当前位置:文档之家› 火焰校正温度参考颜色

火焰校正温度参考颜色

火焰校正温度参考颜色

火焰校正温度参考颜色

气温和气温的分布

气温和气温的分布 1、知道天气和气候的区别,能在日常生活中正确使用这两个术语;识别常见的天气符号,能看懂较简单的天气形势图;用实例说明人类活动对大气环境的影响和保护大气的重要性。 2、知道气温的含义及测定方法,理解平均气温的含义;初步学会计算日、月、年平均温度及年较差的方法。 3、学生能够利用气温资料,绘制气温曲线图,并根据气温曲线图说明某地气温日变化、月变化与年变化的规律。 关于“气温和气温的分布”的总体教材分析气温是天气和气候的主要组成要素,涉及面广、理论性强,所以应采用理论联系生活实际和学生的亲身体验的方法,利用对比法、多媒体手段进行学习。气温的测定,主要讲解气温的表示符号及读法,气温的观测和计算方法气温的变化,教材从三个方面阐述:气温的日变化;气温的年变化,主要从两个侧面说明,一是南北半球一年中气温最高值与最低值的时间,而是热、温、寒三带四季气温变化的特征不同;气温的年际变化。气温的世界分布,首先讲解了等温线知识,它是阅读世界年平均气温图的关键。本部分即重“地”又重“理”,将世界气温水平分布的规律与影响气温分布的主要因素---纬度、海陆、地势、洋流等结合,使感性知识与理性知识结合。又为后面分析气候的影响因素和气候特征打下基础。 关于“世界气温的分布”的教法建议对于气温的“空间变化(即世界的分布)”,教师应该引导学生认真观察地图,学会从“整体到局部” 逐步分析的方法。注重从图上直接得出结论,将分布规律与影响因素联系起来分析。 1、全球年平均气温曲线变化规律---纬度位置(太阳) 2、南北半球的不同---海陆影响 3、陆地上的不同---地形地势影响 4、海洋上的不同---洋流影响 5、极值---局部最冷最热的地方 6、人类对气温的影响,可以简单的讲解。

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

(完整版)气温的分布规律

气温的分布规律 下图为某山地气象站一年中每天的日出、日落时间及逐时气温(℃) 变化图。读图,回答1—2题 1. 气温日较差大的月份是 A. 1月 B. 4月 C. 7月 D. 10月 2.该山地 A.冬季受副热带高压带控制 B.因台风暴雨引发的滑坡多 C.基带的景观为热带雨林 D.山顶海拔低于1000米 气温的日变化一般表现为最高值出现在14时左右,最低值出现在日出 前后。右图示意某区域某日某时刻的等温线分布,该日丙地的正午太 阳高度达到一年中最大值。读图回答第3题 3.下列时刻中,最有可能出现该等温线分布状况的是 A.6时 B 9时 C 12时 D. 14时 4.右下图为北京、南京、哈尔滨和海口四城市气温年变化曲线图。根据图中信息判断,北京、南京、哈尔滨和海口四城市对应的气温年变化曲线分别是 A.甲、丁、丙、乙 B.甲、乙、丙、丁 C.丙、乙、丁、甲 D.丙、丁、甲、乙 下图为“大陆和海洋气温年较差、日较差的纬度分布图”。读图回答5—6题。 5.图中反映大陆气温年较差和海洋气温日较差的曲线分别是 A.甲和乙 B.乙和丙 C.丙和丁 D.甲和丁 6.曲线丙在南、北纬30°附近达最大值的原因是 A.纬度低,太阳辐射量大 B.地势高,空气稀薄 C.多为副热带高气压控制,天气晴朗 D.距海洋远,大陆性强,昼夜温差大

气温垂直递减率是指空气温度在垂直方向上随高度升高而降低的数值,读某地春季某日气温垂直递减率(℃/100米)时空变化图,回答7—9题 7.当天该地几乎没有对流运动发生的时段是 A.9~1 7时B.18~次日7时 C.17~次日9时D.19~次日6时 8.发生大气逆温现象的最大高度约为 A.100米B.200米C.400米D.500米 9.如果该地位于华北地区,这天 A.大气环境质量好B.不容易有沙尘暴形成 C.较有可能阴雨天气D.能见度高,行车方便 右图是“某地某日垂直温度变化(℃/100米)时空分布图”。读图,完成10—12题。 10.该日此地发生大气逆温现象的时段是 A.8∶00~16∶30 B.17∶00~23∶00 C.16∶30~7∶00 D.23∶00~5∶00 11.发生大气逆温现象的最大高度约为 A.500米B.100米C.350米D.150米 12.当某地大气发生逆温现象时 A.空气对流更加显著B.抑制污染物向上扩散 C.有利于成云致雨D.减少大气中臭氧的含量 焚风效应是由山地引发的一种局地范围内的空气运动形式。一般发生在背风坡地区,使气温比迎风坡异常变高。其成因是湿绝热垂直递减率和干绝热垂直递减率的不同。(湿绝热垂直递减率是有水汽凝结时的空气垂直递减率;干绝热垂直递减率是无水汽凝结时的空气垂直递减率)读下图回答14—15题

