有杆泵将油从地层采到地面的油井。抽油机井按照抽油杆分类为: 普通钢杆井、高强度杆井、玻璃钢杆井、空心杆井、电热杆井、连续杆井及其它 杆柱类井。抽油泵由抽油杆带动上下运动,抽吸井内原油,它分为管式泵和杆式泵。 管式泵是抽油泵井最常见的一种。抽油机目前油田中的一个重要的设备,具 有结构简单,使用可靠,操作维护方便,可以在恶劣的条件下长期可靠的工作, 在油田的开采中得到了广泛的应用。但是抽油机也有一些常见的故障,掌握这些 常见的故障进行分析并掌握处理方法,对延长抽油机井的使用寿命是非常有效的。 1 抽油机设备效益最大化原则是核心原则抽油机设备从安装投产到设备的运 行再到设备的报废,在设备的生命周期内,通过提高管理水平,减少抽油机的故 障率,可降低抽油机的修理费用;通过抽油机润滑管理水平的提高,降低抽油机 的故障率,也可降低抽油机的修理费用;通过例保、一级保养、二级保养的开展,抽油机设备处在一个良好的状态,也可降低抽油机的修理费用。这些都体现了抽 油机设备效益最大化原则。加强设备精细管理要树立以维护为主修理为辅,防止 轻管理、轻保养、重使用的错误观念。建立工作流程和工作技术文件和管理规定,可以有效避免工作的盲目性。因此,必须了解抽油机井的工作原理和抽油机井的 常见故障,以便及时进行维护。 2 曲柄销子故障分析与处理(1)曲柄销故障的原因。抽油机的曲柄销是用来 连接曲柄和连杆的,以传递动力和运动。曲柄销不仅受到曲柄锥套的连接力,还 承受着连杆的拉力。它的失效形式有断裂、脱扣,磨损等。在曲柄销的锥面上经 常发生断裂,由于曲柄销和锥套一起转动,所以作用在连杆上的拉力的大小和方 向都是变化的,这导致曲柄销有微小的振动。导致曲柄销故障的原因有很多种, 有时候是由于一种原因引起的,有时候是多种原因共同引起的。 第一,在安装抽油机时,由于地基的处理情况不同,导致了不同的承压能力,虽然安装时是合格的,但是由于重力的作用,地基的水平度不合格,从而导致了 曲柄销的断裂。第二,由于抽油机输出轴上的安装曲柄的键不在一条直线上,造 成了安装在减速箱的剪应力过大,最终导致了曲柄销的受力不均,从而发生断裂。第三,由于销子的质量不合格,销子和衬套的接触面积太小,而造成销子相对于 衬套自己旋转的故障。第四,由于曲柄销的轴承保养不好,造成了抽油机的单臂 运动,从而曲柄销断裂。第五,由于抽油机的不平衡,导致了抽油机处于长期超 负荷运转的情况,销子发生了偏磨。(2)曲柄销故障的处理方法。当发生故障时,不要急于去修理更换,首先要判断故障发生的原因上什么,进行对应的处理。首先要进行检查,如抽油机的剪刀差,纵向的水平率,横向的水平率,连杆的长度,冲程孔内是不是有不干净的物质等。检查完这些后,对于不符合要求的项目 要一一的进行改造,使它们符合规定,可按照常规更换曲柄销的步骤进行处理。

抽油机结构图

1 引言 石油化工行业是国民经济发展的基础行业,同时也是耗能大户。目前,我国石油化工行业中抽油机的保有量在10万台以上,电动机装机总容量在3500MW,每年耗电量逾百亿kW·h。抽油机的运行效率特别低,在我国平均效率为25.96%,而国外平均水平为30.05%,年节能潜力可达几十亿kW·h。我国的油田不像中东的油田那样有很强的自喷能力,多为低渗透的低能、低产油田,大部分油田要靠注水压油入井,再用抽油机把油从地层中提升上来。以水换油或者以电换油是我国油田的现实,因而,电费在我国的石油开采成本中占了相当大的比例,所以,石油行业十分重视节约电能。多年来,各采油厂一直在抽油机节能的问题上下功夫,近几年的实践证明,变频调速是最理想的高效调速节电技术。在油田生产中,应用变频技术,一是改造“大马拉小车”设备,适应变工况运行,二是生产工艺自动化的需要,作为闭环系统中理想的执行器。因为油田生产的特殊性,选用变频器常重点考虑操作简单化,运行的安全性、可靠性、经济性,出现故障后系统处理的灵活性。变频技术的发展日新月异,在油田生产中也由过去的简单应用发展到系统集成,自动控制。所以,我们面临的问题是怎样做到变频、电机、负载整个系统应用最优化,节电效益最大化。 2 抽油机介绍及相关功能需求 抽油机(俗称叩头机)是石油开采中的必备设备。一般,每个原油生产井都至少使用一台抽油机,将深藏在地下(或海水中)的石油通过抽油管抽出。图1给出了抽油机的结构图。抽油机的每个工作循环可分为上提抽油杆,下放抽油杆,从上提抽油杆转换为下放抽油杆,从下放抽油杆转换为上提抽油杆四个阶段。

