当前位置:文档之家› 多肽类药物的开发、应用及发展前景

多肽类药物的开发、应用及发展前景

多肽类药物的开发、应用及发展前景
多肽类药物的开发、应用及发展前景

多肽类药物的开发、应用及发展前景

摘要: 本文从多肽类药物的简介与分类,和对多肽类药物开发的技术研究和给药途径,以及对多肽类药物的研究前景等方面,对多肽类药物有了综合性的认识。阐述了多肽类药物在国内和国际上的巨大前景以及对研究现代疾病的预防和治疗发挥着至关重要的作用。

关键字:多肽类药物研发技术与方向给药途径前景与展望

Polypeptide drugs development, application and development

prospects

Abstract:

This article from the introduction and classification of polypeptide drugs, and for peptide drug delivery system for research and development of technology, and the study of peptide drugs prospects, etc., for a comprehensive understanding of peptide drugs. Polypeptide drugs in the huge prospects as well as to the research on domestic and international modern disease plays an important role in the prevention and treatment

keyword:polypeptide drugs research and development Technology and the direction Delivery way prospects and look ahead

一、多肽的简介:

多肽是α-氨基酸以肽链连接在一起而形成的化合物,它也是水解的中间产物。由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100氨基酸分子脱水缩合而成的化合物叫多肽。它们的分子量低于10,000Da(Dalton道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。[1] 百度百科“多肽”。也可把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为。[2]《生物化学教程》高等教育出版社王镜岩等主编

分子式:[3]《多肽药物研究于开发》人民卫生出版社厉保秋主编

二、多肽类药物的特点

多肽类药物是指用于预防、治疗和诊断的多肽类物质生物药物[4]《蛋白药物的制备与展望》张政朴等编著

许多活性多肽都是由无性的前体,经过酶的加工剪切转化而来的,它们中间许多有共同的来源,相似的结构,甚至还保留着若干彼此所特有的生物活性。研究活性多肽结构与功能的关系及活性之间结构的异同与其活性的关系,将有助于设计和研制新的活性多肽药物。国内外一些临床上确有疗效的组织提取剂,其有效成分有的还不十分清楚,从活性肽或细胞生长调节因子的角度去研究他们的物质基础和作用机制,预计可获得一定成效。

三、多肽类药物的分类

1.多肽激素

(1)垂体多肽激素促皮质素(ACTH),促黑激素(MSH),脂肪水解激素(LPH),催产素(OT),加压素(A VP)。

(2)下丘脑激素促甲状腺素释放激素(TRH),生长素抑制激素(GRIF),促性腺激素释放激素(LHRH)

(3)甲状腺素甲状旁腺激素(PTH)降钙素(CT)

(4)胰岛激素胰高血糖素,胰解痉多肽

(5)胃肠道激素胃泌素,胆囊收缩素,促胰激素(CCK—PZ),肠泌素,肠血管活性肽(VIP),抑胃肽(GIP),缓激肽,P物质

(6)胸腺激素胸腺素,胸腺肽,胸腺血清因子

2.多肽类细胞生长调节因子表皮生长因子(EGPF),转移因子(TF),心钠素(ANP)

等。

3.含有多肽成分的其他生化药物骨宁,眼生素,血活素,氨肽素,妇血宁,脑氨肽,

蜂毒,蛇毒,胚胎素,助应素,神经营养素,胎盘提取物,划分提取物,脾水解物,肝水解物,心脏激素等。[5]生物制药工艺学吴梧桐等编著

四、多肽类药的研发:

新药的研发一般主要有三种途径:

1.基于分子结构,针对特定靶分子,寻求高亲和力的小分子的思路。采用基因组蛋白组寻找靶标,用组合化学合成建立分子库,计算机虚拟筛选结构优化的药物分子设计高通量,是未来医药业发展的希望,但是,这种方法目前投入多,成功率低,只适宜在少数有条件的单位使用,而且需要完善平台,集中各方面的力量进行药物开发研究。

2.结合中药研究,从已知有活性的成分出发,通过结构简化成改造,做结构优化,创造新药.这种方法命中率高,应该给予鼓励。

3.基于对生理或病理过程机理的研究,研究内源性小分子对发病过程中的某些环节的调控,并发现其结构功能关系,进行结构修饰过改造达到结构优化,设计类似物,最后得到药物。此途径从医药研究进入,是一种生物医学和化学结合的途径,命中率高,适宜无靶标,多靶标或靶标不明的情况,应特别加强这种多学科融合的研究[6]《制药微生物技术----基础与应用》童望宇等编著[7]《多学科融合研发新药-----中科院院士王夔谈新药研发的三种途径》医药周刊刘云涛等编著

五、多肽类药物研发技术与方向

1 化学合成方法以化学合成方法研制开发多肽类药物,已成为广泛采用的有效手段。通过液相合成,固相合成,固/液合成相结合以及片段连接等方式,已成功研发众多多肽类药物。[8]《多肽药物的研究进展》[J]山东科学, 2008,(03) 陈贯虹等编著

2 改造生物活性多肽及现有多肽药物以生物活性多肽或现有多肽药物作参照,通过组合筛选,氨基酸序列简化或替代改造,是研发多肽药物的有效途径。

3 提高活性多肽及现有多肽药物档次通过对内源性多肽或现有多肽药物进行结构修饰,以克服原有产物的弱点, 减少副作用,提高药效,是研发多肽类新药的重要渠道。

4 针对具生物活性的多肽天然产物研发以生物活性天然多肽,尤其是海洋生物活性多肽为模板, 开展构效关系研究,以提高活性与效价,简化结构并降低副作用,是研发多肽类新药的重要方向。