空气温度湿度对照表

空气绝对湿度与空气相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和水汽压也随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道当前气温,算出当前空气中的水汽压,即可求出空气相对湿度来。 前言:空气有吸收水分的特征,PCB主料和辅料有相当部分也是对湿度十分敏感的材料,它们遇到空气中的相对湿度比工艺条件高或低时会吸湿或缩水造成自身形体变化,如黑菲林、重氮片、半固化片等。造成制程中不稳定的质量缺陷。今天我们来谈谈空气一个状态的参数——相对湿度。 生产中的相对湿度是由工业除湿机组和超声波加湿器自动调节的,当生产过程相对湿度局部出现小偏差,我们可以通过局部加减湿度来满足生产需求。例如直接喷水、开启超声波雾化加湿器设备、煮开水来增加空气湿度、开启除湿机及抽湿机,升温可以降低空气湿度。 湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是克/立方米;

第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 前两种湿度表示它的计算结果是一个量化,并未能满足空气可利用的工艺状态,而我们工艺生产条件更注重空气状态,所以相对湿度是我们最常用衡量空气湿度的一种指标。饱和空气:一定温度和压力下,一定数量的空气只能容纳一定限度的水蒸气。当一定数量的空气在该温度和压力下最大限度容纳水蒸气,这样的空气称饱和空气;未能最大限度容纳水蒸气,这样的空气称未饱和空气。假如空气已达到饱和状态,人为的把温度下降,这时的空气进入一个过饱和状态,水蒸气开始以结露的形式从空气中分离出来变成液态水,这就是我们抽湿机的工作原理。

气温变化趋势曲线

一、课程设计目的: 1.训练学生灵活应用所学数值分析知识,独立完成问题分析,结合数值分析理论知识,编写程序求解指定问题。 2.初步掌握解决实际问题过程中的对问题的分析、系统设计、程序编码、测试等基本方法和技能; 3.提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 4.训练用数值分析的思想方法和编程应用技能模拟解决实际问题,巩固、深化学生的理论知识,提高学生对数值分析的认知水平和编程水平,并在此过程中培养他们严谨的科学态度和良好的工作作风 二、课程设计任务与要求: 课程设计题目:气温变化趋势曲线 【问题描述】 上网下载自己家乡所在城市某一天天气预报中的气温数据(24小时,每小时一个数据),然后采用最小二乘拟合的思想和算法求解上述气温变化的趋势曲线。(需要认真观察数据,提出数据变化曲线的函数形式,建议从最低气温时间开始。) 【实现要求】 1、在处理每个题目时,要求分别从数据处理阶段和程序设计阶段两个主要阶段实现课程设计,详细的通过文字以及插图等形式,按需求分析、数据处理、算法设计、代码、计算结果和程序执行的截图等若干步骤完成题目,最终写出完整的分析报告。前期准备工作完备与否直接影响到后序上机调试工作的效率。在程序设计阶段应尽量利用已有的标准函数,加大代码的重用率。 2、设计的题目要求达到一定工作量,并具有一定的深度和难度。 3、程序设计语言推荐使用C/C++,程序书写规范,源程序需加必要的注释; 4、每位同学需提交可独立运行的程序; 5、每位同学需独立提交设计报告书(每人一份),要求编排格式统一、规范、内容充实; 6、课程设计实践作为培养学生动手能力的一种手段,单独考核。 三、课程设计说明书 【需求分析】 从网上下载自己所在家乡的某一日(河北省邯郸市5月2日)的气温数据(原则上应为24个小时,24个数据),然后根据这一组数据,提出合适的数学模型(函数形式),用最小二乘拟合的思想和算法求解该曲线。 【数据下载】 我采用的数据是河北省邯郸市,在5月2日的气温数据:

空气温度湿度对照表

单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它实际上就是水汽密度。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。单位为克/立方米或克/立方厘米。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露

点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。湿球温度的定义是在定压绝热的情况下,空气与水直接接触,达到稳定热湿平衡时的绝热饱和温度。

matlab绘制温度场

通过在室内的某些位置布置适当的节点,采集回来室内的温湿度以及空气质量等实际参数。首先对室内空间建模,用一个无限细化的三维矩阵来模拟出室内的温度分布情况,针对采集回来的数据,采用插值法和适当次数的拟合函数的拟合,得出三维矩阵的实际值的分布,最后结合matlab软件绘制出计算出的温度场的三维图像。 一.数据的采集与处理 因为影响人的舒适感的温度层只是室内的某一高度范围内的温度,而温度传感器虽然是布置在一个平面内,但是采用插值法和拟合函数法是可以大致再现出影响人的舒适感的温度层的温度变化的。同时,在构建出的三维模型中,用第三维表示传感器层面的温度。 在传感器层面,传感器分布矩阵如下: X=【7.5 36.5 65.5】(模型内单位为cm) Y=【5.5 32.5 59.5】 Z=【z1 z2 z3; z4 z5 z6; z7 z8 z9;】(传感器采集到的实时参数) 采用meshgrid(xi,yi,zi,…)产生网格矩阵; 首先按照人的最小温度分辨值,将室内的分布矩阵按照同样的比例细化,均分,使取值点在坐标一定程度上也是接近于连续变化的,从而才能最大程度上使处理数据得来的分布值按最小分辨值连续变化! 根据人体散热量计算公式:C=hc(tb-Ta) 其中hc为对流交换系数; 结合Gagge教授提出的TSENS热感觉指标可以计算出不同环境下人的对环境温度变化时人体温度感知分辨率,作为插值法的一个参考量,能使绘制出的温度场更加的符合人体的温度变化模式。 例如按照10cm的均差产生网格矩阵(实际上人对温度的分辨率是远远10cm大于这个值的,但是那样产生的网格矩阵也是异常庞大的,例如以0.5cm为例,那么就可以获得116*108=12528个元素,为方便说明现已10cm为例): [xi yi]=meshgrid(7.5:10:65.5,5.5:10:59.5) xi = 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000 7.5000 17.5000 27.5000 37.5000 47.5000 57.5000

传热学MATLAB温度分布大作业完整版

东南大学能源与环境学院 课程作业报告 作业名称:传热学大作业——利用matlab程序解决热传导问题 院系:能源与环境学院 专业:建筑环境与设备工程 学号: 姓名: 2014年11月9日

一、题目及要求 1.原始题目及要求 2.各节点的离散化的代数方程 3.源程序 4.不同初值时的收敛快慢 5.上下边界的热流量(λ=1W/(m℃)) 6.计算结果的等温线图 7.计算小结 题目:已知条件如下图所示: 二、各节点的离散化的代数方程 各温度节点的代数方程 ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4 ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4

tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序 【G-S迭代程序】 【方法一】 函数文件为: function [y,n]=gauseidel(A,b,x0,eps) D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; y=G*x0+f; n=1; while norm(y-x0)>=eps x0=y; y=G*x0+f; n=n+1; end 命令文件为: A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0; -1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;

气温和气温的分布教案

气温和气温的分布 教学目标 1、知道天气和气候的区别,能在日常生活中正确使用这两个术语;识别常见的天气符号,能看懂较简单的天气形势图;用实例说明人类活动对大气环境的影响和保护大气的重要性。 2、知道气温的含义及测定方法,理解平均气温的含义;初步学会计算日、月、年平均温度及年较差的方法。 3、学生能够利用气温资料,绘制气温曲线图,并根据气温曲线图说明某地气温日变化、月变化与年变化的规律。 4、初步学会阅读世界年平均气温分布图,说出世界气温的分布规律。 5、培养学生利用地图思考问题的意识和习惯,加强与他人合作、共同研究问题的意识。 教学建议 关于“气温和气温的分布”的总体教材分析 气温是天气和气候的主要组成要素,涉及面广、理论性强,所以应采用理论联系生活实际和学生的亲身体验的方法,利用对比法、多媒体手段进行学习。

