当前位置:文档之家› 数字信号处理实验 快速傅里叶变换及其应用

数字信号处理实验 快速傅里叶变换及其应用

数字信号处理实验  快速傅里叶变换及其应用
数字信号处理实验  快速傅里叶变换及其应用

数字信号处理实验报告

第一次实验:

快速傅立叶变换(FFT)及其应用

王宇阳

04011345 一.实验目的:

(1)在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB中的有关函数。

(2)应用FFT对典型信号进行频谱分析。

(3)了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

(4)应用FFT实现序列的线性卷积和相关。

二.实验原理:

(1)混叠:采样序列的频谱是被采样信号频谱的周期延拓,当采样频率不满足奈奎斯特采样定理的时候,就会发生混叠,使得刺痒后的序列信号的频谱不能真实

的反映原采样信号的频谱。

(2)泄露:根据理论分析,一个时间的信号其频带宽度为无限,一个时间无限的信号其频带宽度则为有限。因此对一个时间有限的信号,应用DFT进行分析,频

谱混叠难以避免。对一个时间无限的信号虽然频带有限,但在实际运算中,时

间总是取有限值,在将信号截断的过程中,出现了分散的扩展谱线的现象,称

之为频谱泄露或功率泄露。

(3)栅栏效应:DFT是对单位圆上Z变换的均匀采样,所以它不可能将频谱视为一个连续函数,就在一定意义上看,用DFT来观察频谱就好象通过一个栅栏来观

看一个景象一样,只能在离散点上看到真实的频谱,这样就有可能发生一些频

谱的峰点和谷点被“尖桩的栅栏”所挡住,不能被我们观察到。

(4)圆周卷积:把序列X(N)分布在N等份的圆周上,而序列Y(N)经反摺后也分布在另一个具有N等份的同心圆的圆周上。两圆上对应的数两量两相乘求和,

就得到全部卷积序列。这个卷积过程称做圆周卷积。

(5)互相关函数反映了两个序列X(N)和Y(N)的相似程度,用FFT可以很快的计算互相关函数。

三.实验内容:

实验中用到的函数序列:

(a)Gaussian序列

Xa(n)=exp(-(n-p).^2)/q),0=

=0,其他

(b)衰减正弦序列

X(b)=exp(-an)*sin(2pi*fn),0=

=0,其他

(c)三角波序列

Xb(n)=n,0=

=8-n,4=

=0,其他

(d)反三角波序列

Xc(n)=4-n,0=

=n-4,4=

=0,其他

上机实验内容:

1.观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察他们的时域和幅频特性,了解当q取不同值时,对信号序列的时域和幅频特性影响;改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域和幅频特性影响,注意p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

代码:

%%高斯序列以p,q为参数生成并输出其时域序列波形以及其dtft;

function [ timePlot,spectrumPlot ] = Gauss( p,q )

%%输入相关参数

n=0:15;

N=4000;

w=linspace(-pi,pi,N);

g=exp(-(n-p).^2/q);

spec=dtft(N,g);

subplot(2,1,1);

stem(n,g);title(strcat('当p=',num2str(p),'q=',num2str(q),'时的高斯时域波形'));

subplot(2,1,2);

plot(w,spec);title(strcat('当p=',num2str(p),'q=',num2str(q),'时的高斯频域波形'));

end

%%DTFT变换得到频谱:

function [ spectrum ] = dtft( n,x )

%%取4000采样点;

w=linspace(-pi,pi,n);

spectrum=zeros(1,n);

for k=1:n

for m=1:length(x)

wn(k,m)=exp(-1j*w(k)*m);

end

spectrum(k)=abs(x*wn(k,:)');

end end

实验结果如下: .