5 生物技术制备多肽药物采用生物技术制备多肽药物,是研发新型多肽类药物的重要方法. 生物技术与化学合成方法相结合,优势互补,将可更好提高研发效益。[9]《生物技术及其在医药上的应用》[J].中国药业,1997,7:27熊仁平等编著。主要包括微生物及重组微生物发酵法。[10]生物制药工艺学吴梧桐等编著

六、多肽药物给药途径的研究

多肽类药物相对于一般的西药来说稳定性较差,其稳定性易受温度、pH值等的影响,在体内易降解,半衰期短。这些特殊性使得该类药物的主要临床应用剂型为注射剂,但是注射剂,尤其是对于胰岛素等需频繁给药的药物来说,不仅患者的依从性差,并且副作用也大。因此,相对于注射制剂, 多肽类药物的口服、经呼吸道以及经皮肤或黏膜给药制剂更具优越性。[11]HAMMAN J. H , ENSLIN GM , KOTZE A F. Oral Delivery of Peptide Drugs: Barriers and Developments[J ].Bio Drugs ,2005 ,19 (3) : 165 - 177

1 口服给药途径胃肠道对多肽类药物的低吸收及其中的酶对药物的降解是口服给药面临的两个最大障碍。因此,寻找合适的吸收位点,避免胃肠道的酶降解作用以及肝脏的首过效应是解决问题的关键。除对药物的结构进行化学修饰,加入吸收促进剂、酶抑制剂等方法外,脂质体、微囊、微球、纳米粒、乳剂等微粒给药系统也可有效地促进药物经胃肠道吸收入血液循环,提高多肽类药物口服的生物利用度。[12] GOMEZ2ORELLANA I. Strategies to Improve Oral Drug Bioavailability[J ]. Expert Opin Drug Deliv , 2005 ,2(3) :419 - 433

2 呼吸道给药途径制备多肽类药物鼻腔制剂的关键在于克服鼻腔纤毛的清除作用、鼻黏膜中

3 种氨肽酶(氨基肽酶N、氨基肽酶A、氨基肽酶B)对肽类药物的降解作用以及选择何种剂型以使药物在鼻腔内合理的分布。促进多肽类药物鼻黏膜吸收的方法包括:应用吸收促进剂、酶抑制剂、对肽类药物进行化学修饰或制成前体药物,以及使用大分子载体以促进药物的吸收。肺泡吸收面积很大,血液循环丰富,其上皮细胞的通透性很高,肽类水解酶的活性也很低,而且还能避免肝脏的首过效应,这些都有益于多肽类药物的吸收。目前粉雾剂是肺部给药的主要剂型。[13] ZHANG YL , et al. Expression of Germ Cell Nuclear Factor (GCNFΠRTR) During Spermat ogenesis[J ]. Mol Reprod Dev ,1998 ,50 : 93 - 102.

3 经皮给药途径多肽类药物经皮给药必须克服皮肤角质层牢固的屏障作用,对药物成分进行处理、修饰或瞬间提高皮肤渗透性以及各种绕过或清除最外层皮肤的方法都可促进药物进入皮肤。目前应用较多的一种技术为离子导入技术。[14]STAMATIALIS D F , ROLEVINK H H , KOOPS G H. Passive and Iontop Horetic Controlled Delivery of Salmon Calcitonin ThroughArtifical Membranes[J ]. Curr Drug Deliv ,200

4 ,1(2) :137 - 143.即借助电流控制离子化药物释放速度和释放时间,并促进药物进入皮肤。电流电压、皮肤阻抗、离子强度等因素都可影响药物离子电导入,而将离子导入技术与电致孔、超声导入技术以及化学促渗剂相结合则能较好地解决以上问题。[15]CARRON C P , MEYER D M. A Peptidomimetic Antagonist of the Integrin Alpha (v) beta 3 Inhibits Leydig Cell Tumor Growth and the Development of Hypercalcemia of Malignancy [J ]. Cancer RES ,1998 ,58(9) :1930 - 193

七、多肽类药物的研究前景及展望

1、多肽类药物传输系统研究进展随着生物工程技术的迅速发展,生物技术活性物质不断面世,已有不少生物技术药物应用于临床,国内外已批准上市的约40 多种,1995 年开发数为

234 种,目前正在研究的则成倍增加,在这些品种中,大量的均为多肽类药物.[16]孙晓东.蛋白多肽类药物给药途径及剂型的研究进展.中外医疗.由于多肽药物的体内外不稳定性,临床主要剂型是溶液型注射剂和冻干粉针。为解决长期用药的问题,克服注射剂的不便和缺点,发展适宜给药途径的非注射传输系统是药剂学面对的挑战。[17]脂质体作为多肽、蛋白类药物载体应用研究的进展(上).中国药师, 2010 年第13 卷第4 期陆彬编著

2、产品及市场的国际发展趋势 优势受到高度关注,中小型企业积极介入。研发多肽类药

物周期短, 成本低,风险小及效率高的优势受到高度关注,亦不乏中小型企业积极介入, 研发成功的实例。[18]脂质体作为多肽、蛋白类药物载体应用研究的进展(下).中国药师.2010 年第13 卷第4 期陆彬等编著

3、国内多肽类药物的研发现状、条件、潜在优势及机遇

(1)优势正受到国内的关注和重视。

(2)民营企业工作开展活跃,效益显著。

(3)相关产业欣欣向荣,产品质量及档次仍待提高。。

(4)化学合成力量较弱。

(5)国内多肽药物领域研发现状。

(6)中国开展多肽类药物研发的条件与优势。

(7)中国开展多肽及相关产业研发的机遇。[19]张宏波,项琪,赵文等.多肽、类药物脂质体研究进展.中国生物工程杂

多肽类药物的临床研究仅有20 年的历史将成为未来疾病治疗的有力有段,蛋白药物的制备必将发展成为21 世纪我国最具吸引力的新技术产业之一,但是后面的路还很长,要取得突破性的进展,首先要加强基础研究,应更加自由全方位的探索,在前人研究的基础上开拓创新,开辟新天地。[20]《多肽及蛋白类药物微球的研究进展》. 中国医药工业杂志陆丽芳等编著

