当前位置:文档之家› 必修4 期末复习 三角函数的图像和性质(题型)

必修4 期末复习 三角函数的图像和性质(题型)

必修4 期末复习 三角函数的图像和性质(题型)
必修4 期末复习 三角函数的图像和性质(题型)

三角函数的图像与性质

一、正余弦函数的性质

(周期、单调性、奇偶性、对称轴、对称中心、值域)

例(大题)已知函数.

(1)求函数的最小正周期;

(2)求函数的单调递增区间;

(3)当时,求函数的值域。

例(选择)同时具有性质“①最小正周期是;②图象关于直线对称;③在上是减函数”的一个函数可以是()

A. B.

C. D.

二、正余弦函数的图像变换

例(大题1)已知函数.

(1)用五点法作该函数在长度为一个周期上的简图;

(2)说明由正弦曲线经过怎样的变换,可以得到该函数的图象.

例(大题2)已知函数.

(1)求函数的最小正周期;

(2)将函数的图象向下平移个单位,再将图象上各点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图象,求g(x)

例、要得到的图象,只需把函数的图象()

A.向左平移个单位

B.向左平移个单位

C.向右平移个单位

D.向右平移个单位

例、要得到函数的图像,只需将函数的图像上所有的点的()

A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度

B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度

C.横坐标伸长到原来的倍(纵坐标不变),再向左平行移动个单位长度

D.横坐标伸长到原来的倍(纵坐标不变),再向右平行移动个单位长度

三、求解析式

例、已知函数()的一段图象如图所

示.(1)求函数的解析式;

(2)求函数的单调增区间;

(3)若,求函数的值域

例、已知函数为常数)的一段图象如图所示.求函数的解析式;

例、函数的部分图像如图

所示,则的单调递减区间为()

A.

B.

C.

D.

例、已知函数的图象的两个相邻最高点之间的距离等于,若将函数的图象向左平移个单位长度得到函数的图象,试求函数的解析式.

例、已知是函数()图象的一条对称轴.求函数的解析式;

例、已知函数图象上一个最高点为

,这个最高点到相邻最低点的图象与轴交于点.

(1)求的解析式;

(2)是否存在正整数,使得将函数的图象向右平移个单位后得到一个偶

函数的图象?若存在,求的最小值;若不存在,请说明理由

三、正切函数

1、求函数的定义域,并指出它的周期、对称中心和单调性.

2、根据正切函数的图像,写出使下列不等式成立的的集合:

(1);(2)

4、已知函数的图象的一个对称中心为,若,则

的值为__________.

5、关于函数,最小正周期是__________,对称中心是__________,单调递增区间是__________.

6、满足下列哪些条件__________.

①在上单调递增;②奇函数;③以为最小正周期;

④定义域为.

7、函数的周期是()

A. B. C. D.

8、设,则( )

A. B. C. D.

9、函数是( )

