当前位置:文档之家› River waterquality modelling III Future of the art

River waterquality modelling III Future of the art

River waterquality modelling III Future of the art
River waterquality modelling III Future of the art

Presented at the IAWQ Biennial International Conference, Vancouver, British Columbia, Canada, 21-26 June 1998 RIVER WATER QUALITY MODELLING:

III. FUTURE OF THE ART

L. Somlyódy1, M. Henze2, L. Koncsos1, W. Rauch2, P. Reichert3, P. Shanahan4,

and P. Vanrolleghem5

1Budapest University of Technology, Müegyetem rkp.3, 1111 Budapest Hungary

2Department of Environ. Sci. and Eng., Technical University of Denmark, Bld. 115, 2800 Lyngby, Denmark

3EAWAG, 8600 Dübendorf Switzerland

4HydroAnalysis, Inc., 481 Great Road, Acton MA 01720 USA

5BIOMATH Department, University Gent, Coupure links 653, 9000 Gent Belgium

ABSTRACT

This paper is the third of a three-part series summarizing the background to and objectives of the activity of

the IAWQ Task Group on River Water Quality Modelling (RWQM). On the basis of the two other papers and

a comparison between the best known state of the art river model, QUAL2, and the IAWQ Activated Sludge

Model (ASM) No. 1, the Task Group proposes to develop improved conversion models for inclusion in a river

water quality model. The model should describe the cycling of oxygen, nitrogen, and phosphorus in both

water and sediment, and should be compatible with the ASM to support the development of integrated

emission reduction strategies. The model should be particularly well suited to handle problems characterized

by significant temporal and spatial influences (e.g. CSOs and NPSs). It should serve for research, education,

improved communication, knowledge transfer, regulatory applications such as catchment planning, and

improved data collection. Anticipated results of the Task Group effort include (i) standardized conversion

sub-models; (ii) a decision support tool to guide model construction and usage; and (iii) case study

applications. The model development, which is not intended to result in a software product, is intended to be

an open-ended and flexible process to encourage the participation of interested professionals.

KEY WORDS

Activated sludge model, eutrophication, oxygen household, rivers, software, water quality models

INTRODUCTION

The IAWQ Task Group on River Water Quality Modelling was formed to create a scientific and technical base from which to formulate standardized, consistent river water quality models and guidelines for their implementation. This effort is intended to lead to the development of river water quality models that are compatible with the existing IAWQ Activated Sludge Models (ASM-1 and ASM-2, Henze et al., 1987, 1995) and can be straightforwardly linked to them (or vice versa). Specifically, water quality constituents and model state variables characterizing O, N and P cycling are to be selected.

This paper is Part III of a three-part series that analyzes water quality modelling with the above aim in mind. As a starting point, Part I (Rauch et al., submitted) examines the existing state of the art in river water quality modelling. Part II by Shanahan et al. (submitted) looks at the limitations and problems of the current state of the art. The present paper builds on the first two papers to show possible directions for the future of the art with particular attention to the specifications of standardized river water quality model state variables and process submodels that achieve the aims set out for the Task Group.

OBJECTIVES AND STYLE OF MODEL DEVELOPMENT

Water quality changes in rivers are due to physical transport processes and biological, chemical, biochemical, and physical conversion processes (see Rauch et al ., submitted). Physical transport includes advection and turbulent diffusion, which are separately described through hydraulic models of one sort or another. The above processes in the water phase are governed by a set of extended transport equations that can be represented conceptually as:

(1)

To this conceptual equation, a similar mass conservation equation for the sediment should be added. Interface terms (sediment-water and water-air) appear as boundary conditions that are completed by specifying in- and outflows and boundary fluxes. Depending on integration, boundary conditions may enter the equation as sink or source terms (as a part of the aggregated conversion processes term).

Here, our goal is to deal solely with the development of conversion sub-models for traditional pollutants (such as included in QUAL2E). This choice of focus is similar to that which led to the activated sludge model. Our choice recognizes that there are well-developed models and tools to address the physical transport components of this problem. Particularly, 1D, 2D, and, increasingly, 3D hydrodynamic models are available to determine the velocity field and are becoming more practical with advancements in computer technology. We therefore see the future in water quality modelling to rest on the development of refinements in the description of conversion processes in Eq.

(1).

Following the conclusions of Rauch et al . (submitted) and Shanahan et al . (submitted), our detailed objectives are: (i) to develop a sequence of standardized and improved conversion submodels from simple to complex;

(ii) to develop a decision support tool to guide the user in field data collection, the selection of hydraulic and

physical transport model components, selection of process submodels, and testing of the resulting water quality model; and,

(iii) to apply the submodels to real data from selected case studies.

The first of these objectives entails the following several subtasks:

- to re-evaluate models developed during the past three decades and to eliminate such inherent inconsistencies as the lack of closed mass balances (which mostly arise from an inadequate description of sediment related processes and the use of BOD for characterization of organic matter);

- to guarantee compatibility with the IAWQ Activated Sludge Models to enable integrated analysis of wastewater treatment and receiving water quality impacts; and

- to include and improve process descriptions such as nitrification, denitrification, or those related to sediment, benthic fluxes, attached bacteria and algae, and macrophytes.

We expect these changes in model formulation to improve the predictive power of models to estimate multiple and non-linear effects from emission reduction measures and other artificial alterations (see Shanahan et al ., submitted).

Water quality models are used for many different problems and purposes. As discussed by Shanahan et al . (submitted) existing models address certain of these problems better than others. Applications that we intend to address through the Task Group effort include:

(i)

dynamic problems of combined stormwater overflows and nonpoint source pollution; (ii)

impact of improved wastewater treatment plant operation and control; (iii)

extreme and surprising pollution events; (iv)

improved assessment of artificially influenced rivers (for example, by dams or re-naturalization); (v)

knowledge transfer from other fields such as wastewater biofilm research; (vi)

data collection;

=++

(vii) understanding, research, education and improved communication (e.g. between wastewater engineers and receiving water quality experts); and,

(viii) regulatory applications including catchment planni ng;

In order to accomplish our intended goal of model refinement, improved data collection is first necessary since the number of state variables, processes, and parameters will be significantly greater than for existing tools. Improved models can in turn lead to advanced design of monitoring programs. Examples are better design of longitudinal water quality profile measurements (e.g. sampling in both space and time), well-defined and controllable laboratory and in situ studies that isolate certain processes for identification purposes, detection of process rates in addition to concentrations, and identification of sensitive variables and processes to be observed in the future.

As stressed by Rauch et al. (submitted) and Shanahan et al. (submitted), calibration, validation, and model structure identification have become increasingly important and difficult. Thus, although our primary aim is the development of standardized conversion sub-models, this cannot be done without developing a framework for the entire modelling process. The framework should incorporate methods that can and should be employed for the purposes of identification, calibration, validation, and the analysis of uncertainties of differing origins. Moreover, as shown by Eq.

(1), the framework also should include hydraulic and transport modules to be able to perform calculations for “real” systems. There is no unique methodology in this respect: many different but basically equivalent methods are known and frequently it is desired to switch from one approximation to the other (e.g. when moving from the so-called near field to the far field, or from the 2D plume reach to the “completely” mixed 1D river reach).

We believe that achieving all of the objectives outlined for the Task Group will require about a decade-long process of model development that includes such difficult tasks as improving the description of sediment processes. Our primary goal is only to launch this process, to define the framework, and to provide a first model version that, we hope, can then be extended and further developed by a broad range of professionals dealing with water quality issues.

QUAL2 AND ASM-1: A COMPARISON

Model Development Process

The development histories of QUAL2E (Brown and Barnwell, 1987), the most current version of QUAL2 which is the best known river water quality model, and ASM-1 (Henze et al. 1987a,b), the activated sludge model, are rather different. The roots of QUAL2 go back to the Streeter-Phelps model which was enhanced over the years while r e taining the original variables and processes. State variables in QUAL2 can be sorted into three groups reflecting three distinct stages of model development (see Masliev et al., 1995 for details):

Group 1 (“phenomenological” level): traditional Streeter-Phelps state variables;

Group 2 (“biochemical” level): extended Streeter-Phelps and QUAL1 variables; and,

Group 3 (“ecological” level): algae model variables as in QUAL2.

The three groups represent different concepts. Streeter-Phelps is a purely phenomenological model, where BOD is not the concentration of a chemical substance but the result of a bioassay test. The extended Streeter-Phelps and other models that similarly include nitrogen species share a first-order kinetic structure, in which a group of f irst-order reactions represent in a cumulative way the complex chain of processes related to electron transfer under aerobic conditions. Finally, the algae model is of the ecosystem dynamics type that accounts for non-linear growth and decay of the living organisms (phytoplankton biomass).