气温的测定,主要讲解气温的表示符号及读法,气温的观测和计算方法 气温的变化,教材从三个方面阐述:气温的日变化;气温的年变化,主要从两个侧面说明,一是南北半球一年中气温最高值与最低值的时间,而是热、温、寒三带四季气温变化的特征不同;气温的年际变化。 气温的世界分布,首先讲解了等温线知识,它是阅读世界年平均气温图的关键。本部分即重“地”又重“理”,将世界气温水平分布的规律与影响气温分布的主要因素---纬度、海陆、地势、洋流等结合,使感性知识与理性知识结合。又为后面分析气候的影响因素和气候特征打下基础。 关于“世界气温的分布”的教法建议 对于气温的“空间变化(即世界的分布)”,教师应该引导学生认真观察地图,学会从“整体到局部”逐步分析的方法。注重从图上直接得出结论,将分布规律与影响因素联系起来分析。 1、全球年平均气温曲线变化规律---纬度位置(太阳) 2、南北半球的不同---海陆影响 3、陆地上的不同---地形地势影响 4、海洋上的不同---洋流影响

绝对湿度与相对湿度对照表

5%10%15%20%25%30%35%40%45%50%55% 60%65%70%75%80%85%90%95%100%5℃0.340.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.40 3.73 4.07 4.41 4.75 5.09 5.43 5.77 6.11 6.45 6.7910℃0.470.94 1.41 1.88 2.35 2.82 3.29 3.76 4.23 4.70 5.16 5.63 6.10 6.577.047.517.988.458.929.3915℃0.64 1.28 1.92 2.56 3.21 3.85 4.49 5.13 5.77 6.417.057.698.338.979.6210.2610.9011.5412.1812.8220℃0.86 1.73 2.59 3.45 4.32 5.18 6.04 6.917.778.649.5010.3611.2312.0912.9513.8214.6815.5416.4117.2725℃ 1.15 2.30 3.45 4.60 5.75 6.908.059.2010.3511.5112.6613.8114.9616.1117.2618.4119.5620.7121.8623.0130℃ 1.52 3.03 4.55 6.067.589.0910.6112.1213.6415.1616.6718.1919.7021.2222.7324.2525.7627.2828.7930.3135℃ 1.98 3.95 5.937.909.8811.8513.8315.8017.7819.7621.7323.7125.6827.6629.6331.6133.5835.5637.5339.5140℃ 2.55 5.107.6510.2012.7515.3017.8520.4022.9525.5028.0530.6033.1535.7038.2540.8043.3545.9048.4551.0045℃ 3.26 6.529.7813.0416.3019.5622.8226.0829.3432.6135.8739.1342.3945.6548.9152.1755.4358.6961.9565.2150℃ 4.138.2712.4016.5320.6624.8028.9333.0637.1941.3345.4649.5953.7257.8661.9966.1270.2574.3978.5282.6555℃ 5.1910.3915.5820.7825.9731.1736.3641.5646.7551.9557.1462.3367.5372.7277.9283.1188.3193.5098.70103.8960℃ 6.4812.9519.4325.9132.3938.8645.3451.8258.2964.7771.2577.7284.2090.6897.16103.63110.11116.59123.06129.5465℃8.0216.0324.0532.0640.0848.0956.1164.1272.1480.1588.1796.18104.20112.21120.23128.24136.26144.27152.29160.3070℃9.8519.6929.5439.3949.2459.0868.9378.7888.6298.47108.32118.16128.01137.86147.71157.55167.40177.25187.09196.9475℃12.0224.0336.0548.0660.0872.0984.1196.12108.14120.16132.17144.19156.20168.22180.23192.25204.26216.28228.29240.3180℃14.5729.1343.7058.2772.8387.40101.97116.53131.10145.67160.23174.80189.36203.93218.50233.06247.63262.20276.76291.3385℃17.5535.1052.6570.2087.75105.29122.84140.39157.94175.49193.04210.59228.14245.69263.24280.78298.33315.88333.43350.9890℃21.0242.0463.0584.07105.09126.11147.13168.14189.16210.18231.20252.22273.23294.25315.27336.29357.31378.32399.34420.3695℃25.0350.0675.09100.12125.15150.18175.21200.24225.27250.30275.33300.36325.39350.42375.45400.48425.51450.54475.57500.60100℃ 29.65 59.30 88.94 118.59 148.24 177.89 207.54 237.18 266.83 296.48 326.13 355.78 385.42 415.07 444.72 474.37 504.02 533.66 563.31 592.96 绝对湿度与相对湿度对应表(大气压:1bar) 相对湿度 (RH) 绝对湿度 g/m 3 温度