武汉工业学院

生工1001班

王文峰

2013年4月1日

多肽类抗肿瘤药物研究进展

多肽类抗肿瘤药物研究进展 【摘要】目前,恶性肿瘤已严重威胁人类的健康,传统的手术、化疗、放疗等治疗手段不仅选择性低,毒副作用大,且易产生耐药性。而多肽具有良好的靶向性,且分子量小、来源广泛,具有低毒性、易于穿透肿瘤细胞且不产生耐药性的优点。抗肿瘤活性肽可特异性结合并作用于肿瘤组织,与肿瘤生长转移相关的信号转导分子相互作用,从而抑制肿瘤生长或促进肿瘤细胞发生凋亡。本文将从抗肿瘤多肽药物的来源、作用机制及发展现状进行概述。【关键词】多肽来源抗肿瘤作用机制 恶性肿瘤是一类严重威胁人类健康和生命的疾病,仅次于心血管疾病,每年死于癌症的患者约占总死亡人数的1/4,且中国占相当庞大的病例数。药物治疗是当今治疗肿瘤的主要手段之一,但目前的抗肿瘤药物不良反应较大。对此,寻找新型高效低毒的抗肿瘤药物一直是国内外医药研发的热点。随着免疫和分子生物学的发展,以及生物技术与多肽合成技术的成熟,人们发现多肽类药物不仅毒性低、活性高、易于吸收,还可以通过提高机体免疫功能抑制肿瘤的生长和转移,增强抗肿瘤作用,而且其广泛存在于动物、植物、微生物体内,因此,越来越多的多肽药物被开发并应用于临床。 抗肿瘤多肽的来源 天然来源的抗肿瘤活性肽 天然活性多肽是存在于动物、植物和微生物等生物体内的一类生物活性肽,可经过特殊提取分离工艺直接得到。近年来,对某些多肽经修饰加工后发现其具有显著的抗肿瘤作用,它们可针对肿瘤细胞发生、发展的不同环节,特异性杀伤、抑制肿瘤细胞,显示出极好的应用前景。 1.1微生物源抗肿瘤多肽 微生物源抗肿瘤多肽主要是指广泛存在于生物体内的一种小分子多肤,它们是非核糖体合成的抗菌肽,如多黏菌素(polymyxin)、杆菌肽(bacitracin)、短杆菌肽(gramicidin)等,主要是由细菌产生,并经结构修饰而获得,这类微生物产生的抗菌多肽的研究近年来取得了较大的进展。 细菌抗菌肽又称细菌素,是最常见的一类抗菌肽,革兰氏阳性菌和革兰氏阴性菌均可分泌。细菌中已发现杆菌肽、短杆菌肽S、多黏菌素E和乳链菌肽(Nisin) 4种类型抗菌肽,能特异性杀死竞争菌,而对宿主自身无害。例如[1],枯草芽孢杆菌可以产生多种抗微生物物质,如表面活性素(surfactin),该物质具有抗病毒、抗肿瘤、抗支原体、抗真菌活性和一定程度的抗细菌活性。除此之外,人们还发现某些抗菌肽对部分病毒、真菌和癌细胞等有杀灭作用,甚至能提高免疫力、加速伤口愈合。 1.2动物源抗肿瘤多肽 动物源多肽主要是指从哺乳动物、两栖动物、昆虫中分离提取出来的抗肿瘤多肽。如,有些哺乳动物来源的抗肿瘤多肽对淋巴瘤细胞有较强的抗肿瘤活性且免疫原性低;此外,还有Berge [2]等通过体内实验验证来源于牛科动物乳铁蛋白Lfcin B的9肽LTX-302 ( WKKWDipKKWK )的抗肿瘤效果,结果表明其对淋巴瘤细胞A20具有抗肿瘤活性,IC50为16 μmol·L ̄1 。 多数研究表明,从天蚕中分离出的天蚕素Cecropins具有较强的抗肿瘤活性。Cecropin A和Cecropin B对膀胱癌细胞有选择性细胞毒作用,以剂量依赖的方式抑制膀胱癌细胞增殖,对所有膀胱癌细胞系的IC50为73.29~220.05 μmol·L ̄1,它们的作用机制可能是破坏靶细胞膜导致不可逆的细胞溶解和细胞破坏[3]。 1.3植物源抗肿瘤多肽

合成多肽药物药学研究技术指导原则.doc

指导原则编号:合成多肽药物药学研究技术指导原则二00七年九月 【H 】G P H 11 - 1

目录 一、前言 二、合成多肽药物药学研究的基本考虑 三、合成多肽药物药学研究的主要内容(一)制备工艺研究 (二)结构确证研究 (三)制剂处方工艺研究 (四)质量研究与质量标准 (五)稳定性研究 四、名词解释 五、参考文献 六、著者

