当前位置:文档之家› 苯酐合成

苯酐合成

苯酐合成
苯酐合成

苯酐合成

巴晶

一、摘要:

经过过滤与预热的邻二甲苯与经过过滤预热的空气在混合器内经过8个OX喷嘴雾化混合后进入反应器中,反应器内有17900根列管,管内装有4层不同的触煤,混合后的OX与空气中的氧气在催化剂五氧化二钒的作用下发生氧化放热反应,生产邻苯二甲酸酐。

二、关键词:

邻二甲苯(ox)、空气(air) 、邻苯二甲酸酐(Pa)、反应器(reactor)、

三、正文:

苯酐(邻苯二甲酸酐)是重要的有机合成化工原料之一,利用其容易脱酸、磺化、酯化的化学特性,被广泛用作增塑剂、聚酯树脂、醇酸树脂及医药、食品、染料、农药等的原料和中间体。其衍生物可加工成品种繁多、性能优越、用途广泛的化工产品,以满足化工、电子、机械、航天、纺织等工业部门的需求,同时其新的衍生物正在不断增加,应用范围也日益拓宽。

苯酐的生产工艺流程如下:

苯酐的合成一般有柰法和邻法两种,本论文讨论的为邻法合成。邻法合成采用德国巴斯夫公司技术,采用固定床空气催化氧化法。经过过滤与预热的邻二甲苯与经过预热的空气在混合器内经过8个OX喷嘴雾化混合后进入反应器中,反应器内有17900根列管,管内装有4层不同的触煤(V2O5),混合后的OX与空气中的氧气在催化剂五氧化二钒的作用下发生氧化放热反应,生成粗邻苯二甲酸酐。高温反应放出的热量通过融盐传递给蒸气供发电或其它单元加热用。粗苯酐在经过冷却除杂质后进入精馏单元,利用各物质沸点的不同原理来去除轻组份、重组份得到纯度较高的PA。。苯酐合成过程一般可分为如下操作单元,进料、反应、切换冷凝器、热处理、精馏。其中反应和精馏为苯酐合成的主要单元。

反应区工艺流程:

涡轮空气机将空气压缩后通过空气过滤器和空气预热器,邻二甲苯经过生产现场的OX泵提供动力,通过OX过滤器和预热器,过滤预热后的空气和OX混合后蒸气雾化由八个OX喷嘴喷入反应器内,反应器为整套装置的核心。在反应器的管层OX与空气在触煤的催化作用下,发生氧化放热反应,化学能转化为热能,反应得到PA和少量MA/BA等等。反应器出口PA气体温度大约360℃。反应器的壳层是充满由KNO3及NaNO2按55:45比例混合而成的溶盐。溶盐的比热小,热传递快。通过溶盐将反应的热量带至溶盐冷却器和过热器,既能保证反应器的温度,又能将反应的热量转化为高压蒸气和过热蒸气,得到的蒸气可用于蒸气气轮机发电或供其它生产装置加热用。

反应器出来的PA气体温度较高,经过反应气体冷却换热器将热能传递给高压蒸气、高压冷凝水、低压蒸气等,经过冷却器冷却后得到粗PA进粗PA槽,产生的不凝性气体进洗涤塔溶解在水中后转为酸水,用于其它生产。

粗PA从粗PA槽出口经过加热器后到粗PA处理槽,在粗PA处理槽添加氢氧化钾,分层溢流,从上部排出的不凝性气体去水洗塔处理。

精馏区工艺流程:

精馏区的进料为氧化区的出料,由于进料流量是设定值,所以经过粗PA槽中转后经过预热进入过滤器,再经过蒸馏一塔脱低沸物及部凝性气体,蒸馏二塔脱除重组分,苯酐产品由二塔塔顶产出。

粗的PA经过加热后进入粗PA蒸馏一塔,塔顶抽真空,加热后在负压条件下,轻沸物(包括不凝性气体)被抽出,由于轻沸物及不凝性气体较多,在塔顶设置预处理冷凝气,通过冷凝回流去除轻沸物及不凝性气体,塔底物质泵入蒸馏二塔进行精处理。

蒸馏二塔用来分离在低压条件下低与PA沸点的物质。塔顶抽真空,使整个蒸馏塔内维持负压,塔低有再沸器,再沸器通过蒸气加热持续不断给塔内物料提供热量,维持各塔板温度恒定。物料从蒸馏塔的中部进入塔内,物料经过初馏再沸器加热,气化经过塔中下部的塔板下落的液体物料和上升的气化物料进行热交换,一方面进来的物料被加热,另一方面经过降温的比低压条件下PA及比PA沸点高的物质冷凝回到塔底,比PA沸点高的轻沸物则继续以汽态上升至塔中部的填料层,再填料层上部为液相分离槽,再蒸馏塔的最上部是一个气相管。在此由顶部回流的液相与上升的气相进行热交换,使得沸点低组分上升,沸点高组分冷凝下降。在蒸馏塔的顶部是一个初馏冷凝器,上升的气体在进入冷凝器后部分回流至塔体,部分采出后得到纯度较高的PA.

影响PA产品品质的因素:

在苯酐的合成过程中,同时伴有多个副产物,并且部分是可逆反应。副产物的多寡关键在于催化剂活性及选择性以及操作参数是否有利于主反应的进行。

1.原料的影响

纯苯酐高温下颜色稳定,但由于邻二甲苯原料中通常含有少量间二甲苯(PX)及对二甲苯(MX),在催化剂作用下转化为苯锟或其它锟类物质,此类物质在高温下容易氧化变色从而影响产品品质;

2.氧化区操作工艺的影响

氧化区如下操作参数影响产品品质,融盐温度、空气鼓入速度、混合原料中烃的浓度。融盐温度是影响产品品质的主要因素,温度过低影响产品的纯度,温度过高,催化剂的选择性能得不到充分发挥,在过高的温度下操作,将引起原料的过氧化反应。空气鼓入速度影响空气在反应器内的停留时间,过长则原料过氧化,过短则反应不充分,导致副产物增多。

3.杂质的影响

苯酐本身并无颜色,对溶融色度影响不大,但对热稳定性影响较苯锟及锟类其它物质大很多,而且部分杂质如苯钛等与苯酐熔点相差不到,通过蒸馏很难去除。此物质为亚氧化物质,性质不稳定,极易氧化转化为显色物质影响苯酐色度。

四、结论:

苯酐的合成采用邻二甲苯及空气中的氧气为原料,在经过过滤器及预热器后混合均匀后进入反应器内,在催化剂五氧化二钒的作用下发生氧化反应制的粗苯酐。高温反应放出的热量通过融盐传递给蒸气供发电或其它单元加热用。粗苯酐在冷却除杂质后进入精馏单元内除去轻重组份及杂质得到纯度较高的PA。影响PA品质的关键为原料品质及反应阶段操作温度等。

