当前位置:文档之家› 分子生物学笔记

分子生物学笔记

分子生物学笔记
分子生物学笔记

现代分子生物学笔记(朱玉贤版)

二、现代分子生物学中的主要里程碑

分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。

从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。

1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。

1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA 翻译成蛋白质的过程。同年,Kornberg实现了试管内细菌细胞中DNA的复制。

1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。

1965年,法国科学家Jacob和Monod提出并证实了操纵子(operon)作为调节细菌细胞代谢的分子机制。此外,他们还首次推测存在一种与DNA序列相互补、能将它所编码的遗传信息带到蛋白质合成场所(细胞质)并翻译产生蛋白质的mRNA(信使核糖核酸)。

1972年,Paul Berg(美)第一次进行了DNA重组。

1977年,Sanger和Gilbert(英)第一次进行了DNA序列分析。

1988年,McClintock由于在50年代提出并发现了可移动遗传因子(jumping gene或称mo bile element)而获得Nobel奖。

1993年,美国科学家Roberts和Sharp因发现断裂基因(introns)而获得Nobel奖。Mull is由于发明PCR仪而与加拿大学者Smith(第一个设计基因定点突变)共享Nobel化学奖。此外,Griffith(1928)及Avery(1944)等人关于致病力强的光滑型(S型)肺炎链球菌DNA导致致病力弱的粗糙型(R型)细菌发生遗传转化的实验;Hershey和Chase(1952)关于DNA是遗传物质的实验;Crick于1954年所提出的遗传信息传递规律(即中心法则):Me selson和Stahl(1958)关于DNA半保留复制的实验以及Yanofsky和Brener(1961)年关于遗传密码三联子的设想都为分子生物学的发展做出了重大贡献。

我国生物科学家吴宪20世纪20年代初回国后在协和医科大学生化系与汪猷、张昌颖等人一道完成了蛋白质变性理论、血液生化检测和免疫化学等一系列有重大影响的研究,成为我国生物化学界的先驱。20世纪60年代、70年代和80年代,我国科学家相继实现了人工全合成有生物学活性的结晶牛胰岛素,解出了三方二锌猪胰岛素的晶体结构,采用有机合成与酶

促相结合的方法完成了酵母丙氨酸转移核糖核酸的人工全合成,在酶学研究、蛋白质结构及生物膜结构与功能等方面都有世所瞩目的建树。

三、分子生物学的主要研究内容

所有生物体中的有机大分子都是以碳原子为核心,并以共价键的形式与氢、氧、氮及磷以不同方式构成的。不仅如此,一切生物体中的各类有机大分子都是由完全相同的单体,如蛋白质分子中的20种氨基酸、DNA及RNA中的8种碱基所组合而成的,由此产生了分子生物学的3条基本原理:

1.构成生物体有机大分子的单体在不同生物中都是相同的;

2.生物体内一切有机大分子的建成都遵循着各自特定的规则;

3.某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

分子生物学研究内容:

DNA重组技术------基因工程

基因表达调控-------核酸生物学

生物大分子结构功能----结构分子生物学

DNA重组技术(又称基因工程)

这是20世纪70年代初兴起的技术科学,目的是将不同DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。严格地说,DNA重组技术并不完全等于基因工程,因为后者还包括其他可能使生物细胞基因组结构得到改造的体系。DNA重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。

DNA重组技术有着广阔的应用前景:DNA重组技术可用于定向改造某些生物基因组结构,使它们所具备的特殊经济价值或功能得以成百上千倍的地提高。DNA重组技术还被用来进行基础研究。如果说,分子生物学研究的核心是遗传信息的传递和控制,那么根据中心法则,我们要研究的就是从DNA到RNA,再到蛋白质的全过程,也即基因的表达与调控。在这里,无论是对启动子的研究(包括调控元件或称顺式作用元件),还是对转录因子的克隆及分析,都离不开重组DNA技术的应用。

基因表达调控研究

因为蛋白质分子参与并控制了细胞的一切代谢活动,而决定蛋白质结构和合成时序的信息都由核酸(主要是脱氧核糖核酸)分子编码,表现为特定的核苷酸序列,所以基因表达实质上就是遗传信息的转录和翻译。在个体生长发育过程中生物遗传信息的表达按一定的时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。