合成多肽药物药学研究技术指导原则 一、前言 多肽类化合物是一类重要的生物活性分子。20世纪70年代生物技术在生命科学领域的应用,使多肽等生物技术药物的研究进展迅 速;与此同时,随着多肽固相合成技术及高效液相色谱(HPLC)纯化、分析技术等的发展,合成多肽药物的开发也成为药物研究中的一个活 跃领域。 采用化学合成方法制备多肽,可以对天然多肽的结构进行修饰, 从而增加多肽与受体的亲和力、选择性,增强对酶降解的抵抗力或改善药代动力学特性,甚至由受体的激动剂变为拮抗剂;此外,新技术 的发展,例如以多肽固相合成和组合化学为基础的组合肽库合成技 术,使得在短时间内获得大量的多肽化合物成为可能,药物筛选的效率不断提高。因此,将会有越来越多的采用化学合成方法制备的多肽 类化合物成为治疗用药物。 合成多肽药物是指采用化学合成方法制备的多肽类药物。这类药物的药学研究同样遵循国家食品药品监督管理局已经发布的相关技 术指导原则的一般性要求。但是,由于多肽主要由氨基酸(包括天然 氨基酸和非天然氨基酸)构成,这使得多肽类药物在制备方法、结构 确证、质量研究等方面又有与一般药物不同的独特问题。本指导原则就是在已有的相关指导原则基础上,对合成多肽药物药学研究方面所 涉及的特殊问题进行分析,结合国内对多肽药物研究和评价的实践经验,提出多肽药物药学各项研究的一般性要求。当然,具体品种研究

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

合成多肽药物有关物质研究的几点考虑

发布日期20071127 栏目化药药物评价>>非临床安全性和有效性评价 标题合成多肽药物有关物质研究的几点考虑 作者审评五部 部门 正文内容 审评五部 有关物质研究是合成多肽药物药学研究的一项重要内容,由于合成多肽本身结构、合成工艺以及稳定性方面的特殊性,这类药物的 有关物质研究较为复杂、存在一定的难度。国家食品药品监督管理 局颁布的《合成多肽药物药学研究技术指导原则》已经就该类产品 的有关物质研究提出了原则性的要求,本文主要是根据审评中遇到 的一些共性问题就合成多肽药物有关物质研究需重点关注的几个 问题做进一步的说明。 (一)合成多肽药物有关物质的特点和研究的难点。 合成多肽的有关物质主要为源于合成过程带来的工艺杂质和由于多肽不稳定而产生的降解产物、聚合物等。 工艺杂质尽管目前合成多肽的纯化工艺已经有了很大进步,但工

艺杂质仍是合成多肽有关物质的重要来源,这主要是由于合成多肽的一些工艺杂质(如缺失肽、断裂肽、氧化肽、二硫键交换的产物等)与药物本身的性质可能非常近似,从而给纯化造成了一定的难度。而且,不同的多肽合成方法也在很大程度上决定了终产品中杂质的性质,例如液相合成和固相合成所引入的工艺杂质就会明显不同,固相合成中Boc合成法与Fmoc合成法所产生的杂质也会有所差异,甚至不同的保护/脱保护策略都会带来不同的工艺杂质。因此,在进行合成多肽的有关物质研究时,研究者必须结合自身的工艺特点对可能由此引入的杂质有充分认识,从而才能够建立有针对性的有关物质研究方法。同时,这也意味着,对于仿制产品而言不能盲目照搬国家标准、已上市产品的有关物质检查方法,必须充分考虑到产品本身的工艺特点。 降解产物及聚合物多肽的化学稳定性和物理稳定性一般较差,因此降解产物、聚合物等是合成多肽有关物质研究的主要对象之一。影响合成多肽稳定性的因素包括脱酰胺、氧化、水解、二硫键错配、消旋、β-消除、聚集等,研究显示合成多肽中最常见的降解产物是脱酰胺产物、氧化产物、水解产物。在组成多肽的各种氨基酸中,天冬酰胺、谷胺酰胺易于发生脱酰胺反应(尤其是在pH值升高和高温条件下);甲硫氨酸、半胱氨酸、组氨酸、色氨酸、酪氨酸最易氧化,对光照也较为敏感;天冬氨酸参与形成的肽链较易断裂,尤其是Asp-Pro和Asp-Gly肽键。由于一个多肽分子中通常

手性药物拆分技术的研究进展

手性药物拆分技术的研究进展 摘要:简要阐述了手性药物的世界销售市场。综述了目前实验室和工业生产领域手性药物的拆分方法,包括:结晶拆分法,化学拆分法,动力学拆分法,生物拆分法,色谱拆分法,手性萃取拆分法和膜拆分法等,并简要介绍了每种方法的应用情况及优缺点。 关键词:手性药物; 外消旋体; 手性拆分 自然界存在各种各样的手性现象,比如蛋白质、氨基酸、多糖、核酸、酶等生命活动重要基础物质,都是手性的。据统计,在研发的1200种新药中,有820种是手性的,占世界新药开发的68%以上[ 1 ]。美国FDA在1992年发布了手性药物指导原则,该原则要求各医药企业今后在新药研发上,必须明确量化每一对映异构体的药效作用和毒理作用,并且当两种异构体有明显不同作用时,必须以光学纯的药品形式上市。随后欧共体和日本也采取了相应的措施。此项措施大大促进了手性药物拆分技术的发展,手性药物的研究与开发,已经成为当今世界新药发展的重要方向和热点领域[ 2 ]。当前大多数药物是以外消旋体的形式出现,即药物里含有等量的左右两种对映体。但是近年来单一对映体药物市场每年以20%以上的速度增长。1993年全球100个热销药中,光学纯的药物仅仅占20%;然而到了1997年, 100个中就有50个是以单一对映体形式存在,手性药物已占到世界医药市场的半壁江山。在1993年,手性药物的全球销售额只有330亿美元;到了1996年,手性药物世界市场已增长到730亿美元; 2002年总销售额更是达到1720亿美元, 2010年可望超过2500亿美元[ 3~5 ]。广阔的应用前景和巨大的市场需求触发了更多的医药企业和学者探索更新更高效地获得单一手性化合物的方法。 不同的立体异构体在体内的药效学、药代动力学和毒理学性质不同,并表现出不同的治疗作用与不良反应,研究与开发手性药物是当今药物化学的发展趋势。随着合理药物设计思想的日益深入,化合物结构趋于复杂,手性药物出现的可能性越来越大;另一方面,用单一异构体代替临床应用的混旋体药物,实现手性转换,也是开发新药的途径之一[ 1 - 3 ]。1985~2004年上市的550个新化学合成药物中,有313个药物具有手性中心,其中以单一异构体上市的手性药物为167个,手性药物数量呈逐年上升趋势; 2005年世界药物的销售总额为6 020亿美元,而手性药物的销售总额为 2 250亿美元,占全球制药市场销售总额的37% , 2010年可望超过 5 000亿美元[ 4 - 6 ]。总之, 手性药物大量增长的时代已经来临,手性药物制备技术的发展亦日趋完善,这为以制备和生产手性药物为主要内涵的手性工业的建立和发展奠定了基础。 手性药物的制备技术由化学控制技术和生物控制技术两部分组成。手性药物的化学控制技术可分为普通化学合成、不对称合成和手性源合成3类;手性药物的生物控制技术包括天然物的提取分离技术和控制酶代谢技术。以前手性化合物为原料,经普通化学合成可得到外消旋体,再将外消旋体拆分制备手性药物中间体或手性药物,这是工业生产手性药物的主要方法。1985~2004年上市的58个含有一个手性中心的手性药物中,有27个手性药物是通过手性拆分法生产的[ 4 ]。 1结晶法拆分 结晶法拆分包括直接结晶法拆分( direct crys ta llization resolution )和非对映异构体拆分( dias te reom er crys tallization resolution) ,分别适用于外消旋混合物( conglom e rate)和外消旋化合物( racem ic compound)的拆分。在一种外消旋混合物的过饱和溶液中,直接加入某一对映体的晶种,即可得到一定量的该对映体,这种直接结晶的拆分方法仅适用于外消旋混合物,其应用几率不到10%。外消旋化合物较为常见,大约占所有外消旋体的90%。通过与非手性的酸或碱成盐可以使部分外消旋化合物转变为外消旋混合物,扩大直接结晶法拆分的应用范围。 对于外消旋化合物,可采用与另一手性化合物(即拆分剂, reso lving agent)形成非对映异