P=8,q=2

051015

0.5

1

当p=8q=2时的高斯时域波

-4

-3-2-101234

01

2

3当p=8q=2时的高斯频域波形

P=8,q=4;

051015

0.5

1

当p=8q=4时的高斯时域波

-4

-3

-2

-1

1

2

3

4

01234当p=8q=4时的高斯频域波形

P=8,q=8;

051015

0.5

1

当p=8q=8时的高斯时域波

-4

-3-2-101234

02

4

6当p=8q=8时的高斯频域波形

P=8,q=8;

051015

0.5

1

当p=8q=8时的高斯时域波

-4

-3-2-101234

02

4

6当p=8q=8时的高斯频域波形

P=13,q=8

051015

0.5

1

当p=13q=8时的高斯时域波

-4

-3-2-101234

02

4

6当p=13q=8时的高斯频域波形

P=14,q=8;

051015

0.5

1

当p=14q=8时的高斯时域波

-4

-3

-2

-1

1

2

3

4

01234当p=14q=8时的高斯频域波形

分析:当p 固定,q 变化时,由时域波形可知,q 代表了波形以p 为中心向两侧衰减的速 度,发现当q 越大时,衰减的速度越快,反之,衰减的速度相对较慢,高频分量越 小,从频域波形分析可知,三种情况下的形状是相似的,但是三种情况下的频谱在 q 比较的大的时候在高频上出现了较少的高频分量以及较快的高频分量的衰减。

当q 固定,p 变化时,由时域波形可知,p 代表了波形的移序,在频谱上,显而 易见,在p 更大的时候产生了更多的高频分量。右移之后,序列相当于被截断, 那么相对应的其频谱泄漏的情况更加的严重,从而出现了高频分量较多的情况。

2、观察衰减正弦序列xb(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混叠和泄漏现象?说明产生现象的原因。

代码:

%%按照alpha 和f 的值生成相应的正弦序列,画出其时域和频域(dtft )的波形; function [ output_args ] =sinusoidal( alpha,f) %%生成序列 n=0:15; N=4000;

x=exp(-alpha*n).*sin(2*pi*f*n); %%对离散序列进行dtft 变换 spec=dtft(N,x); subplot(2,1,1);

stem(n,x);title(strcat('当α=',num2str(alpha),'f=',num2str(f),'时的正弦时域波形')); subplot(2,1,2);

w=linspace(-pi,pi,N);

plot(w,spec);title(strcat('当α=',num2str(alpha),'f=',num2str(f),'时的正弦频域波形')); end

a=0.1,f=0.0625;

051015

-0.5

0.5

1当α=0.1f=0.0625时的正弦时域波形

-4

-3-2-101234

02

4

6当α=0.1f=0.0625时的正弦频域波形

F=0.4375

5

10

15

-1-0.500.51当α=0.1f=0.4375时的正弦时域波

-4

-3-2-101234

02

4

6当α=0.1f=0.4375时的正弦频域波形

F=0.5625;

5

10

15

-1-0.500.51当α=0.1f=0.5625时的正弦时域波

-4

-3-2-101234

02

4

6当α=0.1f=0.5625时的正弦频域波形

分析:在a=0.1固定的条件下,f=0.0625时,谱峰在低频出约等于2*pi*f ,但是在f=0.4375和f=0.5626的时候,谱峰主要集中在高频位置。后两种情况由于不满足nyquist 采样定律,所以i 出现了混叠。 3.代码;

function [ ] = triangle( N )

%UNTITLED5 Summary of this function goes here

% Detailed explanation goes here

for k=0:3

x(k+1)=k;

end

for k=4:7

x(k+1)=8-k;

end

spec=fft(x);spec=abs(spec);

n=0:N-1;

subplot(1,2,1);

stem(n,x);title('序列波形');

subplot(1,2,2);

stem(n,spec);title(strcat(num2str(N),'点FFT')); End

逆三角波:

function [ ] = reversetriangle( N )

%UNTITLED5 Summary of this function goes here

% Detailed explanation goes here

for k=0:3

x(k+1)=4-k;

end

for k=4:7

x(k+1)=k-4;

end

for k=8:N-1

x(k+1)=0;

end

n=0:N-1;

spec=fft(x);spec=abs(spec);

subplot(2,1,1);

stem(n,x);title('序列波形');

subplot(2,1,2);

stem(n,spec);title(strcat(num2str(N),'点FFT')); end

正三角波

1

2

34

5

6

7

01234序列波形

1

2

3

4

5

6

7

051015208点FFT

逆三角波:

1

2

34

5

6

7

01234序列波形

1

2

3

4

5

6

7

051015208点FFT

N=32; 逆三角波

5

10

15

20

25

30

35

01234序列波形

5

10

15

20

25

30

35

0510152032点FFT

正三角波

5

10

15

20

25

30

35

01234序列波形

5

10

15

20

25

30

35

0510152032点FFT

分析:正三角波和逆三角波的时域波形上的走势是不一样的。在频域上可以发现,N=8时,两者的fft 互为相反数,因为两者的和实际上就是一个矩形窗函数,rectwin(8),由于rectwin (8)的fft 为8 0 0 0 0 0 0 0,所以除了fft (0)以外,其他都为相反数。而当N=16时,两者之间的和为一个补零了的rectwin (8),

对于N 不同时得到的结果发现,实质上同一个序列补零以后的频谱并没有发生太大的变化,

补零后的序列相当了有了更多的采样点,在对应位置处的fft 值还是相同的,不同的是,当N 变大时,补零长度变大时,暴露出来的更多的采样点值可以减轻fft 的栅栏效应。 4、一个连续信号含两个频率分量,经采样得

x(n)=sin[2π*0.125n]+cos[2π*(0.125+?f)n] n=0,1,…N-1 已知N=16,?f 分别为1/16和1/64,观察其频谱;当N=128时,?f 不变,其结果有何不同? 代码:

function [ output_args ] = test4( delta_f,n) %UNTITLED7 Summary of this function goes here % Detailed explanation goes here x=zeros(1,n); for k=0:n-1

x(k+1)=sin(2*pi*0.125*k)+cos(2*pi*(0.125+delta_f)*k); end ;

spec=fft(x); stem(spec);

title(strcat('deltaf=',num2str(delta_f),'N=',num2str(n))); end

N=16,deltaf=1/16;

5

10

15

20

25

30

35

01234序列波形

5

10

15

02468deltaf=0.0625N=16

N=16,deltaf=1/64;

5

10

15

20

25

30

35

01234序列波形

5

10

15

02468deltaf=0.015625N=16

N=128,deltaf=1/16

5

10

15

20

25

30

35

01234序列波形

20

40

60

80

100

120

140

020406080deltaf=0.0625N=128

N=128,deltaf=1/64

5

10

15

20

25

30

35

01234序列波形

20

40

60

80

100

120

140

020406080deltaf=0.015625N=128

分析:

由fft 频谱图可知,在N=16时,deltaf=1/16时,fft 频谱是正确的应该是两个冲激,但是在deltaf=1/64时,此时的信号的带宽减小,由于采样点数是固定的,导致卷积的过程中出现了泄露的情况,因此在第二种情况下出现了谱线扩散的情况。在N=128时,相当于扩展了加窗的宽度,因而没有出现频谱的泄漏。

5、用FFT 分别计算xa(n)(p=8,q=2)和xb(n)(a=0.1,f=0.0625)的16点循环卷积和线形卷积。 代码: n=0:15; alpha=0.1; f=0.0625; p=8; q=2; k=0:31;

g=exp(-(n-p).^2/q);

x=exp(-alpha*n).*sin(2*pi*f*n); for i=17:32 g(i)=0; x(i)=0; end

specg=fft(g); specx=fft(x);

convSpec=specg.*specx;

linearConv=ifft(convSpec); stem(k,linearConv);

05101520253035

-1

-0.5

0.5

1

1.5

2

循环卷积: 代码: n=0:15; alpha=0.1; f=0.0625; p=8; q=2;

x=exp(-alpha*n).*sin(2*pi*f*n); g=exp(-(n-p).^2/q); specg=fft(g); specx=fft(x);

shiftSpec=specg.*specx; shiftConv=ifft(shiftSpec); stem(n,shiftConv);

051015

-1

-0.5

0.5

1

1.5

2

6、

100

200

300

400

500

600

-10010203040直接线性卷积

100

200

300

400

500

600

-10010203040重叠相加法线性卷积

100

200

300

400

500

600

-10010203040重叠保留法线性卷积

代码:

clear all ; clc; N=512;

a=1:2*N-1;