A.奇函数

B.偶函数

C.非奇非偶函数

D.既是奇函数又是偶函数

三角函数图像与性质知识点总结和经典题型

三角函数图像与性质经典题型 题型1:三角函数的图象 例1.(2000全国,5)函数y =-xc os x 的部分图象是( ) 解析:因为函数y =-xc os x 是奇函数,它的图象关于原点对称,所 以排除A 、C ,当x ∈(0, 2 π )时,y =-xc os x <0。 题型2:三角函数图象的变换 例2.试述如何由y =31sin (2x +3 π )的图象得到y =sin x 的图象。 解析:y =31sin (2x +3π))(纵坐标不变倍 横坐标扩大为原来的3 πsin 312+=?????????→?x y x y sin 313 π =????????→?纵坐标不变个单位图象向右平移 x y sin 3=?????????→?横坐标不变 倍 纵坐标扩大到原来的 例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移 2 π 个单位,再沿y 轴向下平移1个单位,得到的曲 线方程是( )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0 解析:将原方程整理为:y = x cos 21+,因为要将原曲线向右、向下分别移动2π 个单位和1个单位,因此可得 y = ) 2 cos(21π -+x -1为所求方程.整理得(y +1)sin x +2y +1=0. 题型3:三角函数图象的应用 例4.(2003上海春,18)已知函数f (x )=A sin (ωx +?)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线 y =3与函数f (x )图象的所有交点的坐标。 解析:根据图象得A =2,T = 27π-(-2π)=4π,∴ω=21,∴y =2sin (2 x +?),又由图象可得相位移为-2π,∴-2 1? = - 2 π,∴?= 4π.即y =2sin (21x +4π)。根据条件3=2sin (4 21π+x ),∴421π+x =2k π+ 3π(k ∈Z )或 4 21π+x =2k π+32 π(k ∈Z ),∴x =4k π+ 6 π (k ∈Z )或x =4k π+ 65π(k ∈Z )。∴所有交点坐标为(4k π+3,6 π)或(4k π+3,65π )(k ∈Z )。点评:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力。 题型4:三角函数的定义域、值域 例5.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;(2)求函数y =lgsin (c os x )的定义域; 分析:求函数的定义域:(1)要使0≤c os x ≤1,(2)要使sin (c os x )>0,这里的c os x 以它的值充当角。 解析:(1)0≤c os x <1?2k π- 2π≤x ≤2k π+2π,且x ≠2k π(k ∈Z )∴所求函数的定义域为{x |x ∈[2k π-2 π ,2 k

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

高一数学必修一和必修四的三角函数公式

三角函数公式 (一)同角三角函数的基本关系式 (1)平方形式:sin 2α+cos 2α=1 (2)倒数形式:sinα/cosα=tanα (二)诱导公式 (1)sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α (其中k ∈Z) (2)sin (2k π-α)=-sin α cos (2k π-α)=cos α tan (2k π-α)=-tan α (其中k ∈Z) (3)sin (-α)=-sin α cos (-α)=cosα tan (-α)=-tan α (4)sin (π-α)=sin α cos (π-α)=-cosα tan (π-α)=-tan α (5)sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α (6)sin (π/2-α)=cos α cos (π/2-α)=sin α (7)sin (π/2+α)=cos α cos (π/2+α)=-sin α (8)sin (3π/2+α)=-cos α cos (3π/2+α)=sin α (9)sin (3π/2-α)=-cos α cos (3π/2-α)=-sin α (三) 两角和与差的三角函数公式 (1)sin (α+β)=sin αcosβ+cos αsinβ (2)sin (α-β)=sin αcosβ-cos αsinβ (3)cos (α+β)=cos αcosβ-sin αsinβ (4)cos (α-β)=cos αcosβ+sin αsinβ (5)tan (α+β)= tanα+tanβ1-tanαtanβ (6) tan (α-β)=tanα-tanβ1+tanαtanβ (四)二倍角的正弦、余弦和正切公式 (1)sin2α=2sin αcos α (2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α (3)tan2α= 2tan α/(1-tan 2α) (五)三角函数的降幂公式 (六)半角的正弦、余弦和正切公式 (七)(辅助角的三角函数的公式) (八)正、余弦定理公式及其变形 ● a sinA =b sinB =c sinC =2R (R 为△ABC 的外接圆的半径) ● a 2=b 2+c 2-2bccosA ● b 2= a 2+ c 2-2accosB ● c 2= b 2+ a 2-2abcosC (ⅰ) sinA=a 2R ,sinB=b 2R ,sinC=c 2R (ⅱ)a=2RsinA b=2RsinB c=2RsinC (ⅲ)a:b:c=sinA: sinB: sinC (ⅳ)asinB=bsinA bsinC=csinB asinC=csinA (九)常用的三角形面积公式 (ⅰ) S=12 absinC=12 acsinB=12 bcsinA (ⅱ)S =12 (a+b+c)r (r 为△ABC 的内切圆的半径) (ⅲ)S=abc 4R (R 为△ABC 的外接圆的半径) (十)利用余弦定理判断三角形的形状 (ⅰ)在△ABC 中,若a 2﹤b 2+c 2,则0°﹤A ﹤90°;反之,若0°﹤A ﹤90°,则a 2﹤b 2+c 2。 (ⅱ)在△ABC 中,若a 2=b 2+c 2,则A=90°;反之,若A=90°,则a 2=b 2+c 2。 (ⅲ)在△ABC 中,若a 2﹥b 2+c 2,则90°﹤A ﹤180°;反之,若90°﹤A ﹤180°,则a 2﹥b 2+c 2。

人教版数学必修四三角函数复习讲义

人教版数学必修四三角函数 复习讲义 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点), 它与原点的距离是0r =>,那么sin ,cos y x r r αα==,

()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线 OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变形形 式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα 例4.已知cos(π+α)=-2 1,2 3π<α<2π,则sin(2π-α)的值是( ).