原核生物的基因组和染色体结构都比真核生物简单,转录和翻译在同一时间和空间内发生,基因表达的调控主要发生在转录水平。真核生物有细胞核结构,转录和翻译过程在时间和空间上都被分隔开,且在转录和翻译后都有复杂的信息加工过程,其基因表达的调控可以发生在各种不同的水平上。基因表达调控主要表现在信号传导研究、转录因子研究及RNA剪辑3个方面。

转录因子是一群能与基因5’端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。

真核基因在结构上的不连续性是近10年来生物学上的重大发现之一。当基因转录成pre-mR

NA后,除了在5’端加帽及3’端加多聚A[polyA]之外,还要将隔开各个相邻编码区的内含子剪去,使外显子(编码区)相连后成为成熟mRNA。研究发现,有许多基因不是将它们的内含子全部剪去,而是在不同的细胞或不同的发育阶段有选择地剪接其中部分内含子,因此生成不同的mRNA及蛋白质分子。

结构分子生物学

生物大分子的结构功能研究(又称结构分子生物学)一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提:首先,它拥有特定的空间结构(三维结构);其次,在它发挥生物学功能的过程中必定存在着结构和构象的变化。

结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括结构的测定、结构运动变化规律的探索及结构与功能相互关系的建立3个主要研究方向。最常见的研究三维结构及其运动规律的手段是X射线衍射的晶体学(又称蛋白质晶体学),其次是用二维核磁共振和多维核磁研究液相结构,也有人用电镜三维重组、电子衍射、中子衍射和各种频谱学方法研究生物高分子的空间结构。

------------------------------------------------------------------------------------------------

一、 DNA的组成与结构

Avery在1944年的研究报告中写道:"当溶液中酒精的体积达到9/10时,有纤维状物质析出。如稍加搅拌,它就会象棉线在线轴上一样绕在硬棒上,溶液中的其它成份则呈颗粒状沉淀。溶解纤维状物质并重复数次,可提高其纯度。这一物质具有很强的生物学活性,初步实验证实,它很可能就是DNA(谁能想到!)"。对DNA分子的物理化学研究导致了现代生物学翻天覆地的革命,这更是Avery所没有想到。

所谓DNA的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。核苷酸序列对DNA高级结构的形成有很大影响,如B-DNA中多聚(G-C)区易出现左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发卡式结构等。DNA不仅具有严格的化学组成,还具有特殊的高级结构,它主要以有规则的双螺旋形式存在,其基本特点是:

1、DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。

2、DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。

3、两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶(C)配对。如一条链上某一碱基是C,另一条链上与它配对的碱基必定是G。碱基之间的这种一一对应的关系叫碱基互补配对原则。组成DNA分子的碱基虽然只有4种,它们的配对方式也只有A与T,C与G两种,但是,由于碱基可以任何顺序排列,构成了DNA分子的多样性。例如,某DNA分子的一条多核苷酸链有100个不同的碱基组成,它们的可能排列方式就是410 0。

二、 DNA聚合酶与DNA的合成

The accuracy of translation relies on the specificity of base pairing. The actu al rate in bacteria seems to be --10-8-10-10. This corresponds to -1 error pe

r genome per 1000 bacterial replication cycles, or -10-6 per gene per generatio n.

DNA polymerase might improve the specificity of complementary base selection a t either (or both) of two stages:

1,It could scrutinize the incoming base for the proper complementarity with th e template base; for example, by specifically recongnizing matching chemical fe atures. This would be a presynthetic error control.

2,Or it could scrutinize the base pair after the new base has been added to th e chain, and, in those cases in which a mistake has been made, remove the mos t recently added base. This would be a proofreading control.

三、DNA的生理意义及成分分析

早在1928年英国科学家Griffith等人就发现肺炎链球菌使小鼠残废的原因是引起肺炎。细菌的毒性(致病力)是由细胞表面荚膜中的多糖所决定的。具有光滑外表的S型肺炎链球菌因为带有荚膜多糖而都能使小鼠发病,而具有粗糙外表的R型因为没有荚膜多糖而失去致病力(荚膜多糖能保护细菌免受运动白细胞攻击)。

首先用实验证明基因就是DNA分子的是美国著名的微生物学家Avery。Avery等人将光滑型致病菌(S型)烧煮杀灭活性以后再侵染小鼠,发现这些死细菌自然丧失了致病能力。再用活的粗糙型细菌(R型)来侵染小鼠,也不能使之发病,因为粗糙型细菌天然无致病力。当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死了。解剖死鼠,发现有大量活的S型(而不是R型)细菌。他们推测,死细菌中的某一成分枣转化源(transforming principle)将无致病力的细菌转化成病原细菌。