-------------------------------------------------------------------------------------------------------

参考文献:

苯酐生产方法余青2005年10月

增塑剂及其应用石万聪2002年09月

PA生产过程优化徐猛2007年05月

苯酐合成吴军、路春生2004年05月

苯酐工艺生产控制与品质王秀琴1996年09月

苯酐生产工艺进展马伟棉2006年09月

500吨四氯苯酐

500吨/年四氯苯酐项目 一、性质: 四氯苯酐为无色针状结晶或者白色粉状固体,无吸湿性,能升华,熔点255-257℃,沸点371℃,相对密度1.920,不溶于冷水,在热水中分解为四氯邻苯二甲酸,溶于二氧六环,四氢呋喃等有机溶剂。 二、用途: 本品主要用为反应型阻燃剂,可用于聚酯、环氧树酯,也是农药,染料、增塑剂、防火漆及有机合成的中间体,在医药工业中和苯胺反应制成四氯苯酐胺化物,再氟化成为2,3,4,5-四氟苯甲酸,用于左旋氧氟杀星的生产,食品添加剂工业还用作四碘荧光素钠盐;它还在光敏材料、录音材料中得到应用。 三、国内生产厂家及市场情况: 目前国内成熟的氯磺酸溶剂法四氯苯酐技术最初由浙江桐芦启明化工有限公司开发,97年前期一直技术不过关,经历数年的摸索之后,终于在一个工程师的帮助下,不断完善,于1997年低形成了目前成熟的四釜工艺同年,启明销售四氯苯酐近1000吨,利税1800万元。以后每年该产品的利润均在1500万元以上。后启明公司搬到了上虞化工园区,更名为上虞启明化工有限公司。后来,开发成功该产品的工程师感觉从启明的老板处获得的回报太少,宣布再也不做四氯苯酐产品后辞职离开启明,但却悄悄以该技术入股的方式给了一个亲戚,在上虞启明公司旁边,建成了上虞新世纪化工有限公司,以同样的技术生产四氯苯酐。目前,上虞启明化工有限公司和上虞新世纪化工

有限公司已经发展成为业绩优良的大型的化工工业公司,成为浙江省医药原料中间体、医药生产的重要生产企业。以后,该技术又被某位技术人员泄露给湖北仙桃仙隆化工股份有限公司,目前,这三家企业四氯苯酐的产量均在3000吨/年左右。在国内近1万吨的产量中,国内消耗约2000吨左右,主要用于医药中间体的生产,其余出口。 四、产品质量标准: 产品名称:四氯苯酐;3,4,5,6-四氯邻苯二甲酸酐 结构式: 分子量:285.9 四氯苯酐质量标准: 指标名称指标 性状白色结晶或无色棱型针状 含量≥99% 熔点254-256℃ 沸点371℃ 闪点362℃ 干燥失重≤0.5% 游离氯≤10ppm

年产四万吨苯酐生产工艺设计[1]

年产四万吨苯酐生产工艺设计 李健 (安徽工程大学机电学院,芜湖,241000) 摘要 本次设计产品的为苯酐。目前生产工艺有萘或邻二甲苯以及萘和邻二甲苯混合原料的固定床氧化工艺和萘流化床氧化工艺。 该设计的苯酐生产艺是以邻二甲苯为原料,经气化后与空气混合进入反应器催化氧化生成粗苯酐,气体粗苯酐在切换冷凝器冷凝收集,再经预处理后送入精馏塔精馏,得到产品。该工艺流程主要包括氧化反应、冷凝回收、精馏、产品包装和废液尾气处理。 工艺设计内容包括:工艺流程设计、物料衡算、能量衡算、精馏塔设计工艺计算以及生产装置中其他设备的选择等。 图纸包括生产流程图、工厂布置图以及塔设备结构图。 关键词:邻二甲苯、苯酐、工艺设计 -1-

Process design for producing 40000 tons of PA per year Li Jian (Anhui Polytechnic university of Electrical and Mechanical College,Wuhu,Zip:241000) Abstract The design of the product is phthalic anhydride. The current PA design is Fixed Fluidized Bed Design based on anhydride or OX,as well as the mixture of anhydrideand OX,and the naphthalene fluidized bed. This thesis is intended to take the O-xylene as its raw materials and get it gasified,and then enter catalytic reactor,mixing with air,to catalyze phthalic anhydride. The unrefined PA gas would first be gathered in condenser,finally be refined in fractionating tower after Processing.The process includes oxidation,condensation recovery,distillation,packaging and waste gas treatment. Process design include:process design, material balance,energy balance,chemical engineering process calculations and other equipment, plant selection. Blueprints include production flow chart,factory layout plan,the blueprint of structure of the rectifier. Key words: O-xylene, PA, process design -2-

现代有机合成论文

学号:20115051217 学年论文 学院化学化工学院 专业化学 年级2011级 姓名马韵会 论文题目现代有机合成 指导教师金春雪职称教授 成绩 2013年12月18日

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1开发“原子经济性[5]”反应 (2) 2选用更“绿色化”的起始原料和试剂 (2) 3采用无毒无害的高效催化剂 (3) 4采用无毒无害的溶剂 (3) 结束语 (4) 参考文献 (4)

现代有机合成 学生姓名:马韵会学号:20115051217 化学化工学院化学 指导老师:金春雪职称:教授 摘要:有机合成是综合应用各类有机反应及其组合、有机合成新技术[1]、有机合成设计及策略以获得目标产物的过程。有机合成既与材料、生命、环保、能源四大支柱学科密切相关,也与我们社会的现代文明和日常生活密切相关。近年来绿色化学[2]、洁净技术、环境友好过程已成为合成化学追求的目标和方向。可见21世纪有机合成所关注的不仅仅是合成了什么分子,而是如何合成,其中有机合成的有效性、经济性、环境影响和反应速率将是有机合成研究的重点,尤其是绿色有机合成的研究[3]。 关键词:有机合成;绿色化学;绿色合成 Abstract:Organic synthesis is a comprehensive application and combination of various types of organic reactions,organic synthesis technology[1],the process of design and organic synthesis strategies to obtain the desired https://www.doczj.com/doc/891291903.html,anic synthesis is closely related to both materials,life,environmental protection,energy four pillars of discipline, but also closely related to the daily life of modern civilization and our society.In recent years,green chemistry[2],clean technology,environmental-friendly process has become the pursuit of the goals and direction of synthetic chemistry.Visible in the21st century is not only of concern to the organic synthesis of what synthesized molecules,but how synthesis,where the validity of organic synthesis,economy,environmental impact and the reaction rate will be the focus of research in organic synthesis,especially green organic synthesis study[3]. Keywords:Organic Synthesis;Green Chemistry;Green synthesis 引言 有机合成是指利用化学方法将原料制备合成新的有机物的过程。它是一个极富创造性的领域。早期的有机合成主要是合成自然界中已存在的但含量稀少的有机化合物。后来根据结构与性质关系的规律性和实际需求,进一步合成了自然界不存在的、具有理论和实际价值的有机化合物。