The combination of models of different levels of detail in QUAL2 simply evolved over time: the older “working and reliable” core models were left operational while the model acquired additional state variables and new process descriptions. Therefore, unlike ASM, these models contain inconsistencies due to the lack of a uniform underlying concept. This in turn leads to problems with substance mass balances. For example, carbonaceous BOD, being a measure of total bioavailable organic carbon, does not include the organic material in algae biomass. Hydrolysis of

particulate organic matter is essentially one process, but the rates of hydrolysis of organic nitrogen and phosphorus are different in QUAL2.

Also unlike ASM-1 (and ASM-2), QUAL2 and similar models lack a clear operational definition of water quality parameters within the model. For example, it is known that there are many forms of organic nitrogen present in natural waters. QUAL2 combines it all under “organic nitrogen” and does not specify further whether it is total organic nitrogen, Kjeldahl nitrogen, particulate, dissolved, bioavailable, or other.

In contrast, the ASM-1 description (Henze et al ., 1987a,b) contains a precise specification of the variables and incl udes methods for their determination. The distinction is that although several models of the activated sludge process predated ASM-1, the ASM-1 developers started by discussing and adopting strict operational definitions for all the state variables and substances included in the model (Grau et al ., 1987). Moreover, ASM-1 was developed in “one piece” by a coordinated effort of professionals sharing this unified conceptual basis. The variables and processes are distinctly specified and material balances are closed by design.

Comparison of State Variables

Schematic representations of the O and N cycles of the ASM-1 and QUAL2E models, their state variables, and conversion processes are given in Figure 1 (see Masliev et al ., 1995 and Maryns and Bauwens, 1997 for details).

Common principal state variables of QUAL2E and ASM-1 are dissolved oxygen - S O2, particulate organic N (bioavailable) - X ND , nitrate N - S NO3, and ammonia N - S NH . Variables specific to ASM-1 are soluble bioavailable organic matter - S S , particulate bioavailable organic matter - X S , autotrophic and heterotrophic biomass - X BA and X BH , respectively, and dissolved organic N (bioavailable) - S ND (inert suspended material X I , an important sink for organic material, and alkalinity are not included in Fig. 1). Variables in only QUAL2 are carbonaceous BOD - CBOD, algae biomass - X BP , nitrite N - S NO2, dissolved reactive P - S PO, and bioavailable particulate P - X PD (sediment oxygen demand, which is a parameter and not a state variable in QUAL2 is not shown in the figure).

From Fig. 1 it is apparent that the state variables in ASM-1 are more numerous and differ from those in QUAL2E. For example, ASM divides both carbonaceous and nitrogenous substrate into readily available and less readily available (which are approximately equivalent to the dissolved and particulate fractions). Substrate utilization during bacterial growth depends on the amount of bacteria. In contrast, in QUAL2E the C substrate is characterized in a lumped way as a BOD test result. The N substrate is expressed as particulate organic N (not bioavailable) and ammonia (readily bioavailable for electron transfer). The process rate in QUAL2E does not consider the amount of bacteria, which is not a state variable.

In ASM-1, both DO and n itrate are considered as electron acceptors under aerobic and anaerobic conditions respectively. QUAL2E includes only DO and only aerobic conditions (Fig. 1). There are two oxidation agents in ASM-1, autotrophic and heterotrophic bacteria, but none in QUAL2E. Electron acceptors and substrate availability are the limiting factors in ASM-1, while substrate and nutrient limitations are considered in QUAL2E. ASM-1 does not consider nutrients as limiting factors for biomass growth. The reason is the high concen tration of all biogenic elements and decomposition products in waste water, which prevents such limitations. Moreover, ASM-1 does not consider phosphorus at all although it was incorporated into the technology-oriented second version, ASM-2, which includes enhanced biological P removal processes that are not relevant for river situations.

CO 2

ASM-1

QUAL2E

a. AEROBIC UTILIZATION OF CARBONACEOUS SUBSTRATE

b. AEROBIC UTILIZATION OF NITROGENOUS SUBSTRATE

c. ANAEROBIC UTILIZATION OF CARBONACEOUS SUBSTRATE

Figure 1. Major processes represented in ASM-1 and QUAL2E.

Comparison of Conversion Processes

Conversion processes in activated sludge reactors are essentially non-stationary and non-uniform. Major concentration changes occur within the span of tens of meters (tank dimensions) and hours (retention time); the processes are intensified by artificially maintained high concentrations of the catalyst (bacteria). Stabilization of organic material under such conditions c onsists of two distinct phases: the primary particulate substrate is removed via hydrolysis and production of a dissolved substrate, and then oxygen is depleted due to biomass growth on the dissolved (secondary) substrate. In the aeration tanks, these processes may or may not be separated both in time and space. In natural waterbodies, the spatial and temporal scales are much larger. The processes usually occur simultaneously and in the same place. Thus lumped models with fewer state variables may be used successfully (see later).

Since ASM-1 contains more processes, it also contains more parameters. In principle, the larger number of parameters in ASM entails more difficulties during model calibration. The authors of ASM-1 reason, however, that since the composition of municipal wastewater is relatively stable (excepting industrial contributions and processes in the sewer system that cause alterations), most parameters remain constant. Only some parameters critically influence model behavior and need case-dependent calibration (Henze et al., 1987a,b). For many applications, the wastewater characteristics have significant impact on treatment processes. Thus the complexity of ASM-1 is to some degree intentional, in order to accommodate a sufficiently detailed description of the incoming wastewater. Also, methods are being developed to handle the problem of identification and wastewater characterization.

In contrast, natural systems such as rivers exhibit large variability and thus parameters are likely to vary over a broader domain than that of ASM-1. Parameters in natural systems also can strongly depend on external climatic and hydrologic conditions and thus one should not anticipate that they can be transferred from the ASMs. For the same reason, the definition of default parameter values as done for the activated sludge models may not be advisable for river models. All in all, both types of models ought to be identified and calibrated to data prior to application particularly in light of the improved calib ration and identification techniques that have become available. Conclusions from Model Comparison

Keeping in mind our objective and the comparison above, it seems logical to take a model similar to ASM-1 as the basis of our approach for river water qual ity modelling. This would allow handling artificial treatment and self purification on common ground. As a first trial, Masliev et al. (1995) derived an asymptotic, reduced version of ASM-1 equivalent to an extended Streeter-Phelps model and compared it to the full ASM-1 for a hypothetical riverine situation. The analysis led to the following conclusions that are important to the present development:

(i) Test simulations show that a model similar to ASM-1 can simulate water quality in rivers. Due to

differences in spatial and temporal scale, concentration ranges, and environmental conditions in comparison to treatment plant situations, some changes must be introduced into the model (nutrient limitations must be included, rate coefficients controlling hydrolysis must be modified, etc.).

(ii) In riverine situations, the system’s dynamics are controlled by the concentrations of particulate organic material and electron acceptors (dissolved oxygen or nitrate). The other variables often reach “quasi-equilibrium” l e vels relatively quickly, and thus ASM-1 can be reduced to a phenomenological model similar to Streeter-Phelps.

(iii) In addition to eliminating existing inconsistencies, improved models will be primarily needed when there are abrupt changes in environmental conditions, loads, hydraulics, and other factors such that “fast” variables are not able to attain their quasi-equilibrium levels, i.e. when the system is characterized by spatial non-uniformity and/or rapid temporal changes.

CANDIDATE STATE VARIABLES AND ANTICIPATED RESULTS

Process Sub-models and State Variables

As discussed above, the envisaged River Water Quality Model (RWQM) should describe the O, N, and P household in rivers. The need to ensure consistency and closed mass balances, as well as integration with the ASM-1 or ASM-2 models, suggests a change to COD as the basis for expressing state variables as in the activated sludge models. This also applies for algae biomass, which will necessitate the introduction of N/COD and P/COD stoichiometric ratios. The variables of the ASMs should obviously be included in the RWQM to which should be added temperature, elements of P cycling (as exist in QUAL2E), sediment/benthos state variables, as well as algae and macrophytes. Certainly, the selection and combination of all these state variables requires special care: their number will be large--about fifteen for the water column only.

DO and NO3 play important roles in switching on and off processes such as anaerobic decomposition, nitrification, and denitrification. A similar role is played by light conditions which necessitates modelling suspended solids. Suspended solids must be the sum of all the particulate matters, including bacteria and algae biomass, particulate bioavailable organic matter, and inert suspended matter. The latter includes inorganic suspended solids due to erosion and resuspension. This fraction is inert and not a part of the material cycles, but it can significantly influence light conditions. Also, there is a need to consider pH, at least in a simplified way, in order to properly describe unionized ammonia, nitrification, toxicity, and sediment processes.