%%生成512个均值为1,方差为1的随机序列;

x = 1+1.*randn(512,1);

x=x';

for k=1:4

t(k)=k;

end

for k=5:8

t(k)=8-k;

end

%%直接线性卷积

convout=conv(x,t);

specx=fft(t);

subplot(3,1,1);

stem(convout);title('直接线性卷积');

out=zeros(1,519);

out1=zeros(1,519);

%%重叠相加法

%%重叠相加法

for m=9:71

t(m)=0;

end

spec=fft(t);

%%重叠相加法

outm=zeros(1,519);

for k=1:8

over(k,:)=[x((64*(k-1)+1):64*k) zeros(1,7)];

spectrumn(k,:)=fft(over(k,:)).*spec;

spectrumn(k,:)=ifft(spectrumn(k,:));

changespectrum(k,:)=[zeros(1,(k-1)*64) spectrumn(k,:) zeros(1,519-64*k-7)];

outm=outm+changespectrum(k,:);

end

subplot(3,1,2);

stem(outm);title('重叠相加法线性卷积');

%%重叠保留法

xx=[zeros(1,7),x];

for k=1:8

over1(k,:)=xx(64*(k-1)+1:64*(k-1)+71);

end

over1(9,:)=[xx(513:519) zeros(1,64)];

speco1(k,:)=fft(over1(k,:));

spectrumout1(k,:)=speco1(k,:).*spec;

spectrumout1(k,:)=ifft(spectrumout1(k,:));

end

s=spectrumout1;

out1=[s(1,8:end) s(2,8:end) s(3,8:end) s(4,8:end) s(5,8:end) s(6,8:end) s(7,8:end) s(8,8:end) s(9,8:14)];

subplot(3,1,3);

stem(out1);title('重叠保留法线性卷积');

7、线性相关:

线性相关即为互相关,在此不再重述。如题8;

循环相关:

clear;

p=8;q=2;

n=0:15;

xa=exp((-(n-p).^2)/q);

a=0.1;f=0.0625;

xb=exp(-a*n).*sin(2*pi*f*n);

xak=fft(xa);

xbk=fft(xb);

subplot(2,1,1);

yn=ifft(conj(xak).*xbk);

stem(n,yn);

xlabel('n');ylabel('幅度');

title('循环相关');

subplot(2,1,2);

yn=ifft(conj(xbk).*xak);

stem(n,yn);

xlabel('n');ylabel('幅度');

title('循环相关');

05

1015

-1

01

2n 幅度

循环相关

05

1015

-1

01

2n

幅度

循环相关

8.互相关 代码: rxy

clear; clc; n=16;

alpha=0.1; f=0.0625; p=8; q=2;

for i =1:n

g(i)=exp(-(i-p)^2/q);

x(i)=exp(-alpha*(i-1))*sin(2*pi*f*(i-1)); end

for i=n+1:2*n g(i)=0; x(i)=0; end

specx=fft(x,2*n); specg=fft(g,2*n);

corr=ifft(conj(specx).*specg); rm=real(corr);

rm=[rm(n+2:2*n) rm(1:n)]; m=(-n+1):(n-1);

stem(m,rm); 结果:

-15

-10-5051015

-1-0.5

0.5

1

1.5

2

Ryx clear; clc; n=16;

alpha=0.1; f=0.0625; p=8; q=2;

for i =1:n

g(i)=exp(-(i-p)^2/q);

x(i)=exp(-alpha*(i-1))*sin(2*pi*f*(i-1)); end

for i=n+1:2*n g(i)=0; x(i)=0; end

specx=fft(x,2*n); specg=fft(g,2*n);

corr=ifft(specx.*conj(specg)); rm=real(corr);

rm=[rm(n+2:2*n) rm(1:n)]; m=(-n+1):(n-1); stem(m,rm);