医药中间体

医药中间体 产品名称用途 亚氨基二苄卡马西平 酰氯亚氨基二苄卡马西平 酰氯亚氨基芪(ISBCC) 卡马西平 3-氯亚氨基二苄卡马西平 亚氨基芪无溴卡马西平酰氯亚氨基芪(无溴) 无溴卡马西平5-氰基双键主环奥卡西平 10-甲氧基亚氨基芪奥卡西平 DL-2-氯苯甘氨酸氯吡格雷 L-2-氯苯甘氨酸氯吡格雷 L-2-氯苯甘氨酸甲酯氯吡格雷 L-2-氯苯甘氨酸甲酯盐酸盐氯吡格雷 DL-2-氯扁桃酸氯吡格雷Alpha-溴-2-氯苯乙酸氯吡格雷 4,5,6,7-四氢噻吩[3,2-C]吡啶盐酸盐氯吡格雷 R-4-氰基-3-羟基丁酸乙酯(ATS-5) 阿伐他丁 R(-)-4-氰基-3-羟基丁酸(ATS-8) 阿伐他丁 S(-)-4-氯-3-羟基丁酸阿伐他丁 D-4-苯基羟基甘氨酸头孢羟氨苄1-氯甲基萘( 1-CMN ) 特比萘酚 1-羟基苯并噻唑乌苯美司 1-苯基-3-甲基-5-吡唑琳酮安乃近 2-氨基-5-氯二苯甲酮安定 2-氨基-5-氯-2’-氟二苯甲酮氟安定 2-氨基-5-甲基噻唑美罗昔康 3-(2-氯乙基)-2-甲基-6,7,8,9-四氢-4H-吡啶[1,2-a]併嘧啶-4-酮利培酮 6-氟-3-(4-哌啶基)-1,2苯併异噁唑盐酸盐利培酮 2-丁基-4-氯-1氢-5-甲酰基咪唑沙坦 2-氰基-4’-溴甲基联苯沙坦 2-氰基-4’-甲基联苯沙坦 对硝基苯甲酸盐酸普鲁卡因2-氰基-3-甲基吡啶氯雷他定 2-巯基-5-甲氧基苯并咪唑奥美拉唑 2-甲基-5-硝基咪唑甲硝唑 2,3,5-三甲基吡啶奥美拉唑 2,3,4,5-四氟苯甲酸左氧氟沙星2,3,4,5,6-五氟苯甲酸杀虫剂 2,4-二氨基-6-氯嘧啶敏乐啶 2,5-二羟基-1,4-二噻烷拉米夫啶 3,5-二羟基苯甲酸特布他林 5-氯水杨酸氯硝柳胺 肉桂酸辛可宁 胞嘧啶拉米夫啶 D-3-乙酰硫代-2-甲基丙酰-L-脯氨酸拉米夫啶 去氢表雄酮(DHEA) 激素 愈创木酚香兰素 脒基硫脲法莫替丁 硫酰胺法莫替丁 酒石酸拉米夫定

苯酐生产工艺

方法一 其制备方法是由萘或邻二甲苯催化氧化,现在国内大部分已采用邻二甲苯氧化[1],现分述如下。 (1)萘氧化法 有沸腾床和固定床法,国内主要采用沸腾床。其工艺是:将热空气送入装有钒催化剂(V2O5)的沸腾床氧化器中升温至300~340℃,将催化剂活化数小时,然后将空气送入氧化器,将熔化的萘喷入氧化器催化层中,反应温度360~380℃,反应后产生的苯酐气体经沸腾床顶部的过滤管滤去催化剂后,经过冷凝器多级冷凝,尾气再经水喷淋塔吸收,将热机油送人热熔冷凝器的翅片管中,苯酐熔成液体,流入储槽即为粗品,分别用浓硫酸处理,碳酸钠中和,然后精馏得成品。 (2)邻二甲苯氧化法 本法分固定床法和沸腾床法(流化床法)。 ①流化床法以钒一钾一锑的氧化物为活性组分,以扩孔硅胶为载体,制成粉状催化剂,在流化床内进行氧化反应,邻二甲苯与空气在气化器内混合后进入流化床反应器,反应温度365~380℃下进行。 ②固定床法以五氧化二钒为主的钒系催化剂,在列管式固定床进行。将过滤后的无尘空气经压缩、预热与气化的邻二甲苯蒸气混合后进人反应器,在400~460℃进行氧化反应,进料空速2000~3000h-1,空气中的邻二甲苯浓度40~60g/m2,反应热由管外循环熔盐带出。反应产物进入蒸气发生器,被冷却的反应气经进一步冷却回收粗苯酐,尾气经水洗回收顺丁烯二酸酐,粗苯酐经减压粗馏,塔顶分馏出低沸点的顺丁烯二酸酐等,塔底物料再真空精馏,得到苯酐成品。 方法二 目前在工业生产中有两种苯酐原料路线,即邻二甲苯法(简称邻法)和萘法。生产工艺有三种:固定床氧化法、流化床气相氧化法和液相法。世界苯酐生产中以邻法固定床氧化技术为主,大约占苯酐生产总能力的80%以上。1.邻二甲苯氧化法一般采用以五氧化二钒为主的钒系催化剂进行邻二甲苯的气相氧化,反应器多数为列管式固定床。将过滤后的无尘气经压缩、预热,与气化的邻二甲苯蒸气混合后进入反应器,在400-460℃进行氧化反应,进料空速2000-3000h-1,空气中邻二甲苯浓度40-60g/m2(标准),反应热由管外循环的熔盐带出。反应产物进入蒸气生器,被冷却的反应气经进一步冷却,回收粗苯酐。尾气经水洗回收顺丁烯二酸酐后放空。粗苯酐经减压粗馏,由塔丁分离出低沸点的顺丁烯二酸酐,甲基顺丁烯二酸酐及苯甲酸等;塔底物料经真空精馏,得到苯酐产品。原料消耗定额:邻二甲苯(98%)1138kg/t。2.萘催化氧化法萘熔融气化后与空气在沸腾床或固定床反应器内,在催化剂五氧化二钒存在下,催化氧化生成苯酐气体,经冷凝热熔而得粗酐,通过热处理后再经减压蒸馏、冷凝、分离而得精苯酐。原料消耗定额:萘(95%以上)11250kg/t。