美国冷泉港卡内基遗传学实验室科学家Hershey和他的学生Chase在1952年从事噬菌体侵染细菌的实验。噬菌体专门寄生在细菌体内。它的头、尾外部都有由蛋白质组成的外壳,头内主要是DNA。噬菌体侵染细菌的过程可以分为以下5个步骤:①噬菌体用尾部的末端(基片、尾丝)吸附在细菌表面;②噬菌体通过尾轴把DNA全部注入细菌细胞内,噬菌体的蛋白质外壳则留在细胞外面;③噬菌体的DNA一旦进入细菌体内,它就能利用细菌的生命过程合成噬菌体自身的DNA和蛋白质;④新合成的DNA和蛋白质外壳,能组装成许许多多与亲代完全相同的子噬菌体;⑤子代噬菌体由于细菌的解体而被释放出来,再去侵染其他细菌。他们发现被感染的细菌中带有70%的噬菌体DNA,但只带有20%的噬菌体蛋白质。子代噬菌体中带有50%标记的DNA,却只有1%的标记蛋白质。

四. C-value和Cot1/2

The total amount of DNA in the haploid genome is a characteristic of each livin g species known as C-value.

Cot1/2 is the product of concentration and time required for 50% reassociatio n given in nucleotide-moles × second/liter.

五、染色体结构

DNA molecules are the largest macromolecules in the cell and are commonly packa ged into structures called “chromosomes”, most bacteria & viruses have a sing le chromosome where as Eukaryotic cells usually contain many.

任何一条染色体上都带有许多基因,一条高等生物的染色体上可能带有成千上万个基因,一个细胞中的全部基因序列及其间隔序列统称为genomes(基因组)。如果设想将人体细胞中的DNA分子绕地球一周,那么,每个碱基大约只占1-5厘米,而一个2-3kb的基因只相

当于地球上一条数十米长,数厘米宽的线段!

Genotype (基因型): The genetic constitution of a given organism (指某个特定生物体细胞内的全部遗传物质)。

Phenotype (表现型): Visible property of any given organism (某个特定生物体中可观察到的物理或生理现象)。

Mutations:染色体DNA中可遗传的核苷酸序列变化。

六、染色体的组成

1.染色质和核小体

染色质DNA的Tm值比自由DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用;在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA复制和转录活性大大低于在自由DNA 中的反应;DNA酶I(DNaseI)对染色质DNA的消化远远慢于对纯DNA的作用。染色质的电子显微镜图显示出由核小体组成的念珠状结构,可以看到由一条细丝连接着的一连串直径为10nm的球状体。

核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。每个核小体只有一个H1。

在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩成1/7,200bpDNA的长度约为68n m,却被压缩在10nm的核小体中。但是,人中期染色体中含3.3×109碱基对,其理论长度应是180cm,这么长的DNA被包含在46个51μm长的圆柱体(染色体)中,其压缩比约为1 04。

2.染色体中的核酸组成

⑴不重复序列在单倍体基因组里,这些序列一般只有一个或几个拷贝,它占DNA总量的40%-80%。不重复序列长约750-2000dp,相当于一个结构基因的长度。单拷贝基因通过基因扩增仍可合成大量的蛋白质,如一个蚕丝心蛋白基因可作为模板合成104个丝心蛋白mRNA,每个mRNA可存活4d,共合成105个丝心蛋白,这样,在几天之内,一个单拷贝丝心蛋白基因就可以合成109个丝心蛋白分子。

⑵中度重复序列这类重复序列的重复次数在10-104之间,占总DNA的10%-40%。各种r RNA、tRNA 及组蛋白基因等都属这一类。

非洲爪蟾的18S、5.8S及28SrRNA基因是连在一起的,中间隔着不转录的间隔区,这些单位在DNA链上串联重复约5000次。在卵细胞形成过程中这些基因可进行几千次不同比例的复制,产生2×106个拷贝,使rDNA占卵细胞DNA的75%,从而使该细胞能积累1012个核糖体。