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

必修四三角函数的图象与性质讲义

1.4—1.5 三角函数的图象与性质 一、正弦函数的图象与性质 1、利用描点法作函数图象 (列表、描点、连线) 自变量x 2π- 32π- π- 2 π- 0 2π π 32 π 2π 函数值sin x 0 1 0 1- 0 1 1- 0 注意:(1)由于sin(2k π+α)=sin α,因此作正弦函数图象时,我们经常采用 “五点法”:......(0..,.0)..,.(.2 π ,.1)..,.(.π,.0)..,.(.23π ,-..1)..,.(2..π,.0)..;. 再通过向左、右平移(每次2π个单位),即可得正弦函数图象;(2)正弦函数自变量一般采用弧度制。 二、余弦函数的图象 1、余弦函数的图象:y =cosx =sin(x + 2π)可将正弦函数y =sinx 向左平移2 π 个单位得到。 2、“五点作图法”: (0..,.1.).,. (.2 π ,.0.).,. (.π,-..1.).,. (.23π ,.0.).,. (2..π,.1.). – – π 2 π 2 π - 2π 5π π- 2π- 5π- O x y 1 1-

三、正、余弦函数的性质 f(x)=sinx h(x)=cosx f(x)=sinx h(x)=cosx 定义域 R R 值域 [-1,1] 当x =2k π+ 2π 时,f(x)max =1 当x =2k π-2π 时,f(x)min =-1 [-1,1] 当x =2k π时,f(x)max =1 当x =2k π+π时,f(x)min =-1 单调区间 [2 k π-2π,2 k π+2 π ] 单增 [2 k π+2 π ,2 k π+23π] 单减 [2 k π,2 k π+π] 单减 [2 k π+π,2 k π+2π] 单增 对称轴 x =k π+2 π x =k π 对称中心 (k π,0) (k π+ 2 π ,0) 周期性 sin(2 k π+α)=sin α cos(2 k π+α)=cos α 最小正周期为2π 奇偶性 sin(-α)=-sin α 奇函数 cos(-α)=cos α 例1:求下列函数的定义域。 (1)f(x)=x sin (2)f(x)=2 1cos -x

三角函数图像与性质知识点总结和经典题型

函数图像及性质知识点总结和经典题型 1.正弦函数、余弦函数、正切函数的图像 2.三角函数的单调区间: 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A 、ω的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; x y sin =的递增区间是)(Z k ∈,递减区间是)(Z k ∈; x y cos =的递增区间是[]πππk k 22, -)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, x y tan =的递增区间是)(Z k ∈, 3.对称轴及对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; tan y x =无对称轴,对称中心为k 2 (,0)π ; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心及零点相联系,对称轴及最值点联系。 4.函数B x A y ++=)sin(?ω),(其中00>>ωA

最大值是B A +,最小值是A B -,周期是,频率是,相位是?ω+x ,初 相是?;其图象的对称轴是直线)(2 Z k k x ∈+ =+π π?ω,凡是该图象及直线 B y =的交点都是该图象的对称中心。 y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点 2 ; ②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点 2 ; ③ω的确定:结合图象,先求出周期,然后由T =2π ω (ω>0)来确定ω; ④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定 φ即可,例如由函数y =A sin(ωx +φ)+K 最开始及x 轴的交点(最靠近原点)的横坐标为-φ ω (即 令ωx +φ=0,x =-φ ω )确定φ. 5.三角函数的伸缩变化 先平移后伸缩 sin y x =的图象???0)或向右(0) 平移个单位长度 得sin()y x ?=+的图象() ωωω ?????????→横坐标伸长(0<<1)或缩短(>1) 1 到原来的纵坐标不变 得sin()y x ω?=+的图象()A A A >?????????→纵坐标伸长(1)或缩短(0<<1) 为原来的倍横坐标不变 得sin()y A x ω?=+的图象(0)(0) k k k ><?????????→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象 (0)(0)???ω >