聚碳酸酯生产技术进展及国内外市场分析

聚碳酸酯(PC)是五大通用工程塑料中惟一具 有良好透明性的热塑性工程塑料,具有突出的抗冲击、耐蠕变性能,较高的拉伸强度、弯曲强度、断裂伸长率和刚性,并具有较高的耐热性和耐寒性,很高的电绝缘性、阻燃性以及抗紫外线和耐老化性能。此外,聚碳酸酯密度低,容易加工成型。可与其他树脂共混形成共混物或合金,进而改善其抗溶剂性和耐磨性较差的缺点,使之性能更加完善,能够适应多种特性应用领域对成本和性能的要求。广泛应用于汽车部件、电子电气、数据载体、建筑材料、机械零件、纺织、办公自动化设备、包装业、运动器械、医疗保健、航空航天、电子计算机、光盘和家庭用品等领域。 1聚碳酸酯生产技术进展 1.1生产技术现状 1898年,Einhom采用对苯二酚和间苯二酚在吡啶溶液中进行光气化反应,首次合成聚碳酸酯,1958年德国拜耳公司首先实现了工业化生产。在聚碳酸酯合成工艺的发展历程中,出现过很多合成方法,如低温溶液缩聚法、高温溶液缩聚法、吡啶法、部分吡啶法、界面缩聚光气法、熔融酯交换缩聚法、固相缩聚法等。目前,可用于工业规模生产的方法主要有界面缩聚法(又名光气法)和熔融酯交换缩聚法和非光气熔融酯交换缩聚法等3种合成工艺。1.1.1光气法 光气法因缩聚反应是在有机相和无机相的界面进行的,故又称界面缩聚法,它首先由GE和拜耳公司在1958年实现了工业化。光气法是以二氯甲烷和水的悬浊液作为聚合溶剂,用双酚A、氢氧化钠和光气在催化剂存在下进行反应,最后经过分离出有机相进而得到聚碳酸酯。光气法合成聚碳酸酯的单体式双酚A钠盐和光气。双酚A的钠盐由双酚A和氢氧化钠溶液反应制得。按照缩聚反应的发生阶段,光 气法可分为二步界面缩聚和一步界面缩聚两种方 法。 二步缩聚法是传统的界面缩聚法,该方法分光气化和缩聚两步进行。将双酚A的钠盐溶液送入光气反应釜,以二氯甲烷为溶剂,通入光气,光气溶于二氯甲烷中形成有机相,和无机相双酚A的钠盐溶液在两相界面进行反应生成低分子量的聚碳酸酯(光气化阶段),然后加入催化剂(一般为三乙胺)和氢氧化钠,低分子量聚碳酸酯再经过缩聚得到高分子量的聚碳酸酯(缩聚阶段)。反应在25℃~42℃和接近常压的条件下进行,产物为多相混合物。聚碳酸酯进入有机相被溶解,氢氧化钠、 双酚A钠盐及副产物氯化钠溶解于无机相。有机相经洗涤、脱盐、脱溶剂、沉淀、干燥等纯化工序后得到聚碳酸酯粉末状,再经挤出造粒得到聚碳酸酯树脂。 针对原来生产工艺中存在的光气法阶段耗时较长,且缩聚过程反应速率慢等缺点,人们开发出 “一步界面缩聚”工艺。其特点是在反应开始时加入能加速氯甲酸酯基团与酚盐酯化反应速率的催化剂,使光气化与缩聚反应两个阶段几乎同时进行,同时结束。该方法的优点是在光气界面聚合制取聚碳酸酯时反应速度加快,而且减少了双酚A和光气的消耗,同时也避免了双酚A钠盐在碱性介质中的氧化分解现象,从而使产品质量得到提高。 界面缩聚工艺的优点是工艺成熟,反应在常温常压下进行,适合大规模连续生产;易制得高相对分子质量的聚碳酸酯,产品相对分子量可以达到1.5×105~2.0×105;产品光学性能较好,反应条件温和,对设备要求较低,因此长期占据聚碳酸酯生产的主导地位(目前世界上约90%的聚碳酸酯采用此方法进行生产,而且部分新建装置仍然采用此工艺)。但该工艺路线也存在以下不足:(1)聚合反应过程使用大量剧毒的光气和大量有毒易挥发的有机溶剂二 化工市场 ◆李玉芳伍小明◆ 聚碳酸酯生产技术进展及国内外市场分析 第38卷第4期2013年4月 上海化工 ShanghaiChemicalIndustry 31··

过氧化氢在有机合成中的应用研究进展

目录 摘要: (2) 关键词: (2) 第1章过氧化氢简介 (2) 1.1过氧化氢的性质 (2) 1.2过氧化氢的制备 (2) 第2章过氧化氢在有机合成中的应用进展 (3) 2.1 课题研究背景及意义 (3) 2.2 过氧化氢的应用进展 (3) 第3章过氧化氢在有机合成中的一些最新应用 (4) 3.1 过氧化氢用于合成(手性)亚砜、砜 (4) 3.2 过氧化氢用于合成环氧化物 (4) 3.3 过氧化氢用于合成醇、酚制备醇 (5) 3.4 过氧化氢用于合成醛、酮 (5) 第4章过氧化氢衍生物用于有机合成反应 (5) 结论 (6) 参考文献 (7)

过氧化氢在有机合成中的应用研究进展 化学08级01班刘珊 摘要:文章总结了在烯烃的环氧化、醇的选择氧化、酮化、肟化、磺化氧化反应、硫化物到砜的转化、有机物的卤化等反应中过氧化氢的催化性作用。也归纳了一些新的合成反应介质体系如氟相、离子液体、超临界流体等与过氧化氢在有机合成中的应用希望能够促进绿色化学科技的研究发展促进化学的可持续发展。 关键词:绿色化学;过氧化氢;有机合成;应用进展;环境保护 第1章过氧化氢简介 1.1过氧化氢的性质 过氧化氢(H2O2),又称双氧水,分子量为34.016,相对密度为1.4067(25℃),熔点-0.4℃,沸点150℃;纯过氧化氢是近乎无色的粘稠液体,分子间有氢键,由于极性比较强,在固态和液态时分子缔合程度比水大,所以他的沸点远比水高。过氧化氢的化学性质主要表现为一定的酸性、氧化性、还原性和不稳定性,其在酸性介质中的还原性比在碱性介质中的弱,氧化性则相反。过氧化氢主要用作氧化剂,过氧化氢作为氧化剂的主要优点是它的还原产物是水,不会给体系引入新的杂质。因为这一点,它便是当今社会一种很重要的绿色化学试剂。 1.2过氧化氢的制备 实验室制法: 一: 于100ml15-18%的硫酸中,在冰的冷却下,逐渐加入过氧化钡,加入的量以保持溶液的弱酸性为度(约40g)。倾出上层溶液即得到过氧化氢溶液。必要时可进行提取。每次用20ml提取4-5次。将醚提取物置于水浴上蒸发(不要高于40℃)除去醚,将剩余物移至硫酸保干瓶中。用此法可以制得50%过氧化氢溶液。 二: 将90g过氧化钠在强烈搅拌下分次少量地加入用冰水冷却的800ml20%的硫酸中,应保持温度不高于15℃。放置12小时,滤去析出的十水硫酸钠结晶。将滤液置于磨口真空装置中(5-10mm),在浴温60-65摄氏度(最后在85℃)下进行蒸馏,每次的蒸馏量为100ml。用两个串联的受器(第二个受器应用冰冷却)收集馏出物,第一个受器中的产品含过氧化氢含量高于20%,第二个受器含过氧化氢3%以下。所得过氧化氢溶液进一步浓缩可在浓硫酸真空保干器中,于室温下进行,经