The detailed characterization of wastewater discharges and other inputs to the river should be in harmony with the planned s tate variables since these inputs significantly influence effects on receiving water quality. In fact, monitoring in terms of the model state variables is one of the key elements to improve the weak predictive power of existing models.

For model calibration and validation routinely available observations should also be used. The principal determination of many variables (such as algae biomass) will remained unchanged. Thus, conversion between observed variables and state variables will be unavoidable (as it is with ASM-1). For this purpose, the measurement matrix M will be introduced to guarantee mass conservation in the model. M is defined by the equation c m = M c, where c m is the vector of observed variables (its size is usually smaller the that of c).

Decision Support Tool

With a model as complex as ASM-1 not only data scarcity, but also measurability of certain variables and parameters can be a problem (for instance heterotrophic biomass is generally not known). For this reason, the proposed development will lead to a set of conversion models from simple to complex rather than a single version, and there will be a need for the user to select those sub-models appropriate to a particular application. Guidelines will be provided on how to proceed with the selection of sub-models for particular applications. Model structure identification and calibration methods will be used and recommended.

The guidelines and modelling framework will incorporate several additional elements that can be visualized as a deci s ion tree (or basis of an expert system). This is intended to give advice on how to decide on the type of the full water quality model and its usage. Major elements and criteria will include mixing lengths; temporal and spatial scales; forcing functions; dynamics of flow and emissions; physical and numerical dispersion; representation of the physical system; hydraulic and transport equations to be employed; effluent composition; conversion sub-model complexity; design of data collection; selection of major parameters, constants. and associated empirical formulas; methods of calibration, validation, model selection, and uncertainty; and manner of application for management purposes (steady state for a critical low flow condition, statistical approach similar to that of SIMCAT [NRA, 1990], or full dynamic procedure).

Case Study Applications

Case studies will be an important test of the RWQM concept and a key component of the development process. Mostly past studies will be used, but participation will be solicited from researchers working in the field. Previously planned case studies may be augmented with supplementary measurements of new variables.

SUMMARY

River water quality models were developed in incremental stages over the course of decades without a consistent and clear conceptual basis. They are characterized by a lack of clear definitions, inconsistencies, and the inability to link them to wastewater treatment models, which is needed to prepare integrated management strategies. This paper is the last element of a “trilogy” and presents—on the basis of the two preceding articles and the comparison of the ASM-1 and QUAL2 models—detailed objectives and anticipated products for the IAWQ Task Group on River Water Quality Modelling (RWQM). Planned products include the development of improved standardized (alternative) conversion sub-models for O, N, and P compatible with the ASMs; a decision tree to guide the user on how to proceed with modelling in a research or management framework; and case study applications. Above all, it is intended that the development process open-ended and flexible to encourage the participation of interested professionals.

REFERENCES

Brown L.C. and Barnwell T.O. (1987). The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual, Report EPA/600/3-87/007, U.S. EPA, Athens, GA, USA.

Grau P., Sutton P. M., Henze M., Elmaleh S., Grady C. P., Gujer W. and Koller J. (1987). Notation for use in the description of wastewater treatment processes. Water Res. 21(2), 135-141.

Henze M., Grady C.P., Gujer W., Marais G.W.R. and Matsuo T. (1987a). A general model for single-sludge wastewater treatment systems. Water Res. 21(5), 505-517.

Henze M., Grady C.P.L., Gujer W., Marais G.v.R. and Matsuo T. (1987). Activated sludge model No. 1. IAWQ, London, ISSN: 1010-707X.

Henze M., Gujer W., Mino T., Matsuo T., Wenzel M.C. and Marais G.v.R. (1995). Activated sludge model No. 2. IAWQ, London, ISSN: 1025-0913, ISBN: 1 900222 00 0.

Koncsos L., Schumann A. and Schultz G. A. (1994). Gew?ssergüte-Simulationsmodell für die Obere Ruhr (REWARD). Lehrstuhl für Hydrologie, Wasserwirtchaft und Umwelttechnik, Ruhr-Universit?t Bochum, im Auftrage des Staatlichen Amtes für Wasser- und Abfallwirtschaft Hagen. Bochum.

Masliev I., Somlyódy L. and Koncsos L. (1995). On Reconciliation of Traditional Water Quality Models and Activated Sludge Models, Working Paper WP 95-18, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Maryns F. and Bauwens W. (1997). The Applicati on of the Activated Sludge Model No.1 to a River Environment. In: Proc. of the 4t h International Symposium on Systems Analysis and Computing in Water Quality Management, WATERMATEX 97, Quebec, Canada, pp. 297-304.

NRA (1990). SIMCAT consent setting model - User Guide, The National Rivers Authority’s R&D Programme, Project No. 022, Output ref. P-61, NRA, Bristol.

Rauch W., Henze M., Koncsos L., Reichert P., Shanahan P., Somlyódy L. and Vanrolleghem P. (submitted). River Water Quality Modelling: I. State of the Art.

Shanahan P., Henze M., Koncsos L., Rauch W., Reichert P., Somlyódy L. and Vanrolleghem P. (submitted). River Water Quality Modelling: II. Problems of the Art.

scifinder使用介绍

6.6.1 内容简介 SciFinder Scholar是美国化学学会所属的化学文摘服务社CAS(Chemical Abstract Service)出版的化学资料电子数据库学术版。它是全世界最大、最全面的化学和科学信息数据库。 《化学文摘》(CA)是涉及学科领域最广、收集文献类型最全、提供检索途径最多、部卷也最为庞大的一部著名的世界性检索工具。CA报道了世界上150多个国家、56种文字出版的20000多种科技期刊、科技报告、会议论文、学位论文、资料汇编、技术报告、新书及视听资料,摘录了世界范围约98%的化学化工文献,所报道的内容几乎涉及化学家感兴趣的所有领域。 CA网络版SciFinder Scholar,整合了Medline医学数据库、欧洲和美国等30几家专利机构的全文专利资料、以及化学文摘1907年至今的所有内容。涵盖的学科包括应用化学、化学工程、普通化学、物理、生物学、生命科学、医学、聚合体学、材料学、地质学、食品科学和农学等诸多领域。 SciFinder Scholar 收集由CAS 出版的数据库的内容以及MEDLINE?数据库,所有的记录都为英文(但如果MEDLINE 没有英文标题的则以出版的文字显示)。 6.6.2 通过 SciFinder Scholar 可以得到的信息:

6.6.3 SciFinder? Scholar? 使用的简单介绍 主要分为Explore 和Browse。如图6.6.1 一、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下: 1、Chemical Substance or Reaction – Retrieve the corresponding literature 2、By chemical structure 3、By substance identifier 4、By molecular formula

SciFinder使用说明

SciFinder使用说明 SciFinder简介 SciFinder?由美国化学会(American Chemical Society, ACS)旗下的美国化学文摘社(Chemical Abstracts Service, CAS)出品,是一个研发应用平台,提供全球最大、最权威的化学及相关学科文献、物质和反应信息。SciFinder涵盖了化学及相关领域如化学、生物、医药、工程、农学、物理等多学科、跨学科的科技信息。SciFinder收录的文献类型包括期刊、专利、会议论文、学位论文、图书、技术报告、评论和网络资源等。 通过SciFinder,可以: ?访问由CAS全球科学家构建的全球最大并每日更新的化学物质、反应、专利和期刊数据库,帮助您做出更加明智的决策。 ?获取一系列检索和筛选选项,便于检索、筛选、分析和规划,迅速获得您研究所需的最佳结果,从而节省宝贵的研究时间。 无需担心遗漏关键研究信息,SciFinder收录所有已公开披露、高质量且来自可靠信息源的信息。 通过SciFinder可以获得、检索以下数据库信息:CAplus SM(文献数据库)、CAS REGISTRY SM (物质信息数据库)、CASREACT? (化学反应数据库)、MARPAT?(马库什结构专利信息数据库)、CHEMLIST? (管控化学品信息数据库)、CHEMCATS?(化学品商业信息数据库)、MEDLINE?(美国国家医学图书馆数据库)。 专利工作流程解决方案PatentPak TM已在SciFinder上线,帮助用户在专利全文中快速定位难以查找的化学信息。 SciFinder 注册须知: 读者在使用SciFinder之前必须用学校的email邮箱地址注册,注册后系统将自动发送一个链接到您所填写的email邮箱中,激活此链接即可完成注册。参考“SciFinder注册说明”。

