当前位置:文档之家› 补偿电容器串联电抗对无源LC滤波器性能的影响

补偿电容器串联电抗对无源LC滤波器性能的影响

补偿电容器串联电抗对无源LC滤波器性能的影响
补偿电容器串联电抗对无源LC滤波器性能的影响

摘要:并联电容器组是目前电网中普遍用来补偿无功的装置,而无源滤波器通常用来吸收谐波源产生的谐波电流,并兼顾无功补偿。文中以工程实例为依据,用电力系统谐波计算程序CHP对补偿电容器组串联电抗对无源滤波器性能的影响进行了分析计算。结果表明,无源滤波器与补偿电容器组并联运行情况下,补偿电容器组串联电抗率变化时会对供电系统的阻抗频率特性和滤波器性能造成的影响也不同。

关键词:无源滤波器并联电容器电力系统谐波电能质量

1.中国电力科学研究院,北京100085;2.华北电力大学(北京),北京102206;3.北京首钢设计院,北京100043

1 引言

无源电力滤波器由于其结构简单、运行可靠、维护方便,被广泛用于就近吸收谐波源所产生的谐波电流,降低供电点的谐波电压,改善电能质量。无源电力滤波器一般由电容器、电抗器和电阻器组合而成,除起滤波作用之外还兼顾无功补偿。

并联补偿电容器组是供电系统使用最广泛的补偿装置,用于提高功率因数,改善电压质量和降低电能损耗。并联电容器组通常需要加装串联电抗器来限制高次谐波和合闸涌流。但补偿电容器组的串联电抗率(即电抗器感抗与电容器容抗之比)不同,整个系统的阻抗频率特性和滤波器性能也不同。本文以某钢厂的实际供电系统为例,对串有不同电抗值的电容器组与无源LC滤波器并联运行的几种组合情况进行了仿真计算,提出了这2种电力装置并联运行时应注意的一些问题。

2 供电系统组成

供电系统接线如图1所示。该系统的6 kV母线上接有无功补偿电容器组,无功补偿总容量为6 000kvar。系统的主要谐波源为接在主变6 kV侧的不可控整流装置,其产生的谐波主要是奇次谐波,各次谐波电流值如表1所示。

为消除谐波源产生的谐波,拟在系统中安装LC无源电力滤波器,它由3次、5次、7次单调谐和11次高通滤波器组成,总容量为6 900 kvar。

3 仿真计算方法

由于系统接有无功补偿并联电容器,补偿电容器串联电抗对LC滤波器的性能会有一定的影响。为合理设计LC滤波器,运用了加拿大CHP电力系统谐波计算程序[1],对系统进行了大量的仿真计算。具体分析计算方法如下:

计算方法一:根据注入钢厂6 kV母线的各次谐波电流,分别取系统6 kV母线短路容量为100MVA、150 MVA、200 MVA、250 MVA、300 MVA,取滤波器安装容量6 900 kvar。滤波器参数如表2所示。对滤波器与补偿电容器的各种不同并联运行方式,进行阻抗频率特性分析和谐波潮流计算。

计算方法二:根据注入钢厂6 kV母线的各次谐波电流,取系统6 kV母线短路容量为200 MVA,设滤波器容量在4 500~15 000 kvar范围内变化,各次滤波器的参数同时按比例变化。对滤波器与补偿电容器的各种不同并联运行方式,进行阻抗频率特性分析和谐波潮流计算。

在这2种计算方法中,滤波器与补偿电容器的并联运行方式主要考虑了7种:A、无源滤波器组独自运行;B、无源滤波器组与串联电抗率为6%的补偿电容器组并联运行;C、无源滤波器组与串联电抗率为12%的补偿电容器组并联运行;D、无源滤波器组与串联电抗率为0%的补偿电容器组并联运行;E、串联电抗率为6%的补偿电容器组独自运行;F、串联电抗率为12%的补偿电容器组独自运行;G、串联电抗率为0%的补偿电容器组独自运行。

为考虑工程误差的影响,计算中按流进滤波支路的谐波电流为最大这种不利条件进行计算,滤波器所有支路的电感均按偏调-3%考虑。

4 计算结果分析

4.1 滤波器运行稳定性结果分析

按上述计算方法,可得到的系统阻抗频率特性计算结果非常多。限于篇幅,本文只给出短路容量为200 MVA时供电系统6 kV母线的部分阻抗频率特性,如图2~图5所示。同时得到的系统串并联谐振点如表3所示。

通过对上述2种计算得到的大量的系统阻抗频率特性进行统计分析,滤波器的运行稳定性可以得出以下结果。

(1)计算方法一的结果

1)当无源滤波器组与串联电抗率为6%的补偿电容器并联运行时,对串联谐振点影响不大,对并联谐振点影响较大,使并联谐振点接近5次、7次和10次谐波点;