年产40000吨苯酐的车间工艺设计_毕业设计

第一章文献综述 1.1苯酐简述 苯酐,全称为邻苯二甲酸酐(Phthalic Anhydride),常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。苯酐能引起人们呼吸器官的过敏性症状,苯酐的粉尘或蒸汽对皮肤、眼睛及呼吸道有刺激作用,特别对潮湿的组织刺激更大。苯酐主要用于生产PVC 增塑剂、不饱和聚酯、醇酸树脂以及染料、涂料、农药、医药和仪器添加剂、食用糖精等,是一种重要的有机化工原料。在PVC 生产中,增塑剂最大用量已超过50%,随着塑料工业的快速发展,使苯酐的需求随之增长,推动了国内外苯酐生产的快速发展。 最早的苯酐生产始于1872 年,当时德国BASF 公司以萘为原料,铬酸氧化生产苯酐,后又改用发烟硫酸氧化生产苯酐,但收率极低,仅有15%。自1917 年世界开始以氧化钒为催化剂,用萘生产苯酐后,苯酐的生产逐步走向工业化、规模化,并先后形成了萘法、邻法两种比较成熟的工艺[1]。 1.2苯酐的性质[2] 苯酐,常温下为一种白色针状结晶(工业苯酐为白色片状晶体),易燃,在沸点以下易升华,有特殊轻微的刺激性气味。 分子式C8H4O3,相对密度1.527(4.0℃),熔点131.6℃,沸点295℃(升华),闪点(开杯)151.7℃,燃点584℃。 微溶于热水和乙醚,溶于乙醇、苯和吡啶。 1.3苯酐的合成方法比较及选取 1.3.1合成苯酐的主要工艺路线 1.3.1.1 萘法[1] 1.3.1.1.1反应原理 萘与空气在催化剂作用下气相氧化生成苯酐。

+O O O 2 V 2O 5 CO 2O H 29/2++2 2 1.3.1.1.2 工艺流程 空气经净化、压缩预热后进入流化床反应器底部,喷入液体萘,萘汽化后与空气混合,通过流化状态的催化剂层,发生放热反应生成苯酐。反应器内装有列管冷却器,用水为热载体移出反应热。反应气体经三级旋风分离器,把气体携带的催化剂分离下来后,进入液体冷凝器,有40%-60%的粗苯酐以液态冷凝下来,气体再进入切换冷凝器( 又称热融箱)进一步分离粗苯酐,粗苯酐经预分解后进行精馏得到苯酐成品。尾气经洗涤后排放,洗涤液用水稀释后排放或送去进行催化焚烧。 1.3.1.2邻法 1.3.1.2.1 反应原理[1] 邻二甲苯与空气在催化剂作用下气相氧化生成苯酐。 CH 3 CH 3 +3O 2 3O O O H 225 + 1.3.1. 2.2 工艺流程 过滤、净化后的空气经过压缩,预热后与汽化的邻二甲苯混合进入固定床反应器进行放热反应,反应管外用循环的熔盐移出反应热并维持反应温度,熔盐所

新型聚碳酸酯型聚氨酯材料的合成与性能研究_

第二章文献综述第二章文献综述聚氨基甲酸酯(简称聚氨酯)是在高分子主链上含有许多重复—NHCOO—基团的高分子化合物。一般聚氨酯体系由二元或多元有机异氰酸酯与多元醇化合物(聚醚多元醇或聚酯多元醇)相互作用而得,因此根据选用原料的不同得到不同类型的聚氨酯,主要分为线型和体型两大类。由于性能优异,自20世纪30年[2]代Bayer公司合成了世界上第一个聚氨酯材料——Durethane U问世以来,聚氨酯产量一直增长很快,在国民经济许多领域获得了广泛应用。[3]聚氨酯作为生物材料的肇端是上世纪50年代被用作人工乳房,由此其在生物医用领域潜在的应用前景获得了广泛承认。此后,在心脏起搏器绝缘线、人工血管、介入导管、人工关节、人工软骨、神经导管、控制释放载体等等一系列材[4]料领域发挥了巨大作用。但使用效果最终表明:聚酯型聚氨酯易水解,聚醚型[3,5-9]聚氨酯易于氧化降解。因此,按照作为医疗材料必须做出严格的生物相容性评价的三个方面:(1)血液相容性(2)组织相容性(3)力学相容性。达到要求的聚氨酯才能广泛应用。针对

以上两种聚氨酯的缺点和医用要求,本文主要根据反应机理合成一种新型聚碳酸酯型聚氨酯,并通过实验来检验它的各项指标是否符合医用要求。 2.1 聚氨酯弹性体的基本结构 2.1.1 一般聚氨酯弹性体的基本结构由多异氰酸酯和多元醇或多元醚反应生成的聚氨酯的主要结构是-NHCOO-,其中氨基甲酸酯链段是重复的结构单元。根据其结构可以看出,类似酰胺基团及酯基团的存在,使聚氨酯的化学和物理性能介于聚酰胺和聚酯之[4]间。因此,聚氨酯在粘合剂、高档涂料、建筑材料、涂饰剂等领域得到了广泛应用;同时在生物医用领域也占有了一席之地,例如人造血管、人工心脏瓣膜等,这些无不得益于其优良的微相分离结构。1966年美国学者Cooper及其同事的“线[5]型聚氨酯的黏弹性”对聚氨酯的聚集态作了比较完整的阐释:(1)聚氨酯均是由柔性链段和刚性链段交替连接而成的(AB)n型嵌段聚合物;(2)分子中内聚能很大的刚性链段彼此缔合在一起形成微区的小单元,其玻璃化温度远高于室温,常温下呈现玻璃态,称之为塑料相;构成聚氨酯基质或基体的柔性链段玻璃化温度 2