舌尖上的中国分集简介

舌尖上的中国分集简介 第一集自然的馈赠 本集导入作为一个美食家,食物的美妙味感固然值得玩味,但是食物是从哪里来的?毫无疑问,我们从大自然中获得所有的食物,在我们走进厨房,走向餐桌之前,先让我们回归自然,看看她给我们的最初的馈赠。本集将选取生活在中国境内截然不同的地理环境(如海洋,草原,山林,盆地,湖泊)中的具有代表性的个人、家庭和群落为故事主角,以及由于自然环境的巨大差异(如干旱,潮湿,酷热,严寒)所带来的截然不同的饮食习惯和生活方式为故事背景,展现大自然是以怎样不同的方式赋予中国人食物,我们又是如何与自然和谐相处,从而了解在世代相传的传统生活方式中,通过各种不同的途径获取食物的故事。 美食介绍 烤松茸油焖春笋雪菜冬笋豆腐汤 腊味飘香腌笃鲜排骨莲藕汤椒盐藕夹酸辣藕丁煎焖鱼头泡饼煎焗马鲛鱼酸菜鱼松鼠桂鱼侉炖鱼本集部分旁白中国拥有世界上最富戏剧性的自然景观,高原, 第一集: 自然的馈赠 山林,湖泊,海岸线。这种地理跨度有助于物种的形成和保存,任何一个国家都没有这样多潜在的食物原材料。为了得到这份自然的馈赠,人们采集,捡拾,挖掘,捕捞。穿越四季,本集将展现美味背后人和自然的故事。香格里拉,松树和栎树自然杂交林中,卓玛寻找着一种精灵般的食物——松茸。松茸保鲜期只有短短的两天,商人们以最快的速度对松茸进行精致的加工,这样一只松茸24小时之后就会出现在东京的市场中。松茸产地的凌晨3点,单珍卓玛和妈妈坐着爸爸开的摩托车出发。穿过村庄,母女俩要步行走进30公里之外的原始森林。雨让各种野生菌疯长,但每一个藏民都有识别松茸的慧眼。松茸出土后,

卓玛立刻用地上的松针把菌坑掩盖好,只有这样,菌丝才可以不被破坏,为了延续自然的馈赠,藏民们小心翼翼地遵守着山林的规矩。为期两个月的松茸季节,卓玛和妈妈挣到了5000元,这个收入是对她们辛苦付出的回报。 舌尖上的中国DVD 老包是浙江人,他的毛竹林里,长出过遂昌最大的一个冬笋。冬笋藏在土层的下面,从竹林的表面上看,什么也没有,老包只需要看一下竹梢的叶子颜色,就能知道笋的准确位置,这完全有赖于他丰富的经验。笋的保鲜从来都是个很大的麻烦,笋只是一个芽,是整个植物机体活动最旺盛的部分。聪明的老包保护冬笋的方法很简单,扒开松松的泥土,把笋重新埋起来,保湿,这样的埋藏方式就地利用自然,可以保鲜两周以上。在中国的四大菜系里,都能见到冬笋。厨师偏爱它,也是因为笋的材质单纯,极易吸收配搭食物的滋味。老包正用冬笋制作一道家常笋汤,腌笃鲜主角本来应该是春笋,但是老包却使用价格高出20倍的遂昌冬笋。因为在老包眼里,这些不过是自家毛竹林里的一个小菜而已。在云南大理北部山区,醒目的红色砂岩中间,散布着不少天然的盐井,这些盐成就了云南山里人特殊的美味。老黄和他的儿子在树江小溪边搭建一个炉灶,土灶每年冬天的工作就是熬盐。云龙县的冬季市场,老黄和儿子赶到集市上挑选制作火腿的猪肉,火腿的腌制在老屋的院子里开始。诺邓火腿的腌制过程很简单,老黄把多余的皮肉去除,加工成一个圆润的火腿,洒上白酒除菌,再把自制的诺盐均匀的抹上,不施锥针,只用揉、压,以免破坏纤维。即使用现代的标准来判断,诺邓井盐仍然是食盐中的极品,虽然在这个古老的产盐地,盐业生产已经停止,但我们仍然相信诺邓盐是自然赐给山里人的一个珍贵礼物。圣武和茂荣是兄弟俩,每年9月,他们都会来到湖北的嘉鱼县,来采挖一种自然的美味。这种植物生长在湖水下面的深深的淤泥之中,茂荣挖到的植物的根茎叫做莲藕,是一种湖泊中高产的蔬菜——藕。作为职业挖藕人,每年茂荣和圣武要只身出门7个月,采藕的季节,他们就从老家安徽赶到有藕的地方。较高的人工报酬使得圣武和茂荣愿意从事这个艰苦的工作。挖藕的人喜欢天气寒冷,这不是因为天冷好挖藕,而是天气冷买藕吃藕汤的人就多一些,藕的价格就会涨。整整一湖的莲藕还要采摘5个月的时间,在嘉鱼县的珍湖上,300个职业挖藕人,每天从日出延续到日落,在中国遍布淡水湖的大省,这样场面年年上演。今天当我们有权远离自然,享受美食的时候,最应该感谢的是这些通过劳动和智慧成就餐桌美味的人们。 第二集主食的故事 本集导入主食是餐桌上的主要食物,是人们所需能量的主要来源。从远古时代赖以充饥的自然谷物到如今人们餐桌上丰盛的、让人垂涎欲滴的美食,一个异彩纷呈、变化多端的主食世界呈现在你面前。本集着重描绘不同地域、不同民族、不同风貌的有关主食的故事,展现人们对主食的样貌、口感的追求,处理和加工主食的智慧,以及中国人对主食的深

舌尖上的中国解说词全文

《舌尖上的中国》解说词 第一集《自然的馈赠》 中国拥有世界上最富戏剧性的自然景观,高原,山林,湖泊,海岸线。这种地理跨度有助于物种的形成和保存,任何一个国家都没有这样多潜在的食物原材料。为了得到这份自然的馈赠,人们采集,捡拾,挖掘,捕捞。穿越四季,本集将展现美味背后人和自然的故事。 香格里拉,松树和栎树自然杂交林中,卓玛寻找着一种精灵般的食物——松茸。松茸保鲜期只有短短的两天,商人们以最快的速度对松茸的进行精致的加工,这样一只松茸24小时之后就会出现在东京的市场中。 松茸产地的凌晨3点,单珍卓玛和妈妈坐着爸爸开的摩托车出发。穿过村庄,母女俩要步行走进30公里之外的原始森林。雨让各种野生菌疯长,但每一个藏民都有识别松茸的慧眼。松茸出土后,卓玛立刻用地上的松针把菌坑掩盖好,只有这样,菌丝才可以不被破坏,为了延续自然的馈赠,藏民们小心翼翼地遵守着山林的规矩。 为期两个月的松茸季节,卓玛和妈妈挣到了5000元,这个收入是对她们辛苦付出的回报。 老包是浙江人,他的毛竹林里,长出过遂昌最大的一个冬笋。冬笋藏在土层的下面,从竹林的表面上看,什么也没有,老包只需要看一下竹梢的叶子颜色,就能知道笋的准确位置,这完全有赖于他丰富的经验。 笋的保鲜从来都是个很大的麻烦,笋只是一个芽,是整个植物机体活动最旺盛的部分。聪明的老包保护冬笋的方法很简单,扒开松松的泥土,把笋重新埋起来,保湿,这样的埋藏方式就地利用自然,可以保鲜两周以上。 在中国的四大菜系里,都能见到冬笋。厨师偏爱它,也是因为笋的材质单纯,极易吸收配搭食物的滋味。老包正用冬笋制作一道家常笋汤,腌笃鲜主角本来应该是春笋,但是老包却使用价格高出20倍的遂昌冬笋。因为在老包眼里,这些不过是自家毛竹林里的一个小菜而已。 在云南大理北部山区,醒目的红色砂岩中间,散布着不少天然的盐井,这些盐成就了云南山里人特殊的美味。老黄和他的儿子树江小溪边搭建一个炉灶,土灶每年冬天的工作就是熬盐。 云龙县的冬季市场,老黄和儿子赶到集市上挑选制作火腿的猪肉,火腿的腌制在老屋的院子里开始。诺邓火腿的腌制过程很简单,老黄把多余的皮肉去除,加工成一个圆润的火腿,洒上白酒除菌,再把自制的诺盐均匀的抹上,不施锥针,只用揉、压,以免破坏纤维。 即使用现代的标准来判断,诺邓井盐仍然是食盐中的极品,虽然在这个古老的产盐地,盐业生产已经停止,但我们仍然相信诺邓盐是自然赐给山里人的一个珍贵礼物。 圣武和茂荣是兄弟俩,每年9月,他们都会来到湖北的嘉鱼县,来采挖一种自然的美味。这种植物生长在湖水下面的深深的淤泥之中,茂荣挖到的植物的根茎叫做莲藕,是一种湖泊中高产的蔬菜——藕。

浙江大学scifinder使用教程

浙江大学scifinder使用教程 1、输入网址:https://www.doczj.com/doc/81470162.html,/ 如图1,点击继续浏览 图1 2、进入浙大的入口,输入用户名密码(卖家提供) 图2 3、登陆进去是图3这个页面。注意此时会自动安装插件,切记要一路放行。登陆成功的标志是屏幕右上角有个蓝框绿蓝S的LOGO! 如果未出现S,那么请根据图2的手动安装组件,下载安装组件!