⑶高度重复序列——卫星DNA 这类DNA只在真核生物中发现,占基因组的10%—60%,由6—100个碱基组成,在DNA链上串联重复几百万次。由于碱基的组成不同,在CsCl密度梯度离心中易与其他DNA分开,形成含量较大的主峰及高度重复序列小峰,后者又称卫星区带(峰)。

高等真核生物DNA无论从结构还是功能看都极为复杂,以小鼠为例:

1.小鼠总DNA的10%是小于10bp的高度重复序列,重复数十万到上百万次/genome。

2.总DNA的20%是重复数千次、长约数百bp的中等重复序列。

3.总DNA的70%是不重复或低重复序列,绝大部分功能基因都位于这类序列中。

Centromere:是细胞有丝分裂期间纺锤体蛋白质与染色体的结合位点(attachment point),这种结合对于染色体对在子细胞中的有序和平均分配至关重要。在酵母中,centromere的功能单位长约130 bp,富含AT 碱基对。在高等真核细胞中,centromere都是由长约5-1 0 bp、方向相同的高度重复序列所组成。

Telomeres are sequences at the ends of eukaryotic Chromosomes that help stabili ze them。酵母Telomeres一般以100 bp左右不精确重复序列所组成。

5’(TxGy)n

3’(AxCy)n

其中X、Y一般为1-4,单细胞真核生物中n常为20-100,高等真核生物中>1500。

染色体末端的线性重复序列不能被DNA polymarase 所准确复制,它们一般在DNA复制完成以后由telomarase合成后加到染色体末端。

Alu(长约300bp)是人类高度重复序列,因为该序列中带有AluI的识别序列而得名。数十万个Alu重复序列散布于整个人类基因组中,达到总序列的1-3%。Alu与其它高度重复序列共占人类DNA的10%以上。

3.染色体中的蛋白质

染色体上的蛋白质包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体。通常可以用2mol/L NaCl或0.25mol/L的HCl/H2SO4处理使组蛋白与DNA分开。组蛋白分为H1、H2A、H2B、H3及H4。这些组蛋白都含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸;H2A、H2B介于两者之间。

⑴组蛋白的一般特性

进化上的极端保守性。牛、猪、大鼠的H4氨基酸序列完全相同。牛的H4序列与豌豆序列相比只有两个氨基酸的差异(豌豆H4中的异亮氨基酸60→缬氨酸60,精氨酸→赖氨酸)。H 3的保守性也很大,鲤鱼与小牛胸腺的H3只差一个氨基酸,小牛胸腺与豌豆H3只差4个氨基酸。

无组织特异性。到目前为止,仅发现鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白。

肽链上氨基酸分布的不对称性。碱性氨基酸集中分布在N端的半条链上。例如,N端的半条链上净电荷为+16,C端只有+3,大部分疏水基团都分布在C端。

组蛋白的修饰作用。包括甲基化、乙基化、磷酸化及ADP核糖基化等。

⑵非组蛋白的一般特性

染色体上除了存在大约与DNA等量的组蛋白以外,还存在大量的非组蛋白。非组蛋白的多样性。非组蛋白的量大约是组蛋白的60%~70%,但它的种类却很多,约在20-100种之间,其中常见的有15-20种。非组蛋白的组织专一性和种属专一性。

(3)几类常见的非组蛋白

a.HMG蛋白(high mobility group protein)。这是一类能用低盐(0.35mol/L NaCl)溶液抽提、能溶于2%的三氯乙酸、相对分子质量较低的非组蛋白,相对分子质量都在3.0×1 04以下。

b. DNA结合蛋白。用2mol/L NaCl除去全部组蛋白和70%非组蛋白后,还有一部分蛋白必须用2mol/L NaCl和5mol/L尿素才能与DNA解离。这些蛋白分子量较低,约占非组蛋白的20%,染色质的8%。

七. 原核与真核染色体DNA比较

原核生物中一般只有一条染色体且大都带有单拷贝基因,只有很少数基因〔如rRNA基因〕是以多拷贝形式存在;

整个染色体DNA几乎全部由功能基因与调控序列所组成;

几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。

Viral DNA molecules are relatively small

HIV = 9000 nt RNA

Qβ = 4200 nt

Bactaria DNA is 100 times > than viral

E. coli 4639221 bp double-stranded

Contour length = 1.7mm, 850倍细菌本身长度。细菌中常常带有质粒DNA。

Eucaryotic cells

果蝇带有25倍于E. Coli 的DNA,人类带有600倍于E. Coli 的DNA. Eucaryotic DNA 中基因密度明显低于原核和病毒。如人DNA中平均每毫米只带有50个基因,而E. Coli中基因密度每毫米DNA带有2400个基因!一个人细胞中所带有的DNA约有2m/1.7mm细菌。成人带有1X10^14个细胞,成人体内全部DNA的总长度(Contour Length)= 2X10^11Km