有机合成论文

绿色有机合成的发展与应用 摘要:绿色化学是21世纪化学化工研究的重要研究方向,是实现可持续发展规律的重要保障。绿色合成,作为当代有机合成发展的一个重要学科前沿.已成为化学发展的一个方向。该文介绍了绿色合成的含义及基本要点并综述了近年来国内外绿色合成研究的一些进展。 关键词:绿色有机合成、不对称合成、采用无毒、无害的催化剂、提高烃类氧化反应的选择性 正文:1. 绿色化学的进展 绿色化学是依靠科技进步,创造出单位产品产污系数最低,资源消耗最小的先进工艺技术;从化学反应的根本上减少污染。而不是对“三废”等进行处理的环保局部性终端治理技术。 2.绿色化学的含义及原理: 含义绿色有机合成是指采用无毒、无害的原料、催化剂和溶剂,选择具有高选择性、高转化率,不生产或少生产副产品的对环境友好的反应进行合成,其目的是通过新的合成反应和方法,开发制备单位产品产污系数最低,资源和能源消耗最少的先进合成方法和技术,从合成反应入手,从根本上消除或减少环境污染。 研究的内容绿色化学是对传统化学的挑战,是对传统化学思维方式的更新和发展,因此,绿色化学的研究内容是从反应原料、反应条件、转化方法或开发绿色产品等角度进行研究,打破传统的化学反应,设计新的对环境友好的化学反应。包括:①使用无毒无害的原料;②利用可再生资源;③新型催化剂的开发研究;④不同反应介质的研究;⑤寻找新的转化方法;⑥设计对人类健康和环境安全的化学产品。 非传统溶剂有机溶剂因其对有机物具有良好的溶解性。但有机溶固相合成的剂的较高的挥发性和毒性成为有机合成造成污染的主要原因。因此新型绿色反应介质代替有机溶剂成为绿色化学研究的重要方向。目前, 水、超临界流体、离子液体、仿酶化学和含氟溶剂作为反应介质的有机合成在不同程度上已取得了一定的进展。 无溶剂有机合成研究发现, 在固态下能够进行的有机反应大多数较溶液中表现出高的反应效率和选择性。无溶剂有机合成具有高选择性、高产率、工艺过程简单和不污染环境、能耗少和无爆炸性等优点。 绿色催化剂据统计, 在化学工业中, 80%以上的反应只有在催化剂作用下才能获得具有经济价值的反应速率和选择性。新的催化材料是创造新催化剂的源泉, 也是提高原子经济性、开发绿色合成方法的重要基础。近年来, 绿色催化剂的研究主要有绿色固体酸碱催化剂、分子筛催化剂、生物酶催化剂等。 3.采用无毒、无害的催化剂: 目前烃类的烷基反应一般使用氢氟酸、硫酸、三氯化铝等液体酸作催化剂,这些催化剂的共同缺点是对设备的腐蚀严重、危害人身、产生废渣、污染环境。为此,国内外研究人员正从分子筛、杂多酸、超强酸等新催化材料中大力开发固体酸烷基化催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术引人注目,这种催化剂选择性高。催化剂寿命长,且乙苯回收率超过99.6%。还有一种生产线性烷基苯的固体酸催化剂替代氢氟酸催化剂,改善了生产环境,现已工业化。今后在固体酸催化剂的研究开发中,还应进一步提高催化剂的选择性,以降低产品中杂质的含

不饱和聚酯树脂的合成

不饱和聚酯树脂的合成 [1]主要原料 (一)二元醇 乙二醇是结构最简单的二元醇,由于其结构上的对称性,使生成的聚酯树脂具有明显的结晶性,这便限制了它同苯乙烯的相容性,因此一般不单独使用,而同其它二元醇结合起来使用,如将60%的乙二醇和40%的丙二醇混合使用,可提高聚酯树脂与苯乙烯的相容性;如果单独使用,则应将生成树脂的端基乙酰化或丙酰化,以改善其相容性。 1,2丙二醇由于结构上的非对称性,可得到非结晶的聚酯树脂,可完全同苯乙烯相溶,并且它的价格相对讲也较低,因此是目前应用最广泛的二元醇。 其它可用的二元醇有: 一缩二乙二醇——可改进聚酯树脂的柔韧性; 一缩二丙二醇——可改进树脂柔韧性和耐蚀性; 新戊二醇——可改进树脂的耐蚀性,特别是耐碱性和水解稳定性。 以上几种二元醇,或由于树脂柔韧性太大而失去强度,或应改善树脂与苯乙烯相溶性,它们一般不单独使用,应和其它二元醇混合使用。具有高度耐用化学腐蚀的聚酯树脂,常常用双酚A或氢化双酚A作原料,为生成一种适合与二元酸反应的二元醇,双酚A应预先同环氧丙烷或环氧乙烷反应,生成两端具有醇羟基的二元醇,如D-33二元醇。 用氯化或溴化的二元醇,不仅表现出阻燃性,也改善了耐蚀性。 加入少量的多元醇,如丙三醇和季戊四醇,可较大程度地改善树脂的耐热性。 不饱和聚酯树脂的耐化学腐蚀性取决于树酯的化学结构。在聚酯树脂中酯键是最薄弱的环节,易受酸和碱的作用而发生水解。酯键周围空间的不同的化学结构对于酯键有着不同的空间位阻保护作用,而使制品表现出不同的耐蚀性。酯键的空间位阻保护作用: PO-BPA>NPG>PG>EG

(二)不饱和二元酸 不饱和聚酯树脂中的双键,一般由不饱和二元酸原料提供。树脂中的不饱和酸愈多,双键比例愈大,则树脂固化时交联度愈高,由此使树脂具有较高的反应活性,树脂的固化物有较高的耐热性,在破坏时有较低的延伸率。 为改进树脂的反应性和固化物性能,一般把不饱和二元酸和饱和二元酸混合使用。 1,顺丁烯二酸酐(马来酸酐)和顺丁烯二酸(马来酸)是最常用的不饱和酸。由于顺丁烯二酸酐具有较低的熔点,并反应时可少缩合出一分子水,故用得更多。 2,反丁烯二酸(富马酸)是顺酸的反式异构体,虽然顺酸在高于180°C缩聚时,几乎完全可以异构化而变成反式结构,但用反丁烯二酸制备的树脂有较高的软化点和较大的结晶倾向性。 3,其他的不饱和酸,如氯化马来酸、衣康酸和柠康酸也可以用,但价格较贵,使用不普遍。此外,用衣康酸制造的树脂,也会出现树脂与苯乙烯混溶稳定性的问题,尽管氯化马来酸含26%的氯,但要作为阻燃树脂使用,含氯量仍是不够的,还必须加入其它阻燃成分。 (三)饱和二无酸 加入饱和二元酸的主要作用是有效地调节聚酯分子链中双键的间距,此外还可以改善与苯乙烯的相容性。 1,为减少或避免树脂的结晶问题,可将邻苯二甲酸酐作为饱和二元酸来制备不饱和聚酯树脂,所得的树脂与苯乙烯的相溶性好,有较好的透明性和良好的综合性能。此外,邻苯二甲酸酐原料易得,价格低廉,因此是应用最广的饱和二元酸。 2,间苯二甲酸与邻苯二甲酸酐相比,改进了邻苯型聚酯中由于两个酯基相靠太近而引起的相互排斥作用所带来的酯基稳定性问题,从而提高了树脂的耐蚀性和耐热性,此外还提高了树脂的韧性。间苯二甲酸可用于合成中等耐蚀的不饱和聚酯树脂。对苯二甲酸与间苯二甲酸相似,用对苯二甲酸制得的聚酯树脂有较好的耐蚀性和韧性,但这种酸活性不大,合成时不易反应,应用不多。 3,含氯和含溴的饱和二元酸,可以用来制造阻燃树脂。a, 氯菌酸酐(HET