手性分子与手性药物1

有机化学 ——手性分子和手性药物 12应化一班 高钰(120911103) 胡傲(120911106) 文正(120911118) 鲍敏(120911126) 李梦园(120911132) 张艳(120911146) 郑丽(120911150)

手性分子 手性:实物和其镜像不能重叠的现象 手性碳:连有4个不同的原子或基团的碳原子(“*”)手性分子:不能与其镜像重合的分子 如何判断一个分子是否有手性? ●最直接法:画其对映体,看是否重合 ●观察有无手性碳: ●若分子中只含有一个手性碳,即为手性分子●若分子中含有2个以上手性碳,视情况分析●观察其结构中是否具有对称因素(对称面、对 称中心及其它对称因素);一般说来,如果分子既没有对称面有无对称中心,分子就具有手性。

最直接法 两者不能重合,是手性分子 两者能重合,不是手性分子

观察有无手性碳 有手性碳,是手性分子 有手性碳,但不是手性分子 有手性碳(两个及两个以上)的不一定是手性分子

对称性 (一)对称面:假想有一个平面它可以把分子分割成互为镜像的两半,这个平面就叫对称面。 (二)对称中心:在分子中取一点P,画通过P点的任一直线,若在与P点等距离的此直线两端为相同原子(团),则P点即为该分子的对称中心。 (三)对称轴:如果穿过分子画一条直线,分子以它为轴旋转一定角度后,可以获得与原来分子相同的形象,这一直线即为该分子的对称轴。

R/S构型标记法 (一)R/S构型标记法命名规则 1、根据次序规则,排列成序,a>b>c>d; 2、把最小的d基团放在最远,其它三个朝向自己; 3、观察a b c顺序,若呈顺时针为R-构型;呈逆时针为S-构型。(二)由费歇尔投影式确定R/S构型的方法

多肽类药物研究及应用进展

多肽类药物研究及应用进展 内容摘要:多肽是一类在氨基酸构成及其连接方式上与蛋白质相同,但在某些性质方面又有别于蛋白质的物 质,如其空间结构较简单、免疫原性较低或无免疫原性、生理活性强等。但多肽类物质自身固有的特点,如口服利用率较低、酶 降解性高以及半衰期极短等,使其作为药物开发应用受到诸多的局限。而导致多肽类药物不稳定的一个重要原因就是多肽特殊的分子结构。 本文重点从分子结构改造方面对多肽类药物的研究进展做一综述。 关键词:多肽药物结构改造化学修饰基因工程环肽 多肽作为药物,具有生理活性强、免疫原性低、疗效高等诸多优点,随着生物技术的不断发展,其在人类疾病治疗中的地位也日趋重要,目前已成为国际药学界研究的热点之一。但多肽类物质自身固有的特点,如口服利用率较低、酶降解性高以及半衰期极短等,使其作为药物开发应用受到诸多的局限。而导致多肽类药物不稳定的一个重要原因就是多肽特殊的分子结构,其中多肽主链氨基酸的降解和侧链氨基酸残基的结构变化是多肽结构不稳定的主要原因,因此从多肽类药物本身的分子结构进行改造,是改变其理化性质和药代动力学性质的根本。本文拟重点从分子结构改造方面对多肽类药物的研究进展做一综述。 1 化学修饰 化学修饰不仅是多肽类药物定向改造、提高稳定性的有力工具,也是研究多肽结构与功能的一种重要手段。对多肽的主链基团和侧链基团都可以进行化学修饰。主链基团修饰包括氨基酸肽链的延长、切除及氨基酸定位突变等;侧链基团修饰主要集中于氨基、巯基和羧基上。修饰剂主要有葡聚糖、多聚唾液酸、聚乙二醇、四硝基乙烷等。根据修饰剂与 多肽之间反应的性质,修饰反应可分为糖基化反应、酯化反应、酰化反应、取代反应、磷酸化反应、烷基化反应、氧化还原反应等。由于烷基化反应和氧化还原反应对多肽的活性影响较大,实际应用较少,而磷酸化反应对多肽稳定性的影响意义不大。现主要对前 4 种修饰反应进行重点介绍。 1.1 糖基化反应 糖基化是指多肽的氨基和单糖还原端的羰基在温和的条件下经过一系列变化成为较稳定的糖肽的过程,是一种较为理想的稳定多肽类药物的方式,糖链的存在及其结构的可变性、复杂性和多样性直接影响着糖肽在组织中的降解和在体内的寿命[1],也使得糖肽成为药学研究的新热点。脑内的亮氨酸脑啡肽可特异性地与阿片受体结合,在机体内起着调控痛觉感受并调节心血管与胃肠功能的作用,但半衰期短。 1.2 酯化反应 酯化是指多肽的羧基和醇羟基形成较稳定的酯类化合物的反应。聚乙二醇(polyethylene glycol,PEG)是常用的酯化反应试剂,是一种线性、亲水、灵活而不带电的高分子聚合物。通常选择相对分子质量大于10 000 的PEG 在温和的条件下对多肽进行修饰,选择合适的修饰类型、修饰程度以及修饰位点有利于改善多肽类药物的活性并提高其稳定性。目前已有不少经PEG 修饰的多肽类药物如PEG-IL-2[2]、PEG-水蛭素[3]等已进入临床试验阶段。 1.3 酰化反应