温度分布的曲线拟合

温度分布的曲线拟合 1. 实验描述 曲线拟合是指用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系。更广泛地说,空间或高维空间中的相应问题亦属此范畴。在数值分析中,曲线拟合就是用解析表达式逼近离散数据,即离散数据的公式化。实践中,离散点组或数据往往是各种物理问题和统计问题有关量的多次观测值或实验值,它们是零散的,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律。这种缺陷正可由适当的解析表达式来弥补。 2. 实验内容 温度分布的曲线拟合,度数据采用下表中的数据: 要求:1.2.曲线的最小二乘抛物线拟合; 3.三次样条插值拟合; 4.T7的三角多项式拟合。 5.有4个控制点的贝塞尔曲线拟合。 3. 实验结果及分析 线性的最小二乘拟合:设 x k ,y k k =1N 有N 个点,其中横坐标 x k k =1N 是确定的。最小二乘拟合曲线

y =Ax +B 的系数是下列线性方程组的解,这些方程成为正规方程: x k 2 N k =1 A + x k N k =1 B = x k y k N k =1 x k N k =1 A +N B = y k N k =1 将x ,y 的值代入俩个方程解出系数A ,B 在画图可得下图 如图所示红*号为原来实际数据,直线为所求式,可见其与实际情况差别甚大,不能反映实际的情况。所以模拟效果不好。 曲线的最小二乘抛物线拟合:设 x k ,y k k =1N 有N 个点,其中横坐标是确定的。最小二乘的抛物线细数标示为 y =f x =Ax 2+Bx +C 求解A ,B 和C 的线性方程组为: x k 4N k =1 A + x k 3N k =1 B + x k 2N k =1 C = y k x k 2 N k =1 5 10 15 20 25 30 59 59.56060.56161.56262.56363.564X (357 X )/2300 + 5445/92

地理气温和气温的分布1

地理气温和气温的分布1 教学目标1、知道天气和气候的区别,能在日常生活中正确使用这两个术语;识别常见的天气符号,能看懂较简单的天气形势图;用实例说明人类活动对大气环境的影响和保护大气的重要性。2、知道气温的含义及测定方法,理解平均气温的含义;初步学会计算日、月、年平均温度及年较差的方法。3、学生能够利用气温资料,绘制气温曲线图,并根据气温曲线图说明某地气温日变化、月变化与年变化的规律。 4、初步学会阅读世界年平均气温分布图,说出世界气温的分布规律。 5、培养学生利用地图思考问题的意识和习惯,加强与他人合作、共同研究问题的意识。教学建议关于“气温和气温的分布”的总体教材分析气温是天气和气候的主要组成要素,涉及面广、理论性强教学目标 1、知道天气和气候的区别,能在日常生活中正确使用这两个术语;识别常见的天气符号,能看懂较简单的天气形势图;用实例说明人类活动对大气环境的影响和保护大气的重要性。 2、知道气温的含义及测定方法,理解平均气温的含义;初步学会计算日、月、年平均温度及年较差的方法。 3、学生能够利用气温资料,绘制气温曲线图,并根据气温曲线图说明某地气温日变化、月变化与年变化的规律。 4、初步学会阅读世界年平均气温分布图,说出世界气

温的分布规律。 5、培养学生利用地图思考问题的意识和习惯,加强与他人合作、共同研究问题的意识。 教学建议 关于“气温和气温的分布”的总体教材分析 气温是天气和气候的主要组成要素,涉及面广、理论性强,所以应采用理论联系生活实际和学生的亲身体验的方法,利用对比法、多媒体手段进行学习。 气温的测定,主要讲解气温的表示符号及读法,气温的观测和计算方法 气温的变化,教材从三个方面阐述:气温的日变化;气温的年变化,主要从两个侧面说明,一是南北半球一年中气温最高值与最低值的时间,而是热、温、寒三带四季气温变化的特征不同;气温的年际变化。 气温的世界分布,首先讲解了等温线知识,它是阅读世界年平均气温图的关键。本部分即重“地”又重“理”,将世界气温水平分布的规律与影响气温分布的主要因素---纬度、海陆、地势、洋流等结合,使感性知识与理性知识结合。又为后面分析气候的影响因素和气候特征打下基础。 关于“世界气温的分布”的教法建议 对于气温的“空间变化(即世界的分布)”,教师应该引

温度分布验证的个步骤

温度分布验证的个步骤 This model paper was revised by the Standardization Office on December 10, 2020