2)当无源滤波器组与串联电抗率为12%的补偿电容器组并联运行时,对串联谐振点影响不大,但使并联谐振点更靠近于10次谐波点;

3)当无源滤波器组与串联电抗率为0%的补偿电容器组并联运行时,对3次、5次、7

次串联谐振点影响不大,但使11次串联谐振点的频率增大,当系统短路容量为200 MVA 时,11次串联谐振点的频率增大尤为明显,对并联谐振点的影响较为明显,使并联谐振点更接近于4次、6次、8次和12次谐波点。

(2)计算方法二的结果

1)当无源滤波器组与串联电抗率为6%或12%或0%的补偿电容器并联运行时,对串联谐振点的影响均不大;

2)当无源滤波器组与串联电抗率为6%的补偿电容器并联运行时,由于滤波器安装容量的不同,使并联谐振点接近于3次、5次、7次和10次谐波点;

3)当无源滤波器组与串联电抗率为12%的补偿电容器并联运行时,由于滤波器安装容量的不同,使并联谐振点接近于7次和10次谐波点;

4)当无源滤波器组与串联电抗率为0%的补偿电容器并联运行时,由于滤波器安装容量的不同,使并联谐振点接近于4次、6次、8次和13谐波点。

4.2 谐波潮流计算结果分析

计算得到的谐波潮流结果也非常多,限于篇幅,本文只给出滤波器的安装容量为6 900 kvar、系统短路容量为200 MVA时的流进滤波器支路和注入6kV系统的谐波电流,如表4所示。流进补偿电容器支路的各次谐波电流如表5所示。

通过对谐波潮流结果的统计分析,可以得出以下结果。

(1)计算方法一的结果

1)无源滤波器与串联电抗率为12%的补偿电容器组并联运行时,流进6 kV系统和各滤波支路的3次谐波电流值均明显小于无源滤波器单独运行时的值;当系统短路容量小于200 MVA时,流进系统和各滤波支路的5、7、11次谐波电流值稍大于无源滤波器单独运行时的值;当系统短路容量大于200MVA时,流进系统和各滤波支路的5、7、11次谐波电流值稍小于无源滤波器单独运行时的值。

2)无源滤波器与串联电抗率为6%的补偿电容器组并联运行时,流进6 kV系统和各滤波支路的3次谐波电流值均明显大于无源滤波器单独运行时的值;当系统短路容量小于200 MVA时,流进系统和各滤波支路的5、7、11次谐波电流值稍大于无源滤波器单独运行时

的值;当系统短路容量大于200 MVA时,流进系统和各滤波支路的5、7、11次谐波电流值稍小于无源滤波器单独运行时的值。

3)无源滤波器与串联电抗率为0%的补偿电容器组并联运行时,流进系统和各滤波支路的3次谐波电流值均明显大于无源滤波器单独运行时的值;当系统短路容量小于200 MVA 时,流进系统和各滤波支路的5、7、11次谐波电流值稍小于无源滤波器单独运行时的值;当系统短路容量大于200 MVA时,流进系统和各滤波支路的5、7、11次谐波电流值稍大于无源滤波器单独运行时的值。

(2)计算方法二的结果

1)无源滤波器与串联电抗率为12%的补偿电容器组并联运行时,流进6 kV系统和各滤波支路的3次谐波电流值明显小于无源滤波器单独运行时流进系统和各滤波支路的3次谐波电流值;流进系统的5、7、11次谐波电流值稍大于无源滤波器单独运行时流进系统的5、7、11次谐波电流值;流进5次滤波支路的5次谐波电流值大于无源滤波器单独运行时流进5次滤波支路的5次谐波电流值;流进7次滤波支路的7次谐波电流值大于无源滤波器单独运行时流进7次滤波支路的7次谐波电流值;流进11次滤波支路的11次谐波电流值要比无源滤波器单独运行时流进11次滤波支路的11次谐波电流值大。

2)无源滤波器与串联电抗率为6%的并联电容器组并联运行情况下,当滤波器安装容量小于9 000kvar时,流进6 kV系统和各滤波支路的3次谐波电流值大于无源滤波器单独运行时流进系统和各滤波支路的3次谐波电流值;当滤波器安装容量大于9 000 kvar时,流进系统和各滤波支路的3次谐波电流值稍小于无源滤波器单独运行时流进系统和各滤波支路的3次谐波电流值;而流进系统和各滤波支路的5、7、11次谐波电流值均大于无源滤波器单独运行时流进系统和各滤波支路的5、7、11次谐波电流值,而与滤波器的安装容量无关。