图3 4、登陆页面不要覆盖,新标签页打开浙江大学图书馆 https://www.doczj.com/doc/81470162.html,/libweb/点数据库导航,找到scifinder页面,进入 图4

5、点击图5红框中的链接https://www.doczj.com/doc/81470162.html,/cgi-bin/casip,看下IP是不是浙大的IP,一般是61或者210开头,确定是,那就可以输入链接https://https://www.doczj.com/doc/81470162.html,/登陆了 图5 6、scifinder登陆页面输入用户名密码(卖家提供),您就可以使用scifinder啦 图6

常见问题以及解决方法 1.浏览器不支持JavaScript,提示“您的浏览器不支持JavaScript(或它被 禁止了)请确认您的浏览器能支持JavaScript”,请启用“工具- >Internet选项->安全->自定义级别->活动脚本”选项。 2.浏览器不支持Cookie,提示“你的浏览器禁止了Cookie,必须设置为允许 才可以继续使用”,请在“工具->Internet选项->隐私->高级”启用 Cookie支持 3.浏览不支持BHO,提示:"您的浏览器没有启用第三方扩展",关闭IE时无法 自动注销用户。请在 "工具->Internet选项->高级->启用第三方浏览器扩展”前打勾启用! 4.APP服务不可用,可能是控件不是最新的,请您关闭IE,重新登陆VPN 5.IP服务不可用,可能你安装的IP服务控件不是最新的。请点击“程序- >SINFOR SSL VPN->卸载CS应用支持”和“程序->SINFOR SSL VPN->卸载SSL VNIC”,手动卸载IP服务控件,然后再重新登陆VPN。 6.IP服务可能与某些杀毒软件冲突。请在杀毒软件中放行IP服务的客户端程 序,或者在使用时暂时禁用杀毒软件。

舌尖上的中国栏目策划

《舌尖上的中国》电视节目策划书 一、背景浅析 改革开放以来,国人物质生活更加富足,在吃方面也变得更加讲究。食客、美食家、吃货等的出现,则从另一方面体现国人口味的变化。衣食住行为人之根本,古人读万卷书、行万里路已是满足,今人在此之外加上品万种美食,才称得上是真正的享受生活。而中国幅员辽阔,有八大菜系,淮扬菜、粤菜、鲁菜、湘菜,每种菜系都有其特色美食,而且烹调方法各有不同,可以说,国人够有口福的了。在《舌尖上的中国》这部纪录片中,导演和摄制组带着观众探访祖国各地美食,了解各式各样与美食有关的人和事,总共七集、每集50分钟的容量,节奏紧凑、制作精良,尝遍美食的同时又能遍览祖国风物,纪录片煞是好。而随着中国经济的飞速发展,人们的物质生活水平也得到了极大地提高,已经不再局限于吃饱穿暖这样基本的要求。民以食为天,在物质文明丰富至如斯的今天,人们开始重视对于生活品质更高层次的追求。对于吃,食不厌精、烩不厌细,不只吃味道,还要吃环境、吃服务、吃文化,吃健康。 二、企划动机 《舌尖上的中国》这部以美食为主题的纪录片,前些日子风头力压各种电视连续剧,成为连日来的微博“刷屏利器”并高居话题榜榜首,甚至让许多早已抛弃了电视的80后“吃货”们,纷纷锁定夜间的央视坐等这部“吃货指南”。人们为美食流口水,为美食的故事流眼泪,为美食的文化而感动自豪,自豪于中国饮食文化的博大精深,甚至有人高调地赞美“这才是最好的爱国主义教育片”。看要应对新的发展形势,就必须有新的态度与措施。饮食行业发展到今日,大街小巷、五花八门,各种价位、各种地域乃至跨国界的美食比比皆是。如何从

千篇一律的店面经营中脱颖而出?不仅仅是商家绞尽脑汁,着力打开销售额与知名度。美食老饕们也寻寻觅觅,力图享受到有特色、有内涵的精彩美食。《舌尖上的中国》这档美食资讯节目,是继《舌尖上的中国》这个记录片之后的后续美食资讯类节目,更实现其为商家和消费者两者搭建一个交流的平台,优秀的商家可以尽展己之所长,以此为基础展示自身特色美食功夫。而美食爱好者们则可以通过节目的推介,节省大量的时间、精力,接触到平时踏破铁鞋无觅处,只能通过口口相传难辨优劣,隐藏在街头巷尾的各种美食。大可以凭此慕名而来、亦可尽兴而去。 一、节目名称——《舌尖上的中国》 二、节目类别——继纪录片《舌尖上的中国》之后,观众参与度高的一档各地美食资讯节目 三、节目主旨——让爱美食的人走进节目让看节目的人走近美食 四、节目目标 借助最近《舌尖上的中国》的热点,重点打造一档精品的美食资讯节目,不仅仅做美食,还囊括了相关的综合资讯。力图达到“美食主动靠过来,观众自然看进去”的效果,打造口碑,铸就精品。 五、节目定位 这是一档集继纪录片《舌尖上的中国》之后的观众参与度高的一档各地美食资讯节目。将美食推介节目与菜肴烹饪节目于一身,力图更好的开发各地特色美食资源的服务资讯类美食节目,兼顾一定的娱乐性质。采用立体全面的推介方式,为现场和电视机前的观众提供优质精选的美食信息,商家现场展示、与美食爱好者们现场沟通交流。

《舌尖上的中国》简介和解说词1-7集

《舌尖上的中国》解说词1-7集 第一季:1.自然的馈赠 作为一个美食家,食物的美妙味感固然值得玩味,但是食物是从哪里来的?毫无疑问,我们从大自然中获得所有的食物,在我们走进厨房,走向餐桌之前,先让我们回归自然,看看她给我们的最初的馈赠。 本集将选取生活在中国境内截然不同的地理环境(如海洋,草原,山林,盆地,湖泊)中的具有代表性的个人、家庭和群落为故事主角,以及由于自然环境的巨大差异(如干旱,潮湿,酷热,严寒)所带来的截然不同的饮食习惯和生活方式为故事背景,展现大自然是以怎样不同的方式赋予中国人食物,我们又是如何与自然和谐相处,从而了解在世代相传的传统生活方式中,通过各种不同的途径获取食物的故事。 第一季:2.主食的故事 主食是餐桌上的主要食物,是人们所需能量的主要来源。从远古时代赖以充饥的自然谷物到如今人们餐桌上丰盛的、让人垂涎欲滴的美食,一个异彩纷呈、变化多端的主食世界呈现在你面前。本集着重描绘不同地域、不同民族、不同风貌的有关主食的故事,展现人们对主食的样貌、口感的追求,处理和加工主食的智慧,以及中国人对主食的深厚情感。 第一季:3.转化的灵感 腐乳、豆豉、黄酒、泡菜,都有一个共同点,它们都具有一种芳香浓郁的特殊风味。这种味道是人与微生物携手贡献的成果。而这种手法被称作“发酵”。中国人的老祖宗,用一些坛坛罐罐,加上敏锐的直觉,打造了一个食物的新境界。要达到让食物转化成美食的境界,这其中要逾越障碍,要营造条件,要把握机缘,要经历挫败,从而由“吃”激发出最大的智慧。 第一季:4.时间的味道 腌制食品,风干晾晒的干货,以及酱泡、冷冻等是中国历史最为久远的食物保存方式。时至今日,中国人依然对此类食品喜爱有加。 本集涉及的美食主要有腊肉,火腿,烧腊,咸鱼(腌鱼),腌菜,泡菜,渍菜,以及盐渍,糖渍,油浸,晾晒,风干,冷冻等不同食物保存方法,展现以此为基础和原材料的各种中国美食。贮藏食物从早先的保存食物 方便携带发展到人们对食物滋味的不断追求,保鲜的技术中蕴涵了中国人的智慧,呈现着中国人的生活,同时“腌制发酵保鲜”也蕴含有中国人的情感与文化意象,如对故乡的思念,内心长时间蕴含的某种情感等等。第一季:5.厨房的秘密 与西方“菜生而鲜,食分而餐”的饮食传统文化相比,中国的菜肴更讲究色、香、味、形、器。而在这一系列意境的追逐中,中国的厨师个个都像魔术大师,都能把“水火交攻”的把戏玩到如火纯青的地步,这是 8000年来的修炼。我们也在这漫长的过程中经历了煮、蒸、炒三次重要 的飞跃,他们共同的本质无非是水火关系的调控,而至今世界上懂得蒸菜和炒菜的民族也仅此一家。本集将主要透过与具有精湛美食技艺的人有关的故事,一展中国人在厨房中的绝技。 第一季:6.五味的调和