苯酐法生产糖精钠

糖精钠生产工艺 1.简介: 糖精钠是最古老的甜味剂,为无色或白色的结晶、白色的结晶性粉末或为白色的粉末,味极甜,即使在10,000倍的水溶液中也有甜味。 糖精钠,又称可溶性糖精,是糖精的钠盐,带有两个结晶水,无色结晶或稍带白色的结晶性粉末,一般含有两个结晶水,易失去结晶水而成无水糖精,呈白色粉末,无臭或微有香气,味浓甜带苦。甜度是蔗糖的500倍左右。耐热及耐碱性弱,酸性条件下加热甜味渐渐消失,溶液大于0.026%则味苦。 2.生产方法: 糖精钠生产工艺有多种,按生产采用的主要原料划分可分为甲苯法、苯酐法、邻甲基苯胺法和苯酐二硫化物法。 3.苯酐法生产工艺 3.1苯酐法简介: 苯酐法生产糖精钠为我国独创,使用的主要原料有苯酐,甲醇,氨水,液体氢氧化钠,液氯,盐酸,硫酸,亚硝酸钠,硫酸铜,液体二氧化硫,甲苯,碳酸氢钠,活性炭等,包括酰胺化,霍夫曼降级,酯化,重氮,置换,氯化,胺化,酸析,中和等化学反应。 3.2 生产方法: 3.2.1 酰胺化: 将苯酐和冷冻的氨水依次加入酰胺化反应锅内,升温后缓慢加入氢氧化钠溶液,调pH=11~12,保温0.5h反应,再排氨3.5h,得邻甲酰胺苯甲酸钠溶液(简称酰胺化液)。 3.2.2 酯化分离: 在酯化锅内将酰胺化液降温后,加入冷冻的甲醇和次氯酸钠溶液,在0℃下反应45min后升温至30℃,以淀粉碘化钾溶液测试呈无色反应,然后加入适量的亚硫酸氢钠溶液,料液转稀后,再加入热水溶解,静置后分离,过滤,分取油层得邻氨基苯甲酸甲酯(简称甲酯)。 3.3.3 重氮化: 将由水,硫酸与盐酸配制好的混酸置于重氮锅内,冷却后开始缓加甲酯和亚

硝酸钠溶液的混合液,重氮温度保持在25℃以下,反应终点时淀粉碘化钾溶液显淡紫色,产物为邻硫酸(盐酸)重氮苯甲酸甲酯溶液(简称重氮液)。 3.3.4 置换: 在置换锅内将重氮液降温至10℃,加入硫酸铜,通二氧化硫进行置换,析出邻亚磺酸苯甲酸甲酯,约1h后用H酸测试反应终点应褪色. 3.3.5 氯化: 加入甲苯,通氯气氯化,以2%联苯胺乙醇溶液测试显深墨绿色为终点,静置分层,有机层为邻甲酸甲酯苯磺酰氯甲苯溶液(简称甲苯磺酰氯)。 3.3.6 胺化: 依次将甲苯磺酰氯和水加入胺化锅,在10℃时加氨水胺化,温度可达70℃,pH值9以上,静置后取下层铵盐液为邻甲酰苯磺酰亚胺铵溶液(简称胺化液)。 3.3.7 酸化: 将胺化液放入酸碱化锅内,加入甲苯和30%的盐酸至pH值为1,酸析后降温至20℃。 3.3.8 碱化: 取甲苯层水洗去氯化铵的不溶性糖精甲苯溶液;将此溶液加热,加入碳酸氢钠中和,调pH值至3.8~4。 3.3.9 脱色: 静置后取水层,加活性炭脱色,过滤,调滤液pH值至7。 3.3.10 结晶: 在70~75℃减压浓缩,趁热过滤,滤液经结晶,干燥得糖精钠。 4. 工艺特点: 该法的主要特点是产品收率高,产品质量稳定且有保证,污染能治理,生产周期比甲苯法短等.生产过程中还可以根据市场需要随时调整生产工艺,采用不用甲苯进行氯化反应或酸析反应,可以得到固体邻甲酸甲酯苯磺酰氯或不溶性糖精,两者都可以用作农药中间体。

聚碳酸酯的合成工艺对比及进展分析

聚碳酸酯的合成工艺对比及进展分析 聚碳酸酯(PC)是一种无味、无毒、透明的无定形热塑性材料,是分子链中含有碳酸酯链一类高分子化合物的总称。 聚碳酸酯可分为脂肪族、脂环族、芳香族等几大类田。但因制品、加工性能及经济等因素的制约,目前仅有双酚A型的芳香族聚碳酸酯投入工业化规模生产和应用。自从1958年聚碳酸酯商业化生产以来,其种类和用途两方面的研发均获得了巨大进展,因此其作为一种主要的热塑性工程塑料而广泛进入了国民经济的各个领域。双酚A型聚碳酸酯是目前产量最大、用途最广的一种聚碳酸酯,也是发展最快的工程塑料之一。本文所述聚碳酸酯即为双酚A型聚碳酸酯。 聚碳酸酯是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变,尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,被广泛用于电子电气、电动工具、交通运输、汽车、机械、仪表、建筑、信息存储、光学材料、医疗器械、体育用品、民用制品、保安、航空航天及国防军工等领域,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。预测我国聚碳酸酯市场的年均增长率将达到10.2%,至2010年工程塑料需求量将接近400万t。聚碳酸酯产量年增长可能达到9%,销售量年增长将达10%。 在聚碳酸酯的合成工艺发展历程中,出现的合成方法颇多,如低温溶液缩聚法、高温溶液缩聚法、吡啶法和部分吡啶法等等,至今仍不断有新的合成方法报道,但已工业化、形成大规模生产的工艺路线并不多,这些方法或者不成熟,或者因成本较高而制约了实际应用m。目前世界上大部分生产厂家普遍采用界面缩聚法或熔融酯交换法,其中80%的生产厂家采用界面缩聚法。 聚碳酸酯工业化生产工艺按照是否使用光气作原料可主要分为两大类。第一类是使用光气的生产工艺。第二类是完全不使用光气的生产工艺。 1光气法 1.1溶液光气法 以光气和双酚A为原料,在碱性水溶液和二氯甲烷(或二氯乙烷)溶剂中进行界面缩聚,得到的聚碳酸酯胶液经洗涤、沉淀、干燥、挤出造粒等工序制得聚碳酸酯产品。此工艺经济性较差,且存在环保问题,缺乏竞争力,已完全淘汰。1.2界面缩聚法 1.2.1二步界面缩聚法 界面缩聚法合成聚碳酸酯化学原理:参与界面缩聚反应的两种单体是双酚A 钠盐和光气,其化学反应式如上所示。按传统的方法,在实施上述反应时,一般分为两步,即光气化阶段和缩聚阶段,这便是通常所说的“二步界面缩聚法”。 1.2.2一步界面缩聚法 近年来,“二步界面缩聚法”正在向“一步界面缩聚法”发展。 在一步界面缩聚法反应过程中,在反应一开始就加入催化剂,由于催化剂显著地加速氯甲酸酯基团与酚盐酯化的反应速度,故当双酚A钠盐光气化的同时,就伴随着缩聚反应的进行,而且几乎在光气化反应结束的同时,缩聚反应也随之结束。 “一步法”光气界面聚合生产聚碳酸酯,反应速度快,双酚A、光气等原料消耗大大降低。工艺成熟、生产稳定、易于操控,是目前世界上比较成熟的合成聚碳酸酯方法之一。 1.3酯交换法