傅里叶变换到计算机实现

傅里叶变换到计算机实现 2013/8/16 Guan Jun 就拿我自身的例子来说,开始接触FFT (快速傅里叶变换)的时候并不是很熟悉,但是这种计算方法的确实很好用。那么,这个doc 我想说的就是,如何从三角变换到FFT 。 01 11 ()(c o s ()s i n ()) n n n f x a a n t b n t ωω+∞ ==++∑,这是说一个周期性函数(T 1)可以分解为不同频率的三角函数的叠加,1 1 1 1 11cos()(e e )/2,sin()(e e )/2jn t jn t jn t jn t n t n t j ωωωωωω--=+=-,带到原函数中,经过整理,令1()()/2n n F n a jb ω=-,1 1()()e jn t f x F n ωω+∞-∞ =∑,再把,n n a b 的表达式(高数书或者 信号与系统说的很清楚)带入1()F n ω中,我们就可以得到11 111 ()()e jn t T F n f x dt T ωω-= ?。以上是周期性函数的傅里叶变换,注意的是1()F n ω画出来的图是:在x 轴上频率ω的坐标为 11111...2,1,0,1,2... n ωωωωωω==--,即一系列间隔为1ω的点,另外也就是说,周期函数的傅里叶变换为频域之后,是分立的频谱,不是连续的。举个栗子,cos(2)x π函数是周期性函数吧,其频率(角频率)为2π,也可写成1,也就是在11f ω±±或者会有值,其余地方就没有。其实到这里,真的不难,因为求1()F n ω也就是带入公式的事么,不借助软件我们都能算好。但是,偏偏有那么一些人没事干非要去研究非周期性函数的傅里叶函数,然后搞出一大堆理论,让我们去学… 废话不多说,如果是非周期性,是不是可以理解为周期无限大?这里的非周期函数也可由周期函数组成,例如在-1x ≤≤1上,()cos(2)f x x π=,其余等0.这是不是非周期性函数?答案很显然.如果非周期性,那么公式不再适用,为什么?这得问数学系的人了。怎么办,把公式变变,1T 移到左边,1n ωω写成(此时频谱是连续的了,为什么,我也不晓得…)那么我 们就将看到最为熟悉的函数:+-()()e j t F f x dt ωω∞ -∞ = ? ,+-1 ()()e 2j t f x F d ωωωπ ∞ ∞ = ?(也有书本写成: +2-()()e j ft F f f x dt π∞ -∞ = ? ,+2-()()e j ft f x F f d f π∞ ∞ = ?).就是把f ωπ写成2,而()() F F f ω中的坐标换成 自此,我们就开始学习一大堆公式,性质啊,我觉得这些性质不是不重要,而是没有实际的 应用!为什么我这么说,因为我们用傅里叶变换,是为了什么?服务于我们的数据,没错,是数据!一堆数据给你,你能看出这函数包含的频率?你能提炼出原函数吗?Okay ,你什么都没有,怎么办,望洋兴叹。 最近写的论文中,我就用到了FFT ,我有图像的曲线,有曲线的数据,而且曲线明显是正余弦函数(只相差/2π相位).大概的频率我也能看出来,但是!这个曲线并不完美,有瑕疵,但是我束手无策,这时计算机粉墨登场了,经过分析我也看出原来还是有很小的其他频率成分包含在里面。也许对傅里叶变换感兴趣的童鞋看过不少人的介绍,说时间连续,时间不连续,频谱连续,频谱不连续。2?2=4,这4种绕来绕去足以崩溃你(这里崩溃作动词).其实,时间连续,就是我上面讲的两种,但一个是周期性函数,一个是非周期,对应的频谱就是分立,连续。那么时间(有时候不一定是时间,也可能是位置)不连续怎么办,其实大多数应用的就是这种方法,就是我们说的采谱,说简单点就是每隔一段时间(距离)采一个点,采点间隔相同,一个点一个值.