多肽类药物制剂研究现状_方宏清

多肽类药物制剂研究现状 方宏清 (军事医学科学院生物工程研究所 北京 100071) 摘 要 多肽类药物制剂研究面临的主要问题是多肽的稳定性不好、体内半衰期短和生物膜透过性差。本文综述了多肽类药物不稳定的原因;提高多肽稳定性的方法;多肽类药物制剂货架时间的确定;多肽类药物的分析手段;多肽类药物的控释研究;多肽的非注射途径给药研究。最后还提出了多肽类药物制剂研究的展望。 关键词 多肽 药物制剂 稳定性 控制释放 非注射途径给药 随着生物技术的发展,多肽作为药物在临床上的应用越来越广泛,相应的制剂学研究也日益受到重视。与传统的小分子有机药物相比,多肽具有稳定性差,体内半衰期短和不易通过生物膜等特点。本文从稳定性、缓释系统、非注射途径给药三方面对多肽类药物制剂的研究概况进行介绍。 1 多肽的稳定性研究 1.1 引起多肽不稳定的原因[1~3] (1)脱酰胺反应 在脱酰胺反应中, Asn/Gln残基水解形成Asp/Glu。非酶催化的脱酰胺反应与环境条件和多肽的结构有关。提高pH值、升高温度都将有利于脱酰胺反应的进行。在-Asn-Gly-结构中的酰胺基团更易水解,位于分子表面的酰胺基团也比分子内部的酰胺基团易水解。 (2)氧化 多肽溶液易氧化的主要原因有两种,一是溶液中有过氧化物的污染,二是多肽的自发氧化。在所有的氨基酸残基中, Met、Cys和H is、Trp、Ty r等最易氧化。氧分压、温度和缓冲溶液对氧化也都有影响。 (3)水解 多肽中的肽键易水解断裂。由Asp参与形成的肽键比其它肽键更易断裂,尤其是Asp-Pro和Asp-Gly肽键。 (4)形成错误的二硫键 二硫键之间或二硫键与巯基之间发生交换可形成错误的二硫键,导致三级结构改变和活性丧失。 (5)消旋 除Gly外,所有氨基酸残基的α碳原子都是手性的,易在碱催化下发生消旋反应。其中Asp残基最易发生消旋反应。 (6)β-消除 β-消除是指氨基酸残基中β碳原子上基团的消除。Cys、Ser、Th r、Phe、Ty r等残基都可通过β-消除降解。在碱性p H 下易发生β-消除,温度和金属离子对其也有影响。 (7)变性、吸附、聚集或沉淀 变性一般都与三级结构以及二级结构的破坏有关。在变性状态,多肽往往更易发生化学反应,活性难以恢复。在多肽变性过程中,首先形成中间体。通常中间体的溶解度低,易于聚集,形成聚集体,进而形成肉眼可见的沉淀。 蛋白质的表面吸附是其贮存、使用过程中遇到的另一个令人头痛的问题,如r IL-2在进行灌注时会吸附在管道表面,造成活性损失[4]。 1.2 提高多肽稳定性的途径[1,3] (1)定点突变 通过基因工程手段替换引起多肽不稳定的残基或引入能增加多肽稳 16 药 学 进 展 1998年 22卷 第1期军事医学科学院青年科研基金资助项目

手性药物发展趋势_附件

手性药物的发展趋势 手性药物在新药的设计、研究、开发、上市是一个主要的课题[1–4]。立体化学结构是药理学的一个重要方面[1]。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加[2-4]。 立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[3-5]。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计[3,4]。这些因素导致在企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明[6]。紧接着,1994年欧盟发表了手性活性药物的研究[7]开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。 单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)[8-13]。 排名前十的单一对映体药物(每年销售额大于10亿美元)是:阿托伐他汀