------------------------------------------------------

第三讲蛋白质合成

一.基因与基因表达的一般概念

基因作为唯一能够自主复制、永久存在的单位,其生理学功能以蛋白质形式得到表达。DNA 序列是遗传信息的贮存者,它通过自主复制得到永存,并通过转录生成mRNA,翻译生成蛋白质的过程控制所有生命现象。

编码链(coding strand)又称sense strand,是指与mRNA序列相同的那条链。非编码链(anticoding strand),又称antisense strand,是指那条根据碱基互补原则指导mRNA 生物合成的DNA链。

Genetic information is perpetuated by replication(复制)in which a double- str anded nucleic acid is duplicated to give identical copies.

基因表达包括转录(transcription)和翻译(translation)两个阶段。转录是指拷贝出一条与DNA链序列完全相同(除了T→U之外)的RNA单链的过程,是基因表达的核心步骤。翻译是指以新生的mRNA为模板,把核苷酸三联子遗传密码翻译成氨基酸序列、合成蛋白质多肽链的过程,是基因表达的最终目的。

只有mRNA所携带的遗传信息才被用来指导蛋白质生物合成,所以人们一般用U、C、A、G 这4种核苷酸而不是T、C、A、G的组合来表示遗传性状。所谓翻译是指将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。

二. 遗传密码——三联子

mRNA上每3个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这3个核苷酸就称为一个密码,也叫三联子密码。翻译时从起始密码子AUG开始,沿mRNA5’→3’的方向连续阅读直到终止密码子,生成一条具有特定序列的多肽链。

mRNA中只有4种核苷酸,而蛋白质中有20种氨基酸,若以一种核苷酸代表一种氨基酸,只能代表4种(41=4)。若以两种核苷酸作为一个密码(二联子),能代表42=16种氨基酸。而假定以3个核苷酸代表一个氨基酸,则可以有43=64种密码,满足了编码20种氨基酸的需要。

50-60年代破译遗传密码方面的三项重要成果:

(1)Paul Zamecnik等人证实细胞中蛋白质合成的场所。他们把放射性标记的氨基酸注射到大鼠体内,经过一段时间后收获其肝脏,进行蔗糖梯度沉淀并分析各种细胞成份中的放射性蛋白质。

如果注射后经数小时(或数天)收获肝脏,所有细胞成份中都带有放射性标记的蛋白质; 如果注射后几分钟内即收获肝脏,那么,放射性标记只存在于含有核糖体颗粒的细胞质成份中。

(2)Francis Crick等人第一次证实只有用三联子密码的形式才能把包含在由AUGC四个字母组成遗传信息(核酸)准确无误地翻译成由20种不同氨基酸组成的蛋白质序列,实现遗传信息的表达。

实验1:

用吖啶类试剂(诱导核苷酸插入或丢失)处理T4噬菌体rII位点上的两个基因,使之发生移码突变(frame-shift),就生成完全不同的、没有功能的蛋白质。

实验2:

研究烟草坏死卫星病毒发现,其外壳蛋白亚基由400个氨基酸组成,相应的RNA片段长120 0个核苷酸,与密码三联子体系正好相吻合。

实验3:

以均聚物为模板指导多肽的合成。在含有tRNA、核糖体、AA-tRNA合成酶及其它蛋白质因子的细胞抽提物中加入mRNA或人工合成的均聚物作为模板以及ATP、GTP、氨基酸等成分时又能合成新的肽链,新生肽链的氨基酸顺序由外加的模板来决定。

1961年,Nirenberg等以poly(U)作模板时发现合成了多聚苯丙氨酸,从而推出UUU代表苯丙氨酸(Phe)。以poly(C)及poly(A)做模板分别得到多聚脯氨酸和多聚赖氨酸。实验4:

以特定序列的共聚物为模板指导多肽的合成。以多聚二核苷酸作模板可合成由2个氨基酸组成的多肽,

5’…UGU GUG UGU GUG UGU GUG…3’,不管读码从U开始还是从G开始,都只能有UGU(Cy s)及GUG(Val)两种密码子。

实验5:

以共聚三核苷酸作为模板可得到有3种氨基酸组成的多肽。如以多聚(UUC)为模板,可能有3种起读方式:

5’…UUC UUC UUC UUC UUC…3’或 5’…UCU UCU UCU UCU UCU…3’或 5’…CUU CUU CU U CUU CUU…3’分别产生UUC(Phe)、UCU(Ser)或CUU(Leu).