高中数学必修四三角函数重要公式

高中数学必修四三角函数重要公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

数学必修四三角函数公式总结与归纳

数学必修四三角函数公式盘点与归纳 1、诱导公式: sin(2kπ+α)=sinα, cos(2kπ+α)=cosα sin(-α)=-sinα, cos(-α)=cosα sin(2π-α)=-sinα, cos(2π-α)=cosα sin(π-α)=sinα, cos(π-α)=-cosα sin(π+α)=-sinα, cos(π+α)=-cosα sin(+α)=cosα, cos(+α)=-sinα sin(-α)=cosα, cos(-α)=sinα 2、同角三角函数基本关系: sin2α+cos2α=1, =tanα, tanα×cotα=1, 1+tan2α=, 1+cot2α= cosα=, sinα= 3、两角和与差的三角函数: cos(α+β)=cosαcosβ-sinαsinβ, cos(α-β)=cosαcosβ+sinαsinβ, sin(α+β)=sinαcosβ+cosαsinβ,

sin(α-β)=sinαcosβ-cosαsinβ tan(α+β)=, tan(α-β)=, 4、二倍角的三角函数: sin2α=2sinαcosα, cos2α=cos2α-sin2α =1-2sin2α =2cos2α-1, tan2α=, sin=, cos=, tan= = = 5、万能公式: sin2α=, cos2α= 6、合一变式: asinα+bcosα =sin(α+γ)(tanγ=)7、其他公式: sinαcosβ=[sin(α+β)+sin(α-β)], cosαsinβ=[sin(α+β)-sin(α-β)],

cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=[cos(α+β)-cos(α-β)],sinα+sinβ=2sin cos, sinα-sinβ=2cos sin, cosα+cosβ=2cos cos, cosα-cosβ=2sin cos

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),

它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变 形形式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结 知识点讲解 1.“五点法”作图原理 在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是 )0,2(),1,2 3(),0,(),1,2(),0,0(ππ ππ-. 在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是 )1,2(),0,2 3(),1,(),0,2(),1,0(ππ ππ-. 2.

3.)sin(?+=wx A y 与)0,0)(cos(>>+=w A wx A y ?的图像与性质 (1)最小正周期:w T π2= . (2)定义域与值域:)sin(?+=wx A y ,)?+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ???-∈+-=+∈+=+; )(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππ ?ππ? ②对于)?+=wx A y cos(, ? ? ?-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值 当ππ?π? (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(?+=wx A y ,

? ????? ? +==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2 000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为 时,,即当的对称轴为时,,即当??π???ππ? ②对于)?+=wx A y cos(, ??? ?? ? ?+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1 )cos()(0000 00x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当??ππ???π? 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置. (5)单调性. 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ??? ?∈++∈+?∈++-∈+. )](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππ?ππππ? ②对于)?+=wx A y cos(, ? ? ??∈+∈+?∈+-∈+.)](2,2[)](2,2[减区间增区间; Z k k k wx Z k k k wx πππ?πππ? (6)平移与伸缩 由函数x y sin =的图像变换为函数3)3 2sin(2++=π x y 的图像的步骤; 方法一:)3 22 (π π + →+ →x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想 欺负”(相一期一幅)三角函数图像,使之变形. ?????→?=个单位 向左平移的图像3 sin π x y 的图像)3 sin(π + =x y 12 ????????→所有点的横坐标变为原来的 纵坐标不变 的图像)3 2sin(π + =x y 2?????????→所有点的纵坐标变为原来的倍 横坐标不变 的图像)3 2sin(2π +=x y ?????→?个单位 向上平移33)3 2sin(2++=πx y 方法二:)3 22(π π+→+→x x x .先周期变换,后相位变换,再振幅变换. 的图像x y sin =1 2 ????????→所有点的横坐标变为原来的 纵坐标不变 ?????→?=个单位 向左平移的图像6 2sin π x y

相关主题
相关文档 最新文档