MAtlab傅里叶变换实验报告

班级信工142 学号 22 姓名何岩实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。 (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2;n2=8;n0=0;n=n1:0.01:n2; x5=[n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*min(x2) 1.1*max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*min(x2) 1.1*max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 1.1*min(x5) 1.1*max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性; (n) x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12];x2(n)=R 10 (1)线性:(a)代码: w=linspace(-8,8,10000); nx1=[0:11]; nx2=[0:9]; x1=[1 2 3 4 5 6 7 8 9 10 11 12];

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、

概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。 尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1.傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2.傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4.著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5.离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

有関傅立叶变换的FPGA实现 傅立叶变换是数字信号处理中的基本操作,广泛应用于表述及分析离散时域信号领域。但由于其运算量与变换点数N的平方成正比关系,因此,在N较大时,直接应用DFT算法进行谱变换是不切合实际的。然而,快速傅立叶变换技术的出现使情况发生了根本性的变化。本文主要描述了采用FPGA来实现2k/4k/8k点FFT的设计方法。 离散傅里叶变换的应用 DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。)。 1.频谱分析 DFT是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。 2.数据压缩 由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用

MAtlab 傅里叶变换 实验报告

陕西科技大学实验报告 班级信工142 学号22 姓名何岩实验组别实验日期__________ 室温_____________ 报告日期________________ 成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ, 求其DTFT (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2; n2=8; n0=0; n=n 1:0.01: n2; x5=[ n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j)4(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*mi n(x2) 1.1*max(x2)]); xlabel('x( n)');ylabel('x( n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*mi n(x2) 1.1*max(x2)]); title(' 原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem( n, x5); axis([0 1 1.1*mi n(x5) 1.1*max(x5)]); xlabel(' n');ylabel('x2'); title(' 采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*mi n(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT 结果x4'); (b)结果:

实验一快速傅里叶变换

实验一 快速傅里叶变换之报告 一 、实验目的 1、在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2、熟悉并掌握按时间抽取FFT 算法的程序; 3、了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、 栅栏效应等,以便在实际中正确应用FFT 。 二 实验内容 a ) 信号频率F =50Hz ,采样点数N=32,采样间隔T= matlab 程序代码为: F=50; T=; N=32; n=0:N-1; t=n*T; A=sin(2*pi*F*t); figure; Y = fft(A,N); h = (abs(Y)); h=h/max(h(1:N)); for n=1:N; string1=strcat('X(',num2str(n-1), ')=',num2str(h(n))); disp(string1); f=(n/T)/N; end stem([0:N-1]/N/T,h); xlabel('?μ?ê/HZ'); ylabel('??·ùX£¨ejw£?'); title('·ù?μì?D?'); 上述代码命令中,将FFT 变换后的数字变量K ,在画图时转换成频域中的频率f 。这主 要是根据数字频率与模拟域频率之间的关系: T Ω=ω 其中ω、Ω分别为数字和模拟域中的频率,且N k πω2= f π2=Ω 于是有: NT k f = 运算结果: X(1)=1 X(2)= X(3)= X(4)=

X(5)= X(6)= X(7)= X(8)= X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)= X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=1 b)信号频率F=50Hz,采样点数N=32,采样间隔T= 同理可将a)中F、N、T,参数改成要求值(以下均是如此),即可得,X(0)= X(1)= X(2)= X(3)= X(4)= X(5)= X(6)= X(7)= X(8)=1 X(9)= X(10)= X(11)= X(12)= X(13)= X(14)= X(15)= X(16)= X(17)= X(18)= X(19)= X(20)= X(21)= X(22)= X(23)= X(24)=1 X(25)= X(26)= X(27)= X(28)= X(29)= X(30)= X(31)=

快速傅里叶变换实验报告..

快速傅里叶变换实验报告 班级: 姓名: 学号:

快速傅里叶变换 一.实验目的 1.在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2.熟悉并掌握按时间抽取FFT 算法的程序; 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。 二.实验内容 1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序; 2.用FFT 程序分析正弦信号 ()sin(2)[()(*)],(0)1y t f t u t u t N T t u π=---∞<<+∞=设 分别在以下情况进行分析并讨论所得的结果: a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625s b ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005s c ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875s d ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004s e ) 信号频率 f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005s g ) 将c ) 信号后补32个0,做64点FFT 三.实验要求 1.记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。频谱只做模特性,模的最大值=1,全部归一化;