3)无源滤波器与串联电抗率为0%的补偿电容器组并联运行情况下,当滤波器安装容量小于9 000kvar时,流进系统和各滤波支路的3次谐波电流值比无源滤波器单独运行时流进系统和各滤波支路的3次谐波电流值大;而流进系统和各滤波支路的5、7、11次谐波电流均小于无源滤波器单独运行时流进系统和各滤波支路的5、7、11次谐波电流;当滤波器安装容量大于9 000 kvar时,流进系统和各滤波支路的3、5、7、11次谐波电流值稍小于无源滤波器单独运行时流进系统和各滤波支路的3、5、7、11次谐波电流值。

(3)流进电容器组的谐波结果

在上述2种计算方法下,无源滤波器与补偿电容器组的各种组合方式并联运行,使流进电容器组的各次谐波电流值均减小。其中串联电抗率为0%的补偿电容器组与无源滤波器并联运行时,流进电容器组的各次谐波电流值的减小尤其明显。

限于篇幅,本文只给出滤波器的安装容量为6 900 kvar、系统短路容量为200 MVA时的流进补偿电容器支路的各次谐波电流值,如表5所列。

5 结论

(1)补偿电容器组串联电抗率对滤波器的串联谐振点的影响较小,而对并联谐振点的影响较大,可能会使流进滤波支路或系统的某些次谐波电流增大。因而在滤波器设计中,必须根据系统的短路容量和滤波器的安装容量,对滤波支路的电感和电容参数进行认真核算,以避免某些滤波支路过电流或流进系统的谐波电流超标;

(2)当补偿电容器组的串联电抗率为12%,系统短路容量或滤波器的安装容量发生变化时,流进6kV系统和滤波器支路的3次谐波电流值总小于无源滤波器单独运行时流进6 kV 系统和滤波器支路的3次谐波电流值,且流进6 kV系统和滤波器支路的5次、7次、11次谐波电流值与系统的短路容量有关;

(3)当补偿电容器组的串联电抗率为6%或0%时,流进滤波支路和6 kV系统的各次谐波电流值与系统的短路容量和滤波器的安装容量有关,需仔细分析计算;

(4)无源滤波器与补偿电容器组并联运行,可减小流进电容器组的各次谐波电流,有利于避免由谐波引起的并联电容器的损坏事故。

综上所述,无源滤波器与补偿电容器组并联运行情况下,补偿电容器组串联电抗率不同,对供电系统的阻抗频率特性和滤波器性能的影响也不同。

参考文献

[1]姚国灿,等.电力系统谐波程序(简称CHP程序)使用说明[R].电力部电力科学研究院技术报告,1991.

滤波电容、去耦电容、旁路电容的作用

滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL L a O(i_ P e 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。Digital IC Designer's forum:h X,t

py7A(r4QF 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,L x!H\D"P/} 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,:`&y"S$O(S9WV5s%^"L 阻抗Z=i*wL+R,线路的电感影响也会非常大,数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL2G K v{I;N,J(R x 会导致器件在需要电流的时候,不能被及时供给。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL1q Q&\6g i*V7o n O 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一

10KV电容器成套补偿装置施工方案

110kV桂花变电站扩建工程电容器成套装置安装施工方案 批准: 审核: 编写: 广州南方电力建设集团有限公司 日期:二00六年三月

并联电容器组成套补偿装置施工方案 一、概述 木方案是根据广州电力设计院设计的110KV桂花变电站工程;设计图纸内电气部份《电容器补偿装置》及厂家安装使用说明书的内容进行编写。在施工中执行《电气装置安装工程高压电器施工及验收规范》GBJ147-90及《电气装置安装工程电气设备交接试验标准》GB50150-91,在施工安全上执行《电力建 设安全工作规程》DL5009.3-1997。 高压并联电容器成套补偿装置为户外式布置在高压室二楼。型号为:TBB-10-4008/334F-3Ao单Y接线,分别由电容器、电抗器、放电PT以及僻雷 器组成。 二、并联电容器成套补偿装置的主要参数及主要配套设备 1.高压并联电容器成套补偿装置(总体) 制造r: 型号:TBB-10-4008/334F-3A 额定容量:4008KVAR 系统电压:10 KV 调谐度:XL/XC=6% 额定频率:50 HZ 2.电容器(单只) 制造厂: 型号:BAM11/V3-334-1W 额定电压:11/V3KV 额定容量:334KVAR 相数: 3 3.放电PT 型号:FDR-1.7-11/V3 :0.1/V3 :0.1/3KV 三、施工准备 额定一次电压:11/的KV 额定二次电压:100/巧、100/3 V 1、并联电容器成套补偿装置组装就位前,应详细了解并联电容器成套补偿