图1 抽油机结构图 图1中: 1—底座; 2—支架; 3—悬绳器; 4—驴头; 5—游梁; 6—横梁轴承座; 7—横梁; 8—连杆; 9—曲柄销装置; 10—曲柄装置; 11—减速器; 12—刹车保险装置; 13—刹车装置;14—电动机;15—配电箱。 抽油机的负荷电流曲线如图2所示。显然抽油机的负载为一周期性变化的负载。抽油机由于其特殊的运行要求,所匹配的拖动装置必须同时满足三个最大的要求,即最大冲程,最大冲次,最大允许挂重。另外,还须具有足够的堵转转矩,以克服抽油机启动时严重的静态不平衡。因此,往往抽油机在设计时确定的安装容量裕度较大。

液压抽油机设计

液压抽油机设计 1 绪论 1.1 本课题来源及研究的目的和意义 随着原油储量日益减少, 开采难度的增大, 油田对新型采油方法以及采油设备的探索及 构思也在日益更新中。抽油机作为一种普及的采油设备,也在不断的构思和日益更新中。液 压抽油机作为近些年来迅猛发展的新型抽油设备,有着优于传统设备的强项。 增大载荷是本课题研究的目的之一, 是在结构最简, 材料最省得方案下尽可能的增大其 工作载荷。传统的游梁抽油机虽有大载荷的特点,但这种旧型设备体型笨重,运输和安装都 较为麻烦,尤其是海上平台更是不允许过的的大质量设备。能在质量最轻和结构最简的情况 下增大工作载荷,有着方便运输以及满足海上平台开采要求的重要意义。 节能减排是本课题研究的目的之二。到 1995 年统计的游梁抽油机总数约为 4 万台,但 使用期却没有超过 5年的, 如果每年需更换10%的设备, 使用的钢材金额会在 1.5 亿元左右。 首先不看使用寿命,这种旧型设备本省的钢材用量就非常的大。液压抽油机工作原理不是曲 柄连杆机构或者其变形,工作原理在本身结构上的改进就省去了大量的钢材,有着改善采油 设备经济性的重要意义。 此外结构上的优化方便了安装, 同时也方便了拆卸和运输, 即故障诊断更换坏损元件也 相对方便了许多。在工作上迅速的故障诊断与维修有着增加设备连续工作时间的意义。 1.2 本课题所涉及的问题在国内的研究现状及分析 我国开始研究液压抽油机是从60 年代开始的。 1966 年北京石油学院提出“液压泵—液压缸”结构的抽油机,以液压缸伸缩来完成主 要工作,同时用油管做平衡重,并利用其往复运动增大冲程。 1987 年吉林工业大学研制出YCJ-II型液压抽油机,同样以液压缸做驱动。 1992 年、1993年兰州石油机械研究所、浙江大学先后以“液压泵—液压马达”结构研 制出新型液压抽油机。此后至近几年来,随着油田开采的要求, 液压技术、密封技术的发展, 液压元件的成熟,液压抽油机业迅速发展起来。 以下对上述几种抽油机作简要分析: YCJ—II型液压抽油机直接用液压缸的直线往复运动工作,具有结构简单,比常规抽油 机节能的特点。在辽河油田的实验说明其在北方冬季野外有可连续运行的能力,其液压与电 气系统亦是可行的。不足在于:安全保护措施有所欠缺,对机电一体化技术应用不足等。 YCJ12—12—2500 型滚筒式液压抽油机利用换向阀控制液压马达的正反转,以齿轮— 齿条机构实现往复运动, 同时采用了机械平衡方式。 在液压系统上弥补了YCJ—II型的不足, 同时整机平稳运行。 功率回收型液压抽油机利用了“变量泵—马达”这一特殊元件,实现了“长冲程,低冲 次,大载荷”的特点,并有安全保护功能。最重要的是它通过能量的储存于转换使功率回收, 而且相当完全,平衡也是最完美的。 1.3 本课题所涉及的问题在国外的研究现状及分析 国外对于液压抽油机的研制起步较早,但由于翻译过的外文文献较少,这里只做介绍, 不做详细分析。 1961 年美国 Axelson 公司研制出 Hydrox 长冲程 CB 型液压抽油机,冲程 1.2~7.95m, 适井深度 670~2032m,并在几个大油田获得成功的应用性实验。 1965 年苏联研制出 ArH 油管平衡式液压抽油机,可分开调节上下冲程的速度,冲程长 度 1.625~4.275m。目前,这类产品已形成产品系列。1977 年加拿大研制出HEP 型液压抽油 机。冲程 10m,最高冲次 5.0/min,悬点载荷 34.23~195.64KN。

相关主题
文本预览
相关文档 最新文档