舌尖上的中国(1-7)全集解说词

《舌尖上的中国》7集(全)解说词 《舌尖上的中国》是纪录频道推出的第一部高端美食类系列纪录片,从2011年3月开始大规模拍摄,是国内第一次使用高清设备拍摄的大型美食类纪录片。共在国内拍摄60个地点方,涵盖了包括港澳台在内的中国各个地域,它全方位展示博大精深的中华美食文化。向观众,尤其是海外观众展示中国的日常饮食流变,千差万别的饮食习惯和独特的味觉审美,以及上升到生存智慧层面的东方生活价值观,让观众从饮食文化的侧面认识和理解传统和变化着的中国。 而台词优美而清新,听着解说看着画面,让人心醉··· 第一集《自然的馈赠》 中国拥有世界上最富戏剧性的自然景观,高原,山林,湖泊,海岸线。这种地理跨度有助于物种的形成和保存,任何一个国家都没有这样多潜在的食物原材料。为了得到这份自然的馈赠,人们采集,捡拾,挖掘,捕捞。穿越四季,本集将展现美味背后人和自然的故事。 香格里拉,松树和栎树自然杂交林中,卓玛寻找着一种精灵般的食物——松茸。松茸保鲜期只有短短的两天,商人们以最快的速度对松茸的进行精致的加工,这样一只松茸24小时之后就会出现在东京的市场中。 松茸产地的凌晨3点,单珍卓玛和妈妈坐着爸爸开的摩托车出发。穿过村庄,母女俩要步行走进30公里之外的原始森林。雨让各种野生菌疯长,但每一个藏民都有识别松茸的慧眼。松茸出土后,卓玛立刻用地上的松针把菌坑掩盖好,只有这样,菌丝才可以不被破坏,为了延续自然的馈赠,藏民们小心翼翼地遵守着山林的规矩。 为期两个月的松茸季节,卓玛和妈妈挣到了5000元,这个收入是对她们辛苦付出的回报。老包是浙江人,他的毛竹林里,长出过遂昌最大的一个冬笋。冬笋藏在土层的下面,从竹林的表面上看,什么也没有,老包只需要看一下竹梢的叶子颜色,就能知道笋的准确位置,这完全有赖于他丰富的经验。 笋的保鲜从来都是个很大的麻烦,笋只是一个芽,是整个植物机体活动最旺盛的部分。聪明的老包保护冬笋的方法很简单,扒开松松的泥土,把笋重新埋起来,保湿,这样的埋藏方式就地利用自然,可以保鲜两周以上。 在中国的四大菜系里,都能见到冬笋。厨师偏爱它,也是因为笋的材质单纯,极易吸收配搭食物的滋味。老包正用冬笋制作一道家常笋汤,腌笃鲜主角本来应该是春笋,但是老包却使用价格高出20倍的遂昌冬笋。因为在老包眼里,这些不过是自家毛竹林里的一个小菜而已。在云南大理北部山区,醒目的红色砂岩中间,散布着不少天然的盐井,这些盐成就了云南山里人特殊的美味。老黄和他的儿子树江小溪边搭建一个炉灶,土灶每年冬天的工作就是熬盐。云龙县的冬季市场,老黄和儿子赶到集市上挑选制作火腿的猪肉,火腿的腌制在老屋的院子里开始。诺邓火腿的腌制过程很简单,老黄把多余的皮肉去除,加工成一个圆润的火腿,洒上白酒除菌,再把自制的诺盐均匀的抹上,不施锥针,只用揉、压,以免破坏纤维。 即使用现代的标准来判断,诺邓井盐仍然是食盐中的极品,虽然在这个古老的产盐地,盐业生产已经停止,但我们仍然相信诺邓盐是自然赐给山里人的一个珍贵礼物。 圣武和茂荣是兄弟俩,每年9月,他们都会来到湖北的嘉鱼县,来采挖一种自然的美味。这

scifinder使用手册

研发工具Scifinder 《使用说明书》 第一章 Scifinder数据库介绍 1.1 Scifinder数据库 1.1.1 检索系统 支持的检索方式:主题检索、物质名称检索、分子式检索、结构式检索、亚结构式检索、相似结构式检索、反应式检索、类反应式检索、分析与二次检索。作者、机构名称、杂志名称、专利号、CA号 检索结果后处理系统:Scifinder不仅仅包含有分子式、反应式和结构式(包括亚结构检索)等多种检索功能,而且在得到初步检索结果的基础上还可以进一步利用超过20个选项的后处理功能以最快的速度找到最精确的答案。它已经超越了检索工具的范畴,而成为研发人员不可或缺的研发工具。 包含的信息量:大于2600万条文章记录;3000多万个有机无机物质,5800多万生物序列,1100多万条单步多步反应。 信息时效:1907年-至今 1.1.2 原文下载系统 Scifinder具有强大的期刊和专利链接,收录了全世界9500多种主要期刊和50多家合法专利发行机构的专利文献中公布的研究成果,占全球化工信息的98%。其中能直接链接原文的化工类核心期刊1365种,约占全球英文版电子化工类期刊总数的90%,几乎包含了所有高影响因子期刊。 1.2 Scifinder的化学学科覆盖 事实上,Scifinder数据库囊括了自20世纪以来所有与化学相关的资料,以及大量生命科学及及其它科学学科方面的信息。

1.2.1 生命科学领域 遗传学、基因组学、酶学、蛋白质组学、实验内科学、生物化学、生物技术学、分子生物学、微生物学、细胞生物学、药理学等 能够保证将9大主要专利组织2日内发布的与生物加工方法、蛋白质组技术、新遗传学工艺,及其它对现代药品开发至关重要的课题等相关的专利收录进来; 通过Scifinder访问遗传学、酶学、生物化学、生物技术学及更多科学信息。 用户可查找:摘自细胞、科学、核酸研究、现代药品开发资料及其它知名期刊的科学信息。 1.2.2 传统化学领域 有机化学 高分子——聚合物、塑料、纺织、橡胶粘合剂等 应用化学和化学工程——加工、工业化学、金属/合金、陶瓷、环境等 物理化学、无机化学和分析化学