装置的厂家资料(包括安装尺寸及要求),根据厂家资料结合设计图纸 划出基础中心线和基础找水平。(土建预埋基础是否与实物基础相 符)。 2、组织施工器具及材料进场,并安排好施工临时用电设施。注意施工用电 安全并作好相应的防护措施。 3、组织全体施工人员学习本施工方案,并布置好施工工器具。 4、施工负责人作好安全技术交底,并落实施工现场的安全设施及防火要 求。 5、完善施工现场环境保护设施。 四、设备的开箱检査 1、安装箱单与厂家代表、甲方代表以及监理对设备进行清点、检查。 2、检查设备是否符合设计要求、部件表面无划(碰)伤和锈蚀,瓷件及绝缘 件应光滑无裂纹、破损和毛刺,电容器的导电杆是否有损伤、电容器的箱壳是否有渗漏,电抗器线圈无变形、支柱绝缘子及其附件应齐全。资料是否齐全并有各方签名等记录。 3、出厂合格证及出厂技术资料应齐全,并有甲方(监理)代表在现场认证开 箱情况记录表,做好相关的开箱记录。 五、并联电容器成套补偿装置的组装及相关的注意事项 1、根据厂家提供的并联电容器成套补偿装置装配图的要求,进行组装。 2、电抗器就位后,首先分别组装电抗器柜(间隔)、放电柜(放电PT间隔)以及电容器柜(间隔),然后组装网门,并与土建预埋基础焊接及不小于 25 mm 2的导线接地。 3、电抗器安装时应注意对其四周金属件的安全距离,同时考虑电气安全

串联电容补偿装置保护技术规范

ICS 备案号:Q/CSG 中国南方电网有限责任公司企业标准 P Q/CSG— 代替Q/ — 串联电容补偿装置保护技术规范 Technical Specification for the Protection of Fixed Series Capacitor 20 - - 发布20 - - 实施 中国南方电网有限责任公司发布

Q/CSG— 目次 前言............................................................................. II 1范围. (1) 2规范性引用文件 (1) 3术语和定义 (1) 5基本技术要求 (2) 6保护配置 (3) 7保护功能 (4) 8配合要求 (5) 9组屏及二次回路要求 (6) 附录A (8) 附录B (9) I

Q/CSG— II 前言 本技术规范是按照《关于下达2013年技术标准修编计划的通知》(南方电网设备[2013]23号文) 的安排,根据GB/T 1.1-2009相关规则编制。 本技术规范对网内串联电容器补偿保护装置的配置原则、技术要求及相关的二次回路进行规定,以进一步提高现场作业标准化水平,降低继电保护现场作业风险,减少继电保护“三误”事故本技术规范由南方电网公司系统运行部归口。 本技术规范主要起草单位:中国南方电网有限责任公司系统运行部、南京南瑞继保电气有限公司、超高压输电公司、南方电网科学研究院、中电普瑞科技有限公司、中南电力设计院、广东省电力设计研究院、西南电力设计院。 本技术规范主要起草人员:黄佳胤、朱韬析、丁晓兵、王德昌、周启文、田庆、李明、宋阳、李甲飞、吴向军、李倩、伦振坚。

防止串联电容器补偿装置和并联电容器装置事故重点要求

防止串联电容器补偿装置和并联电容器装置事故重点要求1.1防止串联电容器补偿装置事故 为防止串联电容器补偿装置(以下简称串补装置)事故,应严格执行《电力系统用串联电容器》(GB/T6115)及其他有关规定,并提出以下重点要求: 1.1.1应进行串补装置接入对电力系统的潜供电流、恢复电压、工频过电压、操作过电压等系统特性的影响分析,确定串补装置的电气主接线、绝缘配合与过电压保护措施、主设备规范与控制策略等。 1.1.2应进行串补装置接入对线路继电保护、线路不平衡度等的影响分析,应确定串补装置的控制和保护配置、与线路继电保护的配合方式等措施,避免出现系统感性电抗小于串补容性电抗等继电保护无法适应的串补接入方式。 1.1.3应进行串补装置接入对发电机组次同步振荡的影响分析,判断发电机组是否存在感应发电机效应、扭矩互作用或扭矩放大,并确定抑制次同步振荡的措施。 1.1.4应通过对电力系统区内外故障、暂态过载、短时过载和持续运行等顺序事件进行校核,以验证串补装置的耐受能力。 1.1.5电容器组 1.1.5.1串联电容器应采用双套管结构。 1.1.5.2串联电容器绝缘介质的平均电场强度不宜高于