温度分布验证的8个步骤 定期对环境试验箱内的条件进行分布试验,如对温度和湿度等进行验证是必须的,这对于符合FDA(美国食品药品监督管理局)的监管要求非常关键[1~5]。本应用指南提供了一些方法,有助于验证项目符合《现行药品生产质量管理规范》(cGMP)的要求,本应用指南中所说的探头、传感器、数据记录仪是可互换的,大多数建议的基础是使用数据记录仪作为传感设备。 第1步——编写验证计划 首先,书面定义验证目标,创建一个所用方法的概要,并列出任何预计的障碍。在大多数情况下,这3项构成了验证方案的主要内容,下面几个注意点最好以书面形式编入验证计划。 必须符合的法规与要求 首先审核设施质量指南中所列内容(如:CFR 210、211等),并查找最近的修改或更新。尽管许多监管机构要求提供受控空间的温度分布试验结果,但并没有规定任何具体方法,因此需要我们编制文件以说明合理的分布试验流程。 要求监测的数据点 数据点的数量受多种因素影响而不同,这些因素包括环境、温度/相对湿度范围和具体应用。小型试验箱的分布试验所需的典型数量包括: 九(9):在大多数情况下,这是试验箱内采样点数量的最低限度(除了非常小的试验台应用)。具体包括两层,每层4台记录仪放置于每个角,中央1台。 或者,十五(15):三层,4台记录仪放置于每个角,三层中央各1台。

或者,每层搁板上4台或5台记录仪。 每台数据记录仪摆放的位置 建议放置记录仪时以网格状均匀分布,同时监测试验箱内因热损耗和/或空气流动而导致的最差位置也是很重要的。监测试验箱各个角落和任何开口/通道附近将覆盖大部分的最差位置,但是,在试验箱内架设搁板可能要求确认额外的最差位置。将传感器放置在温控装置的控制传感器,或试验箱内任何报警传感器的位置或附近。 试验箱负荷 分布试验是在空箱时进行(为了运行确认-OQ),还是在试验箱装满产品时进行(为了性能确认- PQ)对于大多数制药或生物技术应用来讲,两项测试都很重要。要考虑到运行确认和性能确认对过程的影响。并且,有些监管机构[2] 要求在验证过程中使用最大和最小负荷。空箱可以被认为是最小负荷,也通常是箱内温度波动最坏的情况。 跟踪试验箱内空气温度 跟踪试验箱内产品的温度,如溶液瓶中的温度,有时被认为更重要,原因是它使数据不容易受到门定期打开和关闭等轻微干扰的影响。 测量的参数 如果计划存储对湿度敏感的产品,那么试验箱除了温度还要做相对湿度的分布试验。 提取读数的频率 典型的采样频率是每分钟1次,或者5分钟1次。但是,如同验证的大多数其他方面,要准备论证采样频率,并把合理说明包括在计划和/或方案中。

如何实施温度分布试验

如何实施温度分布试验 How to perform Temperature Mapping 如何实施温度分布试验 In a recent blog of the U.K. Medicines and Healthcare Products Regulatory Agency (MHRA), the inspectorate looks at temperature mapping. It seems that "some companies are unclear as to what is expected of them to comply with this requirement in the GDP Guidelines", the Agency says. 在英国药监最近的博文中,检查员查看了温度分布试验。当局说,看起来“有些公司并不清楚如何做来符合GDP指南里的这些要求”。 The requirement itself is defined in the GDP Guidelines Chapter 3.2.1: "An initial temperature mapping exercise should be carried out on the storage area before use, under representative conditions." The results of this mapping should be used to place monitoring devices at areas that experience the most temperature differences and the hot and cold spots. Any potential area that may be unsuitable to store medicines should be identified. Therefore, mapping should be performed before stock is stored. However, the MHRA also recommends to repeat the mapping when the storage area is operating (taking into account seasonal variations). 要求本身是在GDP指南第3.2.1里定义的,“存贮区域在使用之前要在代表性条件下进行初始温度分布测试”。此分布测试的结果应被用来布置该区域的监测装置,所布的监测点应有最大的温度差异,应包括最高和最低温度点。所有可能不适用存贮药品的区域都要被识别出来。因此,分布试验的实施应该在用于存放药品之前。但是,MHRA 也建议在存贮区域运行中时重复温度分布试验(考虑季节波动)。