2.打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明; 3.用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。 四.实验分析 对于本实验进行快速傅里叶变换,依次需要对信号进行采样,补零(要求补零时),码位倒置,蝶形运算,归一化处理并作图。 此外,本实验要求采用人机界面形式,N,T,F 变量由键盘输入,补零或不补零设置一开关来选择。 1.采样 本实验进行FFT 运算,给出的是正弦信号,需要先对信号进行采样,得到有限 长序列()n x , N n ...... 2,1,0= Matlab 实现: t=0:T:T*(N-1); x=sin(2*pi*f*t); 2.补零 根据实验要求确定补零与否,可以用if 语句做判断,若为1,再输入补零个数, 并将补的零放到采样得到的序列的后面组成新的序列,此时新的序列的元素个数等于原采样点个数加上补零个数,并将新的序列个数赋值给N 。 Matlab 实现: a=input('是否增加零点? 是请输入1 否请输入0\n'); if (a) ZeroNum=input('请输入增加零点的个数:\n'); else ZeroNum=0; end if (a) x=[x zeros(1, ZeroNum)];%%指令zeros(a,b)生成a 行b 列全0矩阵,在单行矩阵x 后补充0 end N=N+ZeroNum; 3.码位倒置 本实验做FFT 变换的级数为M ,N M 2log =

信号与系统实验报告3实验3 傅里叶变换及其性质

信息工程学院实验报告 课程名称: 实验项目名称:实验3 傅里叶变换及其性质 实验时间:2015/11/17 班级:通信141 姓名: 学号: 一、实 验 目 的: 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实 验 设 备 与 器 件 软件:Matlab 2008 三、实 验 原 理 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ ==? , 傅里叶反变换定义为:1 1()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的 ω,即 ()()j v t F v f t e d t ∞ --∞ =? 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =?。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

实验三傅里叶变换及其性质

信息工程学院实验报告 课程名称:信号与系统 实验项目名称:实验3 傅里叶变换及其性质实验时间:2013-11-29 班级: 姓名: 学号: 一、实验目的: 1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换; 2、学会运用MATLAB 求连续时间信号的频谱图; 3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实验环境: 1、硬件:在windows 7 操作环境下; 2、软件:Matlab 版本7.1 三、实验原理: 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ == ? , 傅里叶反变换定义为:1 1 ()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω,即()()jvt F v f t e dt ∞ --∞ = ? 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =? 。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数 F 进行反变换,返回关于u 的函数f 。

快速傅里叶变换实验报告

快速傅里叶变换实验报告 快速傅里叶变换实验报告 机械34班刘攀 2019010558 一、基本信号(函数)的FFT变换 1. x(t)=sin(ω0t+)+sin2ω0t+cos3ω0t 6 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 Nπ最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=2T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2) 采样频率fs=8f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.25Hz。 N最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=4T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2. x(t)=sin(ω0t+π 6)+sin11ω0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率 fc=11f0=11Hz,fs 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

由上图可以看出,并未体现出11f0的成分,说明波形出现混叠失真。为了消除混叠 现象,应加大采样频率,使之大于等于 22Hz。 f0处的幅值误差?A=0,11f0处由于出现 了混叠现象,幅值误差没有意义;相位误差??=0。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。 N最高频率 fc=11f0=11Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图: 该频谱图体现出了f0和11f0的成分,说明未失真,且幅值均为1,。幅值误差?A=0,相位误差??=0。 3. x(t)=0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为: x(t)≈0.9098cos(3ω0t+56.9520?) 故幅值误差?A=0.9096-1=-0.0904,相位误差??=56.9520?。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为:

快速傅里叶变换实验报告

快速傅里叶变换实验报告 机械34班 攀 2013010558 一、 基本信号(函数)的FFT 变换 1. 000()sin()sin 2cos36 x t t t t πωωω=+++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116 x t t t πωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==0.5Hz 。 最高频率c f =110f =11Hz ,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.doczj.com/doc/8a1221202.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