什么是手性药物

什么是手性药物? 四川大学华西药学院郑虎教授解释说,如人体的左右手一样,在空间上不能完全叠合,却能互为镜像的奇特属性,我们就称之为“手”性。具有互呈镜像结构的化学物分子互称为对映异构体或光学异构体,即左(右)手与右(左)手互称对映异构体。手性药物是指只含单一对映体的药物,即只有一只“左手”或一只“右手”的药物。而含有一对对映异构体的药物则好像人的左右手一样,左手——左旋体((R型,D型,(+)型)与右手——右旋体((S型,L型,(-)型)以同等的量共生,这样构成的药物称为消旋药物。 手性是自然界的本质属性之一,郑教授说,作为生命活动重要基础的生物大分子,如核酸、蛋白质、多糖等分别由具有手性的D-DNA、L-氨基酸、D-单糖构成,载体、酶、受体等也都具有手性,它们一起构成了人体内高度复杂的手性环境。药物在进入体内后,其药理作用是通过与体内这些靶分子之间的严格手性匹配和分子识别能力而实现的。立体结构相匹配的药物通过与体内酶、核酸等大分子中固有的结合位点产生诱导契合,从而抑制(或激动)该大分子的生理活性,达到治疗的目的。 一般情况下,具有手性药的药物,它的两个对映体在体内以不同的途径被吸收、活化或降解,所以在体内的药理活性、代谢过程及毒性存在着显著的差异。当一个有手性的化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。药物能起作用的仅是其中的一只“手”,这只高活性的“手”我们称为优对映体;而另一只“手”效力微小或干脆使不出“劲”,或不能很好地契合而成为无效对映体,或与其它大分子契合产生不同的药理作用,甚至产生毒性,称为劣对映体。 以前由于对此缺少认识,人类曾经有过惨痛的教训。发生在欧洲震惊世界的“反应停”事件就是一例。20世纪50年代,德国一家制药公司开发出一种镇静催眠药反应停(沙利度胺),对于消除孕妇妊娠反应效果很好,但很快发现许多孕妇服用后,生出了无头或缺腿的先天畸形儿。虽然各国当即停止了销售,但却造成6000多名“海豹儿”出生的灾难性后果。后来经过研究发现,反应停是包含一对对映异构体的消旋药物,它的一种构型R-(+)对映体有镇静作用,另一种构型S-(-)对映体才是真正的罪魁祸首——对胚胎有很强的致畸作用。 传统的以消旋体给药的方式带来的一些问题引起了越来越广泛的关注和 重视,为了避免这类悲剧的再次发生,世界各国由此开始关注手性药物,加强了对手性药物药效学差异的研究。 手性药物为何异军突起 经过40年的发展,特别是近两年,世界医药领域研发手性药物之势愈来愈烈,并已有大量新品种面世,成为世界各国制药公司追求利润的新目标。在20世纪最后十余年内,手性药物临床用量日益上升,市场份额逐年扩大。尤其是1999年,国际手性药物跨越了一个新的里程碑,销售额比1998年的998亿美元增长了15.18%,达到1150亿美元,约占当年全球医药市场总收入(3600亿美元)

合成多肽药物药学研究技术指导原则

附件三 合成多肽药物药学研究技术指导原则

合成多肽药物药学研究技术指导原则 一、前言 多肽类化合物是一类重要的生物活性分子。20世纪70年代生物技术在生命科学领域的应用,使多肽等生物技术药物的研究进展迅速;与此同时,随着多肽固相合成技术及高效液相色谱(HPLC)纯化、分析技术等的发展,合成多肽药物的开发也成为药物研究中的一个活跃领域。 采用化学合成方法制备多肽,可以对天然多肽的结构进行修饰,从而增加多肽与受体的亲和力、选择性,增强对酶降解的抵抗力或改善药代动力学特性,甚至由受体的激动剂变为拮抗剂;此外,新技术的发展,例如以多肽固相合成和组合化学为基础的组合肽库合成技术,使得在短时间内获得大量的多肽化合物成为可能,药物筛选的效率不断提高。因此,将会有越来越多的采用化学合成方法制备的多肽类化合物成为治疗用药物。 合成多肽药物是指采用化学合成方法制备的多肽类药物。这类药物的药学研究同样遵循国家食品药品监督管理局已经发布的相关技术指导原则的一般性要求。但是,由于多肽主要由氨基酸(包括天然氨基酸和非天然氨基酸)构成,这使得多肽类药物在制备方法、结构确证、质量研究等方面又有与一般药物不同的独特问题。本指导原则就是在已有的相关指导原则基础上,对合成多肽药物药学研究方面所涉及的特殊问题进行分析,结合国内对多肽药物研究和评价的实践经验,提出多肽药物药学各项研究的一般性要求。当然,具体品种研究的内容与深度还要取决于品种本身的特性。 本指导原则适用于采用液相或固相合成方法制备的多肽药物。

二、合成多肽药物药学研究的基本考虑 合成多肽药物药学研究的主要内容、研究思路、研究方法及一般性的技术要求与其他类型的化学药物基本一致。但是,由于多肽药物的特点,在进行药学研究时还应注意考虑以下问题。 1、关于多肽(原料药)合成工艺选择的考虑 多肽的化学合成是有机合成的一个非常特殊的分支,目前主要有液相合成和固相合成两种方法。 液相合成是经典的多肽合成方法,一般采用逐步合成或片段缩合方法。逐步合成法通常从链的C'末端氨基酸开始,向不断增加的氨基酸组分中反复添加单个α-氨基保护的氨基酸。片段缩合一般先将目标序列合理分割为片段,再逐步合成各个片段,最后按序列要求将各个片段进行缩合。液相合成的优点是每步中间产物都可以纯化、可以获得中间产物的理化常数、可以随意进行非氨基酸修饰、可以避免氨基酸缺失,缺点是较为费时、费力等。 固相合成是将目标肽的第一个氨基酸的羧基以共价键的形式与固相载体(树脂)相连,再以这一氨基酸的氨基为合成起点,使其与相邻氨基酸(氨基保护)的羧基发生酰化反应,形成肽键。然后让包含有这两个氨基酸的树脂肽的氨基脱保护后与下一个氨基酸的羧基反应,不断重复这一过程,直至目标肽形成为止。其优点是简化了每步反应的后处理操作,避免因手工操作和物料转移而产生的损失,产率较高且能够实现自动化等;其缺点是每步中间产物不可以纯化,必须采用较大的氨基酸过量投料,粗品纯度不如液相合成物,必需通过可靠的分离手段进行纯化等。 液相合成和固相合成各有优缺点,应根据合成的实际需要选择适合的工艺。一般而言,液相合成法较适于合成短肽;固相合成法