铸铝温度分布曲线

铸铝在铸型中温度分布报告 材控04班 曲明阳 摘要:用描点作图法绘出铸铝件在砂型和金属型铸模(铸型壁均足够厚)中浇铸后0.02h 、0.2h 和0.5h 时刻的温度分布状况,并作分析比较。 关键词:铸铝;浇铸;温度分布 A report of the temperature distribution of cast aluminum in the mold Qu ming yang Abstract: draw the temperature distribution of aluminum casting in sand mold and metal mold after casting 0.02h,0.2h and 0.5h with the trace point mapping method(assume the mold wall are enough thick),then analysis and comparison the temperature distribution. Key words: aluminum; casting ;temperature distribution 公式原理:基本假设: 1) 认为液态金属在瞬时充满铸型后开始凝固——假定初始液态金属温度为定值,或为已知各点的温度值。 2) 不考虑液、固的流动——传热过程只考虑导热。 3) 不考虑合金的过冷——假定凝固是从液相线温度开始,固相线温度结束。 根据以上假设则可得到铸件凝固传热数学模型。其一维系统如下: 在铸件中不稳定导热的控制方程表达式为 t f L x T t T c s ??+??=??122111ρλρ 式中,111c 、、λρ分别为铸件金属的密度、热导率、比热容,L 为结晶潜热)/(kg J 。式(1-1)左边表示铸件中的热积蓄项,右边第一项表示热导率,第二项为潜热。 在铸型中,不稳定导热的控制方程的表达式为 2 2222x T t T c ??=??λρ 式中,222c 、、λρ分别为铸型材料的密度、热导率、比热容。 初始条件的处理:根据前述基本假设1),认为铸型被瞬时充满,故有 01),(T o x T =(在铸件区域中) 02 ),(T o x T =(在铸型区域中) 下面分析求i T 和界面附近温度的过程。在界面附近可以假定只有一维导热,即服从: 2 2x T a t T ??=?? 式中,a 为热扩散 )/(2 s m ,c a ρλ=。上式的通解为

空气温度湿度对照表

空气温度湿度对照表 相对湿度:空气中实际水汽压与同温度饱和水汽压之比值,称为相对湿度.其公式为f=e/E e为当时空气中的水汽压,E为当时干球温度下的饱和水汽压。 用于测定空气温度和湿度的一对并列装置的温度表,由两支规格相同的水银温度表或酒精温度表组成.其中一支球部扎有润湿纱布的称湿球温度表,没有包纱布的称干球温度表。 用干湿球温度表测定湿度时,按公式e=Et'-AP(t-t') 和f=(e/E)x100% 来计算此公式为干湿球温度表实用测湿公式. Et'为湿球温度下的饱和水汽压;A为干湿表测湿系数,随湿球周围的风速而变;P为当时气压;t 为干球温度;t'为湿球温度.用干湿球温度表测定空气湿度产生的误差,是由t',t,P的测量误差或A值引起的。 表1 室内空气质量标准 序号参数类别参数单位标准值备注 1 物理性温度℃ 22~28 夏季空调 16~24 冬季采暖 2 相对湿度% 40~80 夏季空调 30~60 冬季采暖 3 空气流速m/s 0.3 夏季空调 0.2 冬季采暖 4 新风量m3/h?人30a 5 化学性二氧化硫SO2 mg/m3 0.50 1h均值

6 二氧化氮NO2 mg/m3 0.24 1h均值 7 一氧化碳CO mg/m3 10 1h均值 8 二氧化碳CO2 % 0.10 1h均值 9 氨NH3 mg/m3 0.20 1h均值 10 臭氧O3 mg/m3 0.16 1h均值 11 甲醛HCHO mg/m3 0.10 1h均值 12 苯C6H6 mg/m3 0.11 1h均值 13 甲苯C7H8 mg/m3 0.20 1h均值 14 二甲苯C8H10 mg/m3 0.20 1h均值 15 苯并[a]芘B(a)P ng/m3 1.0 1h均值 16 可吸入颗粒物PM10 mg/m3 0.15 1h均值 17 总发挥性有机物TVOC mg/m3 0.60 8h均值 18 生物性菌落总数cfu/m3 2500 依据仪器定b 19 放射性氡222Rn Bq/m3 400 年平均值