舌尖上的中国的解说词

第一集《自然的馈赠》 中国拥有世界上最富戏剧性的自然景观,高原,山林,湖泊,海岸线。这种地理跨度有助于物种的形成和保存,任何一个国家都没有这样多潜在的食物原材料。为了得到这份自然的馈赠,人们采集,捡拾,挖掘,捕捞。穿越四季,本集将展现美味背后人和自然的故事。 香格里拉,松树和栎树自然杂交林中,卓玛寻找着一种精灵般的食物——松茸。松茸保鲜期只有短短的两天,商人们以最快的速度对松茸的进行精致的加工,这样一只松茸24小时之后就会出现在东京的市场中。 松茸产地的凌晨3点,单珍卓玛和妈妈坐着爸爸开的摩托车出发。穿过村庄,母女俩要步行走进30公里之外的原始森林。雨让各种野生菌疯长,但每一个藏民都有识别松茸的慧眼。松茸出土后,卓玛立刻用地上的松针把菌坑掩盖好,只有这样,菌丝才可以不被破坏,为了延续自然的馈赠,藏民们小心翼翼地遵守着山林的规矩。 为期两个月的松茸季节,卓玛和妈妈挣到了5000元,这个收入是对她们辛苦付出的回报。 老包是浙江人,他的毛竹林里,长出过遂昌最大的一个冬笋。冬笋藏在土层的下面,从竹林的表面上看,什么也没有,老包只需要看一下竹梢的叶子颜色,就能知道笋的准确位置,这完全有赖于他丰富的经验。 笋的保鲜从来都是个很大的麻烦,笋只是一个芽,是整个植物机体活动最旺盛的部分。聪明的老包保护冬笋的方法很简单,扒开松松的泥土,把笋重新埋起来,保湿,这样的埋藏方式就地利用自然,可以保鲜两周以上。 在中国的四大菜系里,都能见到冬笋。厨师偏爱它,也是因为笋的材质单纯,极易吸收配搭食物的滋味。老包正用冬笋制作一道家常笋汤,腌笃鲜主角本来应该是春笋,但是老包却使用价格高出20倍的遂昌冬笋。因为在老包眼里,这些不过是自家毛竹林里的一个小菜而已。 在云南大理北部山区,醒目的红色砂岩中间,散布着不少天然的盐井,这些盐成就了云南山里人特殊的美味。老黄和他的儿子树江小溪边搭建一个炉灶,土灶每年冬天的工作就是熬盐。 云龙县的冬季市场,老黄和儿子赶到集市上挑选制作火腿的猪肉,火腿的腌制在老屋的院子里开始。诺邓火腿的腌制过程很简单,老黄把多余的皮肉去除,加工成一个圆润的火腿,洒上白酒除菌,再把自制的诺盐均匀的抹上,不施锥针,只用揉、压,以免破坏纤维。 即使用现代的标准来判断,诺邓井盐仍然是食盐中的极品,虽然在这个古老的产盐地,盐业生产已经停止,但我们仍然相信诺邓盐是自然赐给山里人的一个珍贵礼物。 圣武和茂荣是兄弟俩,每年9月,他们都会来到湖北的嘉鱼县,来采挖一种自然的美味。这种植物生长在湖水下面的深深的淤泥之中,茂荣挖到的植物的根茎叫做莲藕,是一种湖泊中高产的蔬菜——藕。 作为职业挖藕人,每年茂荣和圣武要只身出门7个月,采藕的季节,他们就从老家安徽赶到有藕的地方。较高的人工报酬使得圣武和茂荣愿意从事这个艰苦的工作。挖藕的人喜欢天气寒冷,这不是因为天冷好挖藕,而是天气冷买藕吃藕汤的人就多一些,藕的价格就会涨。

scifinder使用简介

SciFinder Scholar使用简介 一、SciFinder?Scholar? Content SciFinder Scholar 收集由CAS出版的数据库的内容以及MEDLINE?数据库(by the National Library of Medicine ,NLM),所有的记录都为英文(但如果MEDLINE没有英文标题的则以出版的文字显示)。

二、What You Can Find with SciFinder Scholar 通过SciFinder Scholar 您可以得到以下信息: 注意:检索结果可以打印、保存,但如要保存需注意文件名和文件所在的文件夹(包括上层目录)名都必须是英文,否则可能会出现无法保存,试用期内也不能保存。

三、SciFinder ? Scholar? 使用的简单介绍: 主要分为Explore 和Browse : 3.1、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下方式:(如上图所示) ? Chemical Substance or Reaction – Retrieve the corresponding literature ? By chemical structure ? By substance identifier ? By molecular formula ? Research Topic – to find literature relevant to a topic of interest. ? Author Name – to locate literature written by a specific author. ? Document Identifier – to find literature for a specific CA Accession Number or Patent Number. ? Company Name / Organization – to locate literature for a specific company, university, governmental agency, or other organization. 3.2、Browse Journal Table of Contents 可直接浏览1800多核心期刊的摘要及其引文等编目内容,如果带有 则可直接点击,就会通过ChemPort ? Connection .SM 获取全文(in-house ) Explore Browse 菜单

《舌尖上的中国》中提到的所有美食统计资料

《舌尖上的中国》中提到的所有美食统计 第一集自然的馈赠 1,香格里拉松茸 2,江浙地区冬笋油焖冬笋 3,广西柳州酸笋黄豆酸笋小黄鱼 4,云南大理诺邓山区诺邓盐血肠火腿莴笋炒火腿火腿炒饭 5,湖北嘉鱼藕莲藕炖排骨 6,吉林查干湖湖水大鱼鱼头泡饼(北京) 7,海南香煎马鲛鱼酸菜鱼汤水煮红螺 第二集主食的故事 1,山西襄汾县花馍花卷油卷 2,陕西绥德黄馍馍(糜子面) 3,新疆库车馕饼 4,中原地区馒头(馍馍,古时又叫炊饼,现在想通武大郎为啥喊“炊饼”了) 长期发展形成南稻北麦,2000年前五谷排行顺序:稻,黍shu,稗bai,麦,菽shu;现在以稻,麦,玉米为主。5,贵州黎平米粉汤粉 6,广州沙河河粉干炒牛河 7,陕西西安凉皮汉中米皮(这是本人自己加上的,因为说到米粉,河粉,如果不说凉皮就说不过去了,导 演组失职啊) 8,陕西肉夹馍,牛羊肉泡馍,粉蒸肉夹馍(也叫荷叶饼夹馍,这个也是按自己加的) 9,兰州拉面 10,广州竹升面云吞捞面 11,中原地区手擀面 12,陕西岐山臊子面 13,嘉兴粽肉子蛋黄棕(关于粽子南方有肉粽,蛋黄粽等,北方一般都是蜜枣棕,北方人吃不惯肉粽,咸棕)

15,北方饺子焖面(陕西河南) 第三集转化的灵感 本集介绍三大部分1豆腐,2,酒,3醋(第六集时会讲一下醋所以这集就说了一下),4酱油,5酱油,6大酱 豆腐篇 1,云南红河建木县碳烤豆腐球石屏县老豆腐 2,中原地区石膏豆腐(各种豆制品,相信大家都是很喜欢吃豆腐的吧 ,尤其是嫩的。) 3,内蒙古锡林郭勒旗奶茶奶豆腐奶制品 4,云南白族豆腐皮 5,北京蒙古餐厅烤羊背 6,浙江天台山僧人的素食中豆制品很重要 7,安徽毛豆腐 酒篇 8,绍兴黄酒 9,安徽休林糯米酒 10 ,安昌镇腊肠 11,东北大豆酱酸菜 第四集时间的味道 这一集是介绍腌制品,脱水,酱菜 1,黑龙江绥化市朝鲜族泡菜, 2,广粤地区腊肠各种腊制品煲仔饭荔芋腊鸭煲南安腊鸭 3,湖南靖州县腌鱼腊鸭 4,徽州臭鳜鱼 5,安徽黔县腊八豆腐刀板鱼 黄山火腿咸肉 6,浙江金华火腿蜜汁上方 7,上海的三阳南货店经营各种腌制品腊肉等: 杭州酱鸭 上海腌笃鲜 温州黄鱼鲞xiang 宁波笋干 绍兴梅干菜梅干菜烧肉 8,上海醉虾醉蟹 9,福建霞浦紫菜 10,台湾云朴县乌鱼子 11,香港大奥海盐产地咸鱼虾膏虾酱 12,中原地区各种酱菜(腌萝卜,鬼子姜,辣椒,黄瓜各种蔬菜) 第五集厨房的秘密 这一集最后一句“厨房的秘密就是没有秘密”很是狗血啊。

舌尖上的中国中英文介绍

舌尖上的中国中英文介绍 《舌尖上的中国》第二季于2013年1月10日在京正式启动,该片于2014年4月18日至6月6日,每周五在中央电视台综合频道(CCTV-1)21点档、中央电视台纪录频道(CCTV-9)22点档同步开播,同时在爱奇艺,乐视网等网络平台播出。 A bite of China2 was started on January 10th,2013 in Beijing. This documentary will be on from April 18th,2014 to June 6th,2014.Each Friday, audience can enjoy this documentary in CCTV1 at 21.pm, or CCTV9,22pm.In the meanwhile, it shows in IQIYI or Letv and other network platform. 《舌尖上的中国》讲述了从远古时代赖以充饥的自然谷物到如今人们餐桌上丰盛的、让人垂涎欲滴的美食,一个异彩纷呈、变化多端的主食世界呈现在你面前。这部纪录片将着重描绘不同地域、不同民族、不同风貌的有关主食的故事,展现人们对主食的样貌、口感的追求,处理和加工主食的智慧,以及中国人对主食的深厚情感。据导演透露《舌尖上的中国2》将加重川菜的部分。 A bite of China describes food’s transition from ancient to nowadays. In ancient, humans just could solve the hunger , they could not eat delicious food. But now, there are various of food on people’s dinner-table. A colorful and changeable major food world emerges your eyes. This documentary pays most attention on describing the stories about major food in different areas, different races and features. It shows the intelligence about Chinese. They went after food’s features, tastes, solution and process. Of course, it also reflects Chinese feelings. From the director, A bite of China will introduce the food of Sichuan most detail. 《舌尖上的中国2》共分为《脚步》、《心传》、《时节》、《家常》、《秘境》、《相逢》、《三餐》,第八集则为拍摄花絮。每集50分钟 A bite of China covers 8 segments, including 《Steps》,《Heart inheriting》,《Seasons》,《The daily life of a family》,《Nulls》,《Meeting》,《Three meals》. The eighth part is tidbits. Each section lasts 50 minutes. 第一集《脚步》 The first segment:《Steps》. 【汗水中的苦辣酸甜】 Four tastes in sweat, bitter, hot, acid and sweet. “路菜”是先人保存食物的智慧,进而被演化成标志性的中国美食。味觉记忆的强大,往往让人们对故乡食物的迷恋十分牢固,甚至被赋予“乡愁”这样的文学语汇。舌尖第二季分集《脚步》,将跟随那些奔波在路上的人们,品尝辛劳与汗水中的苦辣酸甜。 “Lucai” is wisdom of Chinese ancestor which comes from food’s keeping. It has became a symbol of Chinese delicious food. The strong strength of gustation