手性药物研究技术指导原则

2 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完 全重叠的性质,正如人的左右手之间的关系,称之为手性,具有手性的化合物即称 为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都 具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和 核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗等作用 的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异 构体所产生的药理效应就可能不同。手性化合物除了通常所说的含手性中心的化合 物外,还包括含有手性轴、手性平面、螺旋手性等因素的化合物。在本指导原则中 所指的手性药物主要是指含手性中心的化合物,其它类型的手性药物研发也可参考 本指导原则的基本要求。 手性药物是指分子中含有手性中心(也叫不对称中心)的药物,它包括单一的立 体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同 构型的立体异构体的药理作用也可能不同,大致可分为以下几种情况【1】 : (1)药物的药理作用完全或主要由其中的一个对映体产生。如S-萘普生的镇 痛作用比其R 异构体强35倍。 (2)两个对映体具有完全相反的药理作用。如新型苯哌啶类镇痛药-哌西那朵 的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。 (3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用即由其右旋 体产生。 (4)两个对映体的药理作用不同,但合并用药有利。如降压药-萘必洛尔的右 旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗 高血压药物茚达立酮【2】 的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进 一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 (5)两个对映体具有完全相同的药理作用【3】 。如普罗帕酮的两个对映体即具有 相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差 异,美国FDA在其关于开发立体异构体新药的政策【4】 中要求在对手性药物进行药理毒 理研究时,应分别获得该药物的立体异构体,进行必要的比较研究,以确定拟进一 步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究 提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学相关技术指 导原则的基础上,充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药 学研究提供一般性的指导。本指导原则中所涉及的手性药物主要针对单一的立体异 构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本 指导原则时,还应具体问题具体分析,在遵循药物研发的自身规律以及手性药物一 般要求的基础上,根据所研制药物的特点,进行针对性的研究。如采用本指导原则 以外的研究手段与方法,则该方法或手段的科学性和可行性必须经过必要的验证。

未来合成药物的发展趋势

未来合成药物的发展趋势 1.有机合成化合物仍然是以后化学合成药物的最重要来源。对现有化合物进行随机筛选仍然是先导化合物的重要来源。 2.从药用植物中发现新的先导化合物并进行结构改造或修饰从药用植物中发现新的先导化合物并进行结构改造和修饰、发明新药仍是今后合成新药研究的重要部分。 3. 模仿性(“me-too”)新药研究是化学合成药物永恒的主题之一。 模仿,但不是一味的仿制,即在不侵犯别人专利权的情况下,对新出现的很成功的突破性新药进行较大的分子结构改造或修饰,寻找作用机制相同或相似,并在治疗应用上具有某些优点的NCE,这种新药研究工作的投入较少,但仍可产生较好的经济效益。 4.手性药物的开发将得到更大的重视。 手性是自然界的本质属性之一。生命活动中一些重要的生物大分子,如蛋白质、多糖、核酸和酶等,几乎全是手性的。消旋药物中的一个对映体往往能很好地与手性大分子契合而发挥预期的药理作用,另一个对映体则往往不能很好地契合而成为无效对映体,或与其它大分子契合而产生不同的药理作用和具有毒副作用。 5.半合成及全合成抗生素将有较大的发展。 通过对土壤进行随机筛选,发现新结构类型抗生素已经很困难。半合成及全合成抗生素在以后将会得到特别的发展。 6.组合化学技术将在新药的研究中发挥应有的作用。 组合化学是有机化学和药物化学领域中一项革命性的新技术,它的出现大大加快了新药先导化合物发现和优化的进程。创新药物研究的核心是发现药物先导化合物,这涉及两个关键的创新点:药物作用靶点的创新和化合物的创新。 7. “点击化学”将成为未来新药研发最有效的技术之一。 2001年美国诺贝尔化学奖获得者、史格堡研究院化学生物研究所的研究员贝瑞·夏普利斯(K. Barry Sharpless)发展出一种名为“click chemistry”的新技术,其所具有的高效和高控制性,在化学合成领域掀起了一场风暴,成为目前国际医药领域最吸引人的发展方向,被业界认为是未来加快新药研发最有效的技术之一。 8.计算机辅助药物设计的发展前景良好。从上世纪70年代开始,人类的新药开发就得益于计算机的应用。 9.研究开发先进的合成新技术。 研究开发先进的合成技术,如:手性合成、微波化学合成、声化学合成、电化学合成、等离子体化学合成、固相化反应、室温和低热温度下固相化学合成、超临界状态下化学合成、纳米技术、光化学合成、冲击波化学合成等先进的合成技术。选择新型催化技术,如:配位催化、相转移催化、超强酸超强碱催化、杂多酸催化、胶束催化、氟离子催化、钛化合物催化、纳米粒子催化、光催化、晶格氧选择氧化及非晶态合金加氢催化等。发展生物化工合成法:包括发酵工程、酶工程、基因工程及细胞工程等。研究和利用新型高效分离技术包括: (a)膜分离技术:液膜分离、渗透气化膜分离、反渗透膜分离、电渗、超滤、微滤、纳滤、聚滤气体膜分离等; (b) 超临界流体技术:SCF萃取、SCF重结晶、SCF干燥、SCF色谱;

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

相关主题
文本预览
相关文档 最新文档