57kV/mm。 1.1.5.3单只电容器的耐爆容量应不小于18kJ,电容器的并联数量应考虑电容器的耐爆能力。 1.1.5.4串联电容器应满足《电力系统用串联电容器第1部分:总则》(GB/T6115.1-2008)第5.13条放电电流试验要求。 1.1.5.5电容器之间的连接线应采用软连接。 1.1.5.6电容器组接线宜采用先串后并的接线方式。 1.1.5.7电容器组不平衡电流应进行实测,且测量值应不大于电容器组不平衡电流告警定值的20%。 1.1.5.8运行中应特别关注电容器组不平衡电流值,当确认该值发生突变或越限告警时,应尽早安排串补装置检修。 1.1.6金属氧化物限压器(MOV)的能耗计算应考虑系统发生区内和区外故障(包括单相接地故障、两相短路故障、两相接地故障和三相接地故障)以及故障后线路摇摆电流流过金属氧化物限压器过程中积累的能量,还应计及线路保护的动作时间与重合闸时间对金属氧化物限压器能量积累的影响。金属氧化物限压器外部应完整无缺损,封口处密封应良好;硅橡胶复合绝缘外套伞裙应无破损或变形。金属氧化物限压器绝缘基座及接地应良好、牢靠,接地引下线的截面应满足热稳定要求;接地装置连通应良好。

电容补偿的计算公式

电容补偿的计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电容补偿的计算公式未补偿前的负载功率因数为COS∮1。负载消耗的电流值为I1。 负载功率(KW)*1000 则I1=---------------------- √3*380*COS∮1 负载功率(KW)*1000 则I2=---------------------- √3*380*COS∮2 补偿后的负载功率因数为COS∮2,负载消耗的电流值为I2 则所需补偿的电流值为:I=I1-I2 所需采用的电容容量参照如下: 得到所需COS∮2每KW负荷所需电容量(KVAR) 例: 现有的负载功率为1500KW,未补偿前的功率因数为COS∮1=,现需将功率因数提高到COS∮2=。则

1500*1000 则I1=-----------------=3802(安培) √3*380* 1500*1000 则I2=------------------=2376(安培) √3*380* 即未进行电容补偿的情况下,功率因数COS∮1=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I1=3802安培。 进行电容补偿后功率因数上升到COS∮2=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I2=2376安培。 所以功率因数从0.60升到。所需补偿的电流值为I1-I2=1426安培 查表COS∮1=,COS∮2=时每KW负载所需的电容量为,现负载为1500KW,则需采用的电容量为1500*=1560KVAR。现每个电容柜的容量为180KVAR,则需电容柜的数量为 1500÷180=个即需9个容量为180KVAR电容柜。

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

并联电容器串联电抗器利与弊

在理性负载两端并联电容器,这是电网最常用的无功补偿办法,也是进步功率因数改善电压质量节能降损的有效措施。为满足电网和用电设备对电压质量的请求,依据无功负荷变化而投切适量的电容量。但是在电容器投运合闸霎时将产生幅值很大,频率很高的合闸涌流。若电容器接入处电网村谐波污染,由于电容器的容性阻抗特性,将对谐波电流起到放大作用。风险的过电流必将对电气设备产生不良影响,严重时常常还会形成设备的损坏。 为防止谐波对补偿安装的影响,则在电容器回路采用串联电抗器的措施,这既不影响电容器的无功补偿作用,又能抑止高次谐波。所以在补偿电容器回路串联电抗器,具有抑止高次谐波,限制合闸涌流的效果。 但是运转理论标明,电容器回路串联电抗器后,在无功补偿安装投运合闸时还可能产生过电压,以及电容器端电压升高和运用寿命缩短等负面影响,现就电容器回路串联电抗器的利和弊做些剖析。 1电容器回路串联电抗器的益处 1.1限制合闸涌流 无功补偿电容器在投运合闸霎时常常会产生冲击性合闸涌流,这是由于初次合闸的电容器处于未充电状态,流入电容器的电流仅受回路阻抗的限制。因该回路接近短路状态,回路阻抗很小,故而会产生很大冲击涌流。 GB50227—95《并联电容器安装设计标准》中合闸涌流的计算式为: 式中: Ie——电容器组额定电流; XC——电容器组一相容抗值 Xs——电容器组与电网间电抚值 Sd——合闸点系统的短路容量 Qc——电容器组容量 合闸涌流倍数