温度分布的曲线拟合

温度分布的曲线拟合 学号:XX 姓名:XXX 1. 实验描述 美国洛杉矶郊区11月8日的温度(华氏温度)如表1所示。采用24小时制。 要求:1.线性的最小二乘拟合 2.曲线的最小二乘抛物线拟合; 3.三次样条插值拟合 4.T7的三角多项式拟合 5.有4个控制点的贝塞尔曲线拟合 2. 实验内容 一、线性最小二乘拟合 定理5.1(最小二乘拟合曲线)设1{(,)}N k k k x y =有N 个点,其中横坐标1{}N k k x =是确定的。

最小二乘拟合曲线 y Ax B =+ (1) 的系数是下列线性方程组的解,这些方程称为正规方程: 211111 N N N k k k k k k k N N k k k k x A x B x y x A N B y =====???? += ? ????? ?? += ??? ∑∑∑∑∑ (2) 核心代码为: %求方程组am=b 的根 m=a\b; x1=1:0.1:24; y1=m(1)*x1+m(2); %绘图,其中(x,y)为已知点,用红色的星号表示,y1为拟合曲线 plot(x,y,'*r',x1,y1) grid on legend('已知点','最小二乘拟合') 主要算法为: (1).输入x,y ; (2).求正规方程的系数21 N k k x =∑,1 N k k x =∑,1 N k k y =∑,1 N k k k x y =∑ (3).解正规方程组am=b (4).绘制拟合曲线

二、曲线的最小二乘抛物线拟合 定理5.3(最小二乘抛物线拟合)设1{(,)}=N k k k x y 有N 个点,横坐标是确定的。最小二乘抛物线的系数表示为 2 ()==++y f x Ax Bx C (3) 求解,A B 和C 的线性方程组为 4322 11113211112111 ===========??????++= ? ? ??????? ??????++= ? ? ??????? ???? ++= ? ????? ∑∑∑∑ ∑∑∑∑ ∑∑∑ N N N N k k k k k k k k k N N N N k k k k k k k k k N N N k k k k k k x A x B x C y x x A x B x C y x x A x B N C y (4) 根据式(4),核心代码为: a(1,1)=sum(x.^4); a(2,3)=sum(x); b(1)=(x.^2)*y'; 图1 线性的最小二乘拟合流程图

目前应用的温度场的数学模型

目前应用的温度场的数学模型: 1、冶金过程温度场建模,采用瞬态温度场有限单元法。通过曲线拟合方法, 获得了温度与 各物性间的关系, 建立了变物性熔渣冷却温度场数学模型, 分析了各种工艺参数对富硼渣温度场分布的影响。 有限元法的应用范例: 1)动态分析:计算结构的固有属性,以及动态载荷下的结构的各种响应和动应力,动 应变等; 2)热分析:计算在热环境下,结构或区域内部的温度分布和热流,以及由热引起的热应 力和热变形; 3)其他 离散: 数学上,有限元法的基本思想是通过离散化的手段把微分方程或者变分方程变成袋鼠方程进行求解。 。。适合处理形状复杂的结构 。。复杂的边界条件 2、高炉炉衬砌体结构温度场的数学模型:根据几何对称性,基于三维结构图,数学模型主 体为描述控制体内三维变物性稳态热传导方程 3、沥青路面温度场模型应用的是统计回归法。以镇漓试验路连续2a实测的气候数据和路面温度场数据为基础,建立了精度更高的路面温度场模型,尤其提高了较深处路面温度的预测效果。 1)测试方案 2)影响因素分析:采用分布回归法分析不同环境因素对路面温度影响的显著程度。本文温度沿深度的衰减因子采用乘幂函数

采用分段函数建立了温度场模型,预测值与实测温度数据相关系数R2达到0.92,能预测0~38cm任何深度的路面温度,改善了以往模型在较深处预测精度差的问题;( 2) 气温太阳辐射等环境因素对路面温度影响有明显的延后性,层位越深则延后时间越长,就此提出了不同路面层位气温和太阳辐射影响的延后时长;( 3) 路面温度受气温太阳辐射的影响而产生波动,波动的幅度随深度增加而衰减,采用乘幂函数H-i作为温度衰减因子,表征不同深度路面温度波动幅度的差异更为合适。 3、GA和BP 网络模型的建立:基于GA (遗传算法)结合BP网络的智能算法建立了钢坯表 面温度模型, 并且提出了利用BP 算法进行在线补偿的机制, 使模型预报精度进一步提高。 本文在BP 网络的基础上把输出端信号通过延时环节反馈到输入端, 从而形成动态BP 网络。

相关主题
文本预览
相关文档 最新文档