傅里叶变换实验报告

南昌大学实验报告 学生姓名:学号:6100209228 班级:电子093班 实验类型:□验证□综合■设计□创新实验日期:2011-04-8 实验成绩: 傅里叶变换 (一)实验目的 1、掌握对不同的函数进行傅里叶变换的程序编写; 2、熟悉生成联系周期信号的方法; 3、练习matlab编程。 (二) 实验内容 1.请编写函数F=fsana(t,f,,N),计算周期信号f的前N个指数形式的傅立叶级数系数,t表示f对应的抽样时间(均为一个周期);再编写函数f=fssyn(F,t),由傅立叶级数系数F合成抽样时间t对应的函数。设计信号验证这两个是否正确。 定义F=fsana(t,f,N)。 function F=fsana(t,f,N) omg1=2*pi/(max(t)-min(t)); k=[0:N]'; F=1/length(t)*exp(-j*kron(k*omg1,t.'))*f 定义f=fssyn(F,t) function f=fssyn(F,t) omg1=2*pi/(max(t)-min(t)); N=floor(length(F)/2); k=[0:N]; f=exp(j*kron(t,k*omg1))*F; 运行所定义的函数 T1=2*pi; %一个周期时域范围 N1=300; %时域抽样点数

t=linspace(0,T1-T1/N1,N1)'; %生成抽样时间点 f=cos(t); %生成抽样函数值 subplot(2,2,1) plot(t,f); title ('原函数') N=10; F1=fsana(t,f,N); %调用fsana函数求解前N项傅立叶级数系数 subplot(2,2,2) stem(abs(F1),'s'); %绘制离散的幅度曲线 title('前N项傅立叶级数系数幅度曲线'); f2=fssyn(F1,t); %调用fssyn函数求原时域函数 subplot(2,2,3) plot(t,f2,'k'); title('傅立叶逆变换后时域函数'); 运行结果

快速傅里叶变换实验

快速傅里叶变换实验

————————————————————————————————作者:————————————————————————————————日期: ?

实验七快速傅里叶变换实验 2011010541?机14 林志杭 一、实验目的 1.加深对几个特殊概念的理解:“采样”……“混叠”;“窗函数”(截断)……“泄漏”;“非整周期截取”……“栅栏”。 2.加深理解如何才能避免“混叠”,减少“泄漏”,防止“栅栏”的方法和措施以及估计这些因素对频谱的影响。 3.对利用通用微型计算机及相应的FFT软件,实现频谱分析有一个初步的了解。 二、实验原理 为了实现信号的数字化处理,利用计算机进行频谱分析――计算信号的频谱。由于计算机只能进行有限的离散计算(即DFT),因此就要对连续的模拟信号进行采样和截断。而这两个处理过程可能引起信号频谱的畸变,从而使DFT的计算结果与信号的实际频谱有误差。有时由于采样和截断的处理不当,使计算出来的频谱完全失真。因此在时域处理信号时要格外小心。 时域采样频率过低,将引起频域的“混叠”。为了避免产生“混叠”,要求时域采样时必须满足采样定理,即:采样频率fs必须大于信号中最高频率fc的2倍(fs>2fc)。因此在信号数字处理中,为避免混叠,依不同的信号选择合适的采样频率将是十分重要的。 频域的“泄漏”是由时域的截断引起的。时域的截断使频域中本来集中的能量向它的邻域扩散(如由一个δ(f)变成一个sinc(f),而泄漏的旁瓣将影响其它谱线的数值。时域截断还会引起“栅栏效应”,对周期信号而言,它是由于截断长度不等于周期信号的周期的整数倍而引起的。因此避免“栅栏”效应的办法就是整周期截断。 综上所述,在信号数字化处理中应十分注意以下几点: 1.为了避免“混叠”,要求在采样时必须满足采样定理。 为了减少“泄漏”,应适当增加截断长度和选择合适的窗 对信号进行整周期截取,则能消除“栅栏数应”。 增加截断长度,则可提高频率分辨率。 三、预习内容 熟悉Matlab语言、函数和使用方法;利用Matlab所提供的FFT函数编写程序。 四、实验内容及步骤 调通所编写的程序,对下列信号〔函数〕进行离散FFT变换,根据题目的要求……FFT变换点数〔截断长度〕及采样频率,计算各点的傅里叶变换值,画出频谱图,对典型的谱线标出其幅值及相角。 (-)内容: 1. t t t t x 3 cos 2 sin ) 6 sin( )(ω ω π ω+ + + = 代码: N=input('N='); n=input('n=');t=1:1:N;

相关主题
文本预览
相关文档 最新文档