,K值时随合闸点短路容量的增大和电容器组容量的减小而增大,普通为3——10倍。 电容器组回路加装串联电抗器后的合闸涌流倍数为: K值时随母线短路容量的增大,或电抗器感抗占电容器容抗的百分数的增加而大幅度减小,故而串联电抗器后能起到限制合闸涌流的作用。 1.2抑止高次谐波 当补偿电容器接入处电网存在谐波时,电容器对n次谐波的容抗降为XC/n,系统电感对n次谐波的感抗升为nxs。电网存在有n此谐波时,假如nxs=XC/n,则产生n次谐波谐振现象。其n次谐波电流与基波电流迭加后,使流过电容器电流骤增,其过电流将危及电容器的平安。此时,谐波电流在系统阻抗上产生的谐波电压与原电压迭加而产生过电压,此过电压将影响电容器运用寿命。 在补偿电容器回路串联电抗器后,能有效避开谐振区,从而起到抑止高次谐波作用。 当nXs=xc/n而产生n次谐波谐振现象时,其自振频率为: 电网存在高次谐波时,当n>n0时其阻抗呈理性,对等效网络有明显的抑止休博作用。 但在n 运转理论标明,如串联电抗器的主要用处限制合闸涌流,应选择0.2~2%容抗值得电抗器;如是为抑止高次谐波则应选择6%容抗值的电抗器。电抗器应串联在电容器组的电源侧,其抑止谐波效果会更好。 2串联电抗器存在的弊端 2.1电容器投切时产生过电压 在并联电容器组的回路中串联的电抗器,特别是线性电抗器,或是质量因数较高电抗器,在断路器投切电容器时都会产生过电压,因断路器在合闸时的弹跳和分闸时的重燃,均会增加过电压产生的几率和倍数。故而投切电容器的断路器宜选择高性能、无涌流,不发作重燃的开关,以防止操作时产生过电压。

滤波电容的作用

滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。 整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。 直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动 系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组 成的。如图1虚线 框即为加的一级RC滤波电路。若用S'表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R')S'。 由分析可知,在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。 为了解决这个矛盾,于是常常采用有源滤波电路,也被称作电子滤波器。电路如图2。它是由C1、R、C2组成的π型RC滤波电路与有源器件--晶体管T组成的射极输出器连接而成的电路。由图2可知,流过R的电流IR=IE/(1+β)=IRL /(1+β)。流过电阻R的电流仅为负载电流的1/(1+β).所以可以采用较大的R,与C2配合以获得较好的滤波效果,以使C2两端的电压的脉动成分减小,输出电压和C2两端的电压基本相等,因此输出电压的脉动成分也得到了削减。 从RL负载电阻两端看,基极回路的滤波元件R、C2折合到射极回路,相当于R减小了(1+β)倍,而C2增大了(1+β)倍。这样所需的电容C2只是一般RCπ 型滤波器所需电容的1/β,比如晶体管的直流放大系数β=50,如果用一般RCπ 型滤波器所需电容容量为1000μF,如采用电子滤波器,那么电容只需要20μF

10kV高压电容补偿装置柜

6.4 10kV高压电容补偿装置柜 6.4.1、总则 6.4.1.1 本设备技术规范书适用于湖北翰煜700t/d浮法一线厂区35KV变电站10kV 并联电容器组,它提出了电要容器组的功能设计、结构、性能、安装和试验等方面的技术求。6.4.1.2本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,卖方应提供符合本规范书和工业标准的优质产品。 6.4.1.3 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 6.4.1.4本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 6.4.1.5 本设备技术规范书经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 6.4.1.6要求投标厂家的电容器通过本技术规范书提出的全部型式试验项目,并具有相应电压等级、型式和结构的三套、三年以上的良好运行经验。对于同类设备在近期出现过绝缘击穿、放电和强迫停运等严重故障情况,采取的技术整改措施有效。根据成熟技术生产的新产品,经过技术审查,可以考虑试用。 6.4.1.7本设备技术规范书未尽事宜,由买卖双方协商确定。 6.4.2、用途: 通过对功率因数、无功功率综合判定,根据系统无功功率情况,通过高压真空接触器自动控制电容器组的投切,实现最优补偿控制,补偿后10kV配电站进线处的功率因数>=0.95. 6.4.3、订货范围: 厂区35KV变电站10kV侧:1500kvar电容器自动补偿成套装置,2套。 6.4.4、设备清单:

电力系统串联电容补偿装置系统设计标准

《电力系统串联电容补偿装置系统设计标准》 编制大纲及分工 范围【王宇红、戴朝波】 本标准适用于220kV及以上电压等级的电力系统串联电容补偿装置(以下简称串补装置) 新建工程的系统设计。对于改造工程可以参照本标准的相关部分执行。 本标准规定了串补装置的系统研究和设计内容,对串补装置部件、子系统和相关的设计提出基本要求。 每个串补工程均有其特殊性,应针对具体工程条件和要求使用本标准,必要时应做相应的补充。 除非有特殊要求,否则,串补装置的部件参见该部件的国家标准。 规范性引用文件【王宇红、戴朝波】 下列文件中的条款通过本标准的引用而成为本标准的条款。对不同的规范性引用文件中存在不同规范时,按照国标、行标、IEC、IEEE顺序来定。 GB 311.1-1997 高压输配电设备的绝缘配合 GB 1984-89 交流高压断路器 GB 1985-2004 高压交流隔离开关和接地开关 GB 10229-88 电抗器 GB/T 11022-1999 高压开关设备和控制设备标准的共同技术要求 GB 11032-2000 交流无间隙金属氧化物避雷器 GB/T 15291-1994 半导体器件第6部分晶闸管 GB/T 6115.1-1998 电力系统用串联电容器第1部分:总则-性能、试验和额定值-安全要求-安装导则 GB/T 6115.2-2002 电力系统用串联电容器第2部分:串联电容器组用 保护设备 GB/T 6115.3-2002 电力系统用串联电容器第3部分:内部熔丝 GB/T 7424.1 光缆第1部分:总规范

GB/T 4703-2001 电容式电压互感器 GB 1207-1997 电压互感器 GB 1208-1997 电流互感器 GB 311.1-1997 高压输变电设备的绝缘配合 GB/T 311.7 高压输变电设备的绝缘配合使用导则 GB 772-1987 高压绝缘子瓷件技术条件 DL/T 553-94 220V~500kV电力系统故障动态记录技术准则 DL/T 723-2000 电力系统安全稳定控制技术导则 DL/Txxxx-200x 柔性输电术语 IEEE Std 824TM-2004 IEEE Standard for Series Capacitor Banks in Power Systems IEC 60143-2:1994 Series capacitors for power systems-Part 2: Protective equipment for series capacitor banks IEC 60143-3:1998 Series capacitors for power systems-Part 3: Internal fuse IEC 60071-1:1993 Insulation Coordination-Part 1: Definitions, Principles, and Rules. IEC 60071-2:1996 Insulation Coordination-Part 2: Application Guide IEC 60099-4:2004 Surge Arresters-Part 4: Metal-Oxide Surge Arresters without Gaps for AC systems. 其余待补充。 术语和定义【刘昊、戴朝波】 直接引用电力行业标准《柔性输电术语》。首先引用最常用的固定串补装置术语,然后补充可控串补装置的术语。 术语列表在撰写标准内容时补充。 …… 说明本标准的采用缩写在撰写标准内容时补充。 TPSC thyristor protected series capacitor TSC thyristor-switched capacitor TSR thyristor-switched reactor

电容器补偿计算

【例5-6】 某一降压变电所由双回110kV ,长70km 的架空输电线路供电,导线型号为LGJ —120,单位长度阻抗为0.263+j0.423Ω/km 。变电所有两台变压器并联运行,其参数为:S N = 31.5MV A ,V N 为110(1±2×2.5%)kV/11kV ,V S % = 10.5。变电所最大负荷为40+j30MV A ,最小负荷为30+j20MV A 。线路首端电压为116kV ,且维持不变。变电所二次侧母线上的允许电压偏移在最大、最小负荷时为额定电压的 2.5%~7.5%。试根据调压要求,按电容器和调相机两种措施,确定变电所二次侧母线上所需补偿的最小容量。 图5-35 输电系统及其等值电路图 解:(1) 计算线路和变压器等值阻抗 Ω+=+×=)805.14205.9()(2 11111j jx r l Z l Ω=Ω×××=×=167.205 .311001105.1021100%212 2N N K T S V V X 总阻抗Z Z = R + jX = (9.205 + j 34.972)? (2)计算补偿前变电所二次侧母线归算到高压侧的电压 因为首端电压已知,宜用首端功率计算网络的电压损耗。为此,先按额定电压计算输电系统的功率损耗: MVA 226.7902.1MVA )972.34205.9(110 3040222max j j S +=+×+=Δ MVA 757.3989.0MVA )972.34205.9(110203022 2min j j S +=+×+=Δ 于是 MVA 226.37902.41MVA 226.7902.13040max max max 1j j j S S S +=+++=Δ+= MVA 757.23989.30MVA 757.3989.02030min min min 1j j j S S S +=+++=Δ+= 利用首端功率可以算出:

滤波电容详解

电源滤波电路 注:本文献只用于学习,禁止任何商业用途!!! 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频 通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可 滤去交流纹波.。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF 的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的 等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 尽量将去耦电容和滤波电容等放置在对应元件的周围。去耦电容和滤波电容的布置是改善电路板的电源质量,提高抗干扰能力的一项重要举措。实际上,印制电路板的走线、引脚连线和接线等都有可能带来较大的电感效应,电感的存在会在电源线上引起纹波和毛刺,而在电源和地之间放置一个0.1uF的去耦电容可以有效滤除高频纹波,如果电路板上使用的是贴片电容,可以使贴片电容紧靠着元件的电源引脚。对于一些电源转换芯片,或者是电源输入端,最好还布置一个10uF或者更大的电容,以进一步改善电源 的质量。 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

试验四——输电线路串联电容补偿装置的仿真

南昌大学实验报告姓名:孔令飞学号:6100310012 班级:电力系统101班试验四输电线路串联电容补偿装置仿真 一、试验内容 1. 原始数据: 6台350MVA的发电机通过一条单回路600km的输电线路与短路容量为30000MVA的系统相连。输电线路电压等级为735kv,由两段300km的线路串联组成,工频为60Hz。 为了提高线路输送能力,对两段300km的线路L1和L2进行串联补偿,补偿度为40%,两段线路上均装设330Mvar的并联电抗器,用于限制高压线路的工频过电压和操作过电压。仿真模型见Simpowersystem库demo子库中的模型文件power_3phseriescomp。 2. 试验要求: (1)对系统进行稳态分析 (2)频率分析 更改系统图,用三相电源模块代替简化同步电机模块,同时添加阻抗测量模块得到一相阻抗的依频特性。根据依频特性得到系统的振荡频率。 (3)对系统进行暂态分析 1)仿真得出线路1发生各种短路故障时的相关波形,并对波形进行比较分析。2)仿真得出母线B2发生故障时的相关波形,并对波形进行分析。 二、对原始数据的分析与仿真 6台350MVA的发电机通过一条单回路600km的输电线路与短路容量为30000MVA的系统相连。输电线路电压等级为735kv,由两段300km的线路串联组成,工频为60Hz。 为提高线路输送能力,对两段300km的线路L1和L2进行串联补偿,补偿度为40%,两段线路上均装设330Mvar的并联电抗器,用于限制高压线路的工频过电压和操作过电压。 串联电容补偿装置有串联电容器组、金属氧化物变阻器(MOV)、放电间隙和阻尼阻抗组成。如图:

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

EMI滤波器中X电容和Y电容的基础知识

X电容和Y电容知识 在交流电源输入端,一般需要增加3个安全电容来抑制EMI传导干扰。交流电源输入分为3个端子:火线(L)/零线(N)/地线(G)。在火线和地线之间以及在零线和地线之间并接的电容,一般统称为Y电容。这两个Y电容连接的位置比较关键,必须需要符合相关安全标准, 以防引起电子设备漏电或机壳带电,容易危及人身安全及生命。它们都属于安全电容,从而要求电容值不能偏大,而耐压必须较高。 一般情况下,工作在亚热带的机器,要求对地漏电电流不能超过0.7mA;工作在温带机器,要求对地漏电电流不能超过0.35mA。因此,Y电容的总容量一般都不能超过4700PF(472)。特别指出:作为安全电容的Y电容,要求必须取得安全检测机构的认证。Y电容外观多为橙色或蓝色,一般都标有安全认证标志(如UL、CSA等标识)和耐压AC250V或AC275V字样。然而,其真正的直流耐压高达5000V以上。必须强调,Y电容不得随意使用标称耐压AC250V或者DC400V 之类的普通电容来代用。在火线和零线抑制之间并联的电容,一般称之为X电容。由于这个电容连接的位置也比较关键,同样需要符合相关安全标准。X电容同样也属于安全电容之一。根据实际需要,X电容的容值允许比Y电容的容值大,但此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。 安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X电容一般都标有安全认证标志和耐压AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的的普通电容来代用。 通常,X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。普通电容纹波电流的指标都很低,动态内阻较高。用普通电容代替X电容,除了电容耐压无法满足标准之外,纹波电流指标也难以符合要求。 根據IEC 60384-14,電容器分為X電容及Y電容: 1. X電容是指跨於L-N之間的電容器, 2. Y電容是指跨於L-G/N-G之間的電容器. (L=Line, N=Neutral, G=Ground) X電容底下又分為X1, X2, X3,主要差別在於: 1. X1耐高壓大於 2.5 kV, 小於等於4 kV, 2. X2耐高壓小於等於2.5 kV, 3. X3耐高壓小於等於1.2 kV Y電容底下又分為Y1, Y2, Y3,Y4, 主要差別在於: (耐直流电压等级) 1. Y1耐高壓大於8 kV, 2. Y2耐高壓大於5 kV,

相关主题
文本预览
相关文档 最新文档