苯酐安全生产要点(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 苯酐安全生产要点(新版) Safety management is an important part of production management. Safety and production are in the implementation process

苯酐安全生产要点(新版) 1工艺简述. 苯酐(邻──苯二甲酸酐)是一种重要的有机化工原料。其生产工艺路线主要有萘催化氧化法和邻二甲苯氧化法。采用60克固定床气相催化邻二甲苯氧化法的生产工艺,由氧化、热处理、蒸馏、精馏、切片等工序组成。 简要工艺过程是空气经加压进入预热器,邻二甲苯经计量预热升温至160℃喷射到预热的空气流中,在气体混合器混合调节、恒定比值,并加入0.4-1%的二氧化硫。上述混合气进入反应器,以邻二甲苯/空气=60g/m3配合比通过五氧化二矾催化剂(V—TI型),在温度(440-470℃)、压力(0.5MPa)、空速(SV=3000h-1)条件下进行氧化反应,生成物经切换冷凝器凝华制成精苯酐。尾气送洗涤塔洗涤后,废气排入大气,洗涤液送至顺酐回收。粗苯酐经热处理、蒸馏、精馏、冷凝、切片等一系列工序制成苯酐成品。残渣送焚烧单

元处理。 生产中所用原料和产品如邻二甲苯、五氧化二矾、二氧化硫、苯酐、残液、残渣等均为易燃、可燃有毒、有害物质。放射源钴—60对人体危害极大。 2重点部位 2.1氧化反应器是以邻二甲苯为原料与空气混合,通过催化剂作用进行氧化反应制取苯酐的设备,是整个苯酐工艺的核心。邻二甲苯与空气混合物的爆炸下限为44g/Nm3(标准),而生产是采用空气中含有邻二甲苯的量为60g/Nm3(标准),因此氧化反应器中的氧化反应是选定在爆炸下限之上进行的。因此,对工艺参数控制必须严格,稍有失误将会造成事故。如邻二甲苯量过大,造成热点温度飞温,超出邻二甲苯自燃点;静电接地不良,造成静电电荷积聚放电;设备内漏,熔盐浸入氧化反应器都可能引起燃烧爆炸。如某厂苯酐装置氧化反应器,因设计上的缺陷,搅拌叶刮着器壁磨穿,熔盐内漏引起爆炸,伤亡多人。 2.2切换冷凝器功能是把氧化反应气体中的苯酐凝华下来。当进

四氯苯酐车间考核细则标准范本

管理制度编号:LX-FS-A96777 四氯苯酐车间考核细则标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

四氯苯酐车间考核细则标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 为了在现有生产条件的基础上,提高班组生产效率,实现增加产能、提高企业经济效益、增加员工收入的目标,特制定本车间考核细则。 一、产量考核 车间8条生产线每月生产300吨四氯苯酐为基数,每吨产量工资358元。超基数产量公司给予100元/吨奖励、少基数产量按50元/吨处罚。以入库数量为准,按月结算。 因公司及外部原因(由分管副总确认)不能正常开足8条生产线, 则按每条生产线的平均值调减生产量,减少生产

萘法苯酐工艺简介

萘法苯酐生产简介 邻苯二甲酸酐,简称苯酐,英文缩写PA(Phthalic anhydride),是一种重要的基本有机化工原料,被认为是十大有机化工原料之一。苯酐主要用于制造增塑剂、聚酯树脂和醇酸树脂,此外,还可用于生产涂料、医药、农药、糖精等。我国苯酐最主要的用途是生产邻苯二甲酸酯类增塑剂,如邻苯二甲酸二辛酯、邻苯二甲酸二丁酯、混合酯等,该类增塑剂大量用于聚氯乙烯塑料制品的加工;其次是用于生产醇酸树脂和氨基树脂涂料。苯酐还可以用于不饱和聚酯的生产,在染料工业中用以合成蒽醌,在颜料生产中合成酞青兰BS、酞菁蓝CT、酞菁蓝B等颜料;在医药工业中用于制备酚酞,在农药生产中用于亚胺磷等中间体的生产。 本项目以萘为原料,V2O5-TiO2为主要活性组分高负荷催化剂的苯酐生产工艺。原料气体与净化后的空气完全混合送入气相列管式固定床反应器中,在催化剂的催化作用下,萘氧化生成苯酐气体,并且发生一些列的副反应。热的生成气体离开反应器后经气体冷却器换热后,进入热熔箱凝固成粗苯酐产物。粗苯酐还需要经过二级精馏才能得到合格产品。 一、产品性质

苯酐全称为邻苯二甲酸酐(Phthalic annychide,缩写PA),常温下为一种白色针状结晶(工业苯酐为白色片状晶体);不溶于冷水,溶于热水、乙醇、乙醚、苯等多数有机溶剂;易燃,在沸点以下易升华,有特殊轻微的刺激性气味;苯酐有毒,能引起支气管炎,眼炎,肺气肿等症状,对皮肤有刺激作用。 物理性质 (1)苯酐的物理常数 分子式: C8H4O3 ;C6H4(CO)2O 分子量: 148.12 C A S 号: 85-44-9 沸点:284.5℃ (101KPa) 凝固点:131.11℃ (干燥空气) 熔点:130.5℃ 三相点:131.00℃ 自燃点:584℃ 密度:相对密度(水=1):1.53;相对密度(空气=1):5.10 闪点:151.7℃(开杯) 蒸汽压:0.13kPa/96.5℃ 溶解性:不溶于冷水,溶于热水、乙醇、

相关主题
文本预览
相关文档 最新文档