舌尖上的中国第二季《时节》解说词

舌尖上的中国第二季《时节》解说词 中国多样的地理环境和气候,日出而作,日落而息。人们春种,秋收,夏耘,冬藏。四季轮回中,隐藏着一套严密的历法,历经千年而不衰。相比农耕时代,今天的人们与自然日渐疏远。然而,沿袭祖先的生活智慧,并以此安排自己的饮食,已内化为中国人特有的基因。这是关于时间的故事,是中国人与自然相处的秘密。 张广才岭宽厚的背脊,覆盖着一米多深的积雪。云杉次生林深处,伐木队正执行封山前最后一次作业。队长是有25年经验的李树国,阳光直射赤道,已是春分时节,但这里,寒冷还未远离。储存一冬的食物消耗殆尽,妻子泰洪芝决定到山下采购。在东北,一桌好菜离不开鱼。炖鱼的同时,可以在四周贴上玉米饼,鱼肉飘香之际,正是饼子焦酥之时。3月的夜晚,零下15摄氏度,制作冻豆腐最适宜的温度。低温让豆腐中的蛋白质与水分子继续分离,冰冻后的水,把豆腐均匀的质地变得像海绵一样,这是李树国最喜爱的食物。七八公里之外,有条溪流从不封冻,当地人称为活水,用它炖鱼最好。干货,放入热水,曾经的色泽和风味瞬间复活,这不仅是炖鱼的配菜,也是冬季里最主要的维生素来源。油烧热,鱼很快焦黄成形,加入溪水漫炖。半小时后,豆腐出场,蜂窝状的冻豆腐,充分吸收汤汁,饱胀丰满。 一餐铁锅炖鱼,漫长的冬季已接近尾声。 向南2000多公里,同样的春分时节,冷暖空气激烈对峙。天目

山,春雷唤醒土壤中的生命,高宝良敏锐地察觉到这是大自然发出的信号。春雷过后的第一拨笋子,当地称作雷笋。竹笋10天之内可以食用,10天之后就会长成竹子。雷笋保鲜时间极短,一早一晚,滋味便大打折扣,过夜再吃,已有隔世之感。高宝良夫妇脚不停歇,最忙的时候每天要挖750公斤。深山里,家家户户的生活都以竹笋为中心。削蔸,去皮,剥壳,雷笋在女人们手中以最快的速度处理完毕。雷笋脆嫩爽口,无论炒,炖,焖,煨,皆成美味。竹子,原生中国,临安 ,15万人以竹子为生。刚刚完工的茶熜,被高宝良夫妇用来制作另一种美味。笋,用香料熬煮入味,撕成一指宽的笋丝,炭火的热力将水分蒸发。这是江南一带最流行的佐茶小食,也是夫妇俩最重要的经济来源。1个月后,雷笋季节结束,属于山里人的美食故事才刚刚开始。残枝败叶下,泥土裂开一条细缝,笋头将出未出,这就是非常稀有的黄泥拱,一座山头或许只能找到三四棵,但它的肉质比任何春笋都更为细密爽脆,甚至有类似梨子的口感,更为奇妙的是,黄泥拱出土后品质随时间迅速退化,从收获到加工,必须以分钟计算。咸肉配黄泥拱,这是高家经常的做法。竹笋与咸肉在口感上形成巨大反差,只需要大火蒸7分钟,肉的浓烈与笋的清新,相互对抗的同时也相互交融,这种笋农们独享的美味,是中式饮食中一种极高的境界。 极致的美食只留给最勤劳的人们。沈敦树,上堡乡农民,他用另外一种方式感知季节变化。成形于2000多年前的中国历书,依据时间更替与气象变化的规律,一年里安排了24个节气来指导农事。3

scifinder使用介绍

美国化学文摘(CA)网络版-SciFinder Scholar数据库 6.6.1 内容简介 SciFinder Scholar是美国化学学会所属的化学文摘服务社CAS(Chemical Abstract Service)出版的化学资料电子数据库学术版。它是全世界最大、最全面的化学和科学信息数据库。 《化学文摘》(CA)是涉及学科领域最广、收集文献类型最全、提供检索途径最多、部卷也最为庞大的一部著名的世界性检索工具。CA报道了世界上150多个国家、56种文字出版的20000多种科技期刊、科技报告、会议论文、学位论文、资料汇编、技术报告、新书及视听资料,摘录了世界范围约98%的化学化工文献,所报道的内容几乎涉及化学家感兴趣的所有领域。 CA网络版SciFinder Scholar,整合了Medline医学数据库、欧洲和美国等30几家专利机构的全文专利资料、以及化学文摘1907年至今的所有内容。涵盖的学科包括应用化学、化学工程、普通化学、物理、生物学、生命科学、医学、聚合体学、材料学、地质学、食品科学和农学等诸多领域。 SciFinder Scholar 收集由CAS 出版的数据库的内容以及MEDLINE?数据库,所有的记录都为英文(但如果MEDLINE 没有英文标题的则以出版的文字显示)。

6.6.2 通过 SciFinder Scholar 可以得到的信息:

6.6.3 SciFinder? Scholar?使用的简单介绍 主要分为Explore 和Browse。如图6.6.1 一、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下: 1、Chemical Substance or Reaction – Retrieve the corresponding literature 2、By chemical structure 3、By substance identifier 4、By molecular formula 5、Research Topic – to find literature relevant to a topic of interest

《舌尖上的中国2 》第三集《时节》文案解说词

中国多样的地理环境和气候,日出而作,日落而息。人们春种,秋收,夏耘,冬藏。四季轮回中,隐藏着一套严密的历法,历经千年而不衰。相比农耕时代,今天的人们与自然日渐疏远。然而,沿袭祖先的生活智慧,并以此安排自己的饮食,已内化为中国人特有的基因。这是关于时间的故事,是中国人与自然相处的秘密。 张广才岭宽厚的背脊,覆盖着一米多深的积雪。云杉次生林深处,伐木队正执行封山前最后一次作业。队长是有25年经验的李树国,阳光直射赤道,已是春分时节,但这里,寒冷还未远离。储存一冬的食物消耗殆尽,妻子泰洪芝决定到山下采购。在东北,一桌好菜离不开鱼。炖鱼的同时,可以在四周贴上玉米饼,鱼肉飘香之际,正是饼子焦酥之时。3月的夜晚,零下15摄氏度,制作冻豆腐最适宜的温度。低温让豆腐中的蛋白质与水分子继续分离,冰冻后的水,把豆腐均匀的质地变得像海绵一样,这是李树国最喜爱的食物。七八公里之外,有条溪流从不封冻,当地人称为活水,用它炖鱼最好。干货,放入热水,曾经的色泽和风味瞬间复活,这不仅是炖鱼的配菜,也是冬季里最主要的维生素来源。油烧热,鱼很快焦黄成形,加入溪水漫炖。半小时后,豆腐出场,蜂窝状的冻豆腐,充分吸收汤汁,饱胀丰满。一餐铁锅炖鱼,漫长的冬季已接近尾声。 向南2000多公里,同样的春分时节,冷暖空气激烈对峙。天目山,春雷唤醒土壤中的生命,高宝良敏锐地察觉到这是大自然发出的信号。春雷过后的第一拨笋子,当地称作雷笋。竹笋10天之内可以食用,10天之后就会长成竹子。雷笋保鲜时间极短,一早一晚,滋味便大打折扣,过夜再吃,已有隔世之感。高宝良夫妇脚不停歇,最忙的时候每天要挖750公斤。深山里,家家户户的生活都以竹笋为中心。削蔸,去皮,剥壳,雷笋在女人们手中以最快的速度处理完毕。雷

相关主题
文本预览
相关文档 最新文档