多聚三核苷酸为模板时也可能只合成2种多肽:5’…GUA GUA GUA GUA GUA…3’或5’…U AG UAG UAG UAG UAG…3’

或5’…AGU AGU AGU AGU AGU…3’由第二种读码方式产生的密码子UAG是终止密码,不编码任何氨基酸,因此,只产生GUA(Val)或AGU(Ser)。

实验6:

以随机多聚物指导多肽合成。Nirenberg等及Ochoa等又用各种随机的多聚物作模板合成多肽。例如,以只含A、C的多聚核苷酸作模板,任意排列时可出现8种三联子,即CCC、CCA、CAC、ACC、CAA、ACA、AAC、AAA,获得由Asn、His、Pro、Gln、Thr、Lys等6种氨基酸组

成的多肽。

(3)氨基酸的“活化”与核糖体结合技术。

如果把氨基酸与ATP和肝脏细胞质共培养,氨基酸就会被固定在某些热稳定且可溶性RNA 分子(transfer RNA,tRNA)上。现将氨基酸活化后的产物称为氨基酰-tRNA(aminoacyl-tRNA),并把催化该过程的酶称为氨基酰合成酶(aminoacyl-tRNA Synthetase)。

以人工合成的三核苷酸如UUU、UCU、UGU等为模板,在含核糖体、AA-tRNA的反应液中保温后通过硝酸纤维素滤膜,只有游离的AA-tRNA因相对分子质量小而通过滤膜,而核糖体或与核糖体结合的AA-tRNA则留在滤膜上,这样可把已结合与未结合的AA-tRNA分开。

当体系中带有多聚核苷酸模板时,从大肠杆菌中提取的核糖体经常与特异性氨基酰-tRNA相结合。如果把核糖体与poly(U)和Phe-tRNAPhe共温育,核糖体就能同时与poly(U)和Phe-tRNAPhe相结合。

4种核苷酸组成61个编码氨基酸的密码子和3个终止密码子,它们不能与tRNA的反密码子配对,但能被终止因子或释放因子识别,终止肽链的合成。由一种以上密码子编码同一个氨基酸的现象称为简并(degeneracy),对应于同一氨基酸的密码子称为同义密码子(s ynonymous codon)。

三.密码子和反密码子的相互作用

蛋白质生物合成过程中,tRNA的反密码子通过碱基的反向配对与mRNA的密码子相互作用。1966年,Crick根据立体化学原理提出摆动假说(wobble hypothesis),解释了反密码子中某些稀有成分如I以及许多有2个以上同源密码子的配对问题。

Wobble hypothesis

①任意一个密码子的前两位碱基都与tRNA anticodon中的相应碱基形成Watson-Crick碱基配对。

②反密码子第一位是A或C时,只能识别一个密码子。当反密码子第一位是U或G时,能识别两个密码子。当Inosine(I)作为反密码子第一位时,能识别三个密码子。

③如果数个密码子同时编码一个氨基酸,凡是第一、二位碱基不相同的密码子都对应于各自的tRNA。

④根据上述规则,至少需要32种不同的tRNA才能翻译61个密码子。

四.tRNA

tRNA在蛋白质合成中处于关键地位,被称为第二遗传密码。它不但为将每个三联子密码翻译成氨基酸提供了接合体,还为准确无误地将所需氨基酸运送到核糖体上提供了载体。所有的tRNA都能够与核糖体的P位点和A位点结合,此时,tRNA分子三叶草型顶端突起部位通过密码子:反密码子的配对与mRNA相结合,而其3’末端恰好将所转运的氨基酸送到正在延伸的多肽上。代表相同氨基酸的tRNA称为同工tRNA。在一个同工tRNA组内,所有tRNA 均专一于相同的氨基酰- tRNA合成酶。

1、tRNA的三叶草型二级结构

受体臂(acceptor arm)主要由链两端序列碱基配对形成的杆状结构和3’端末配对的3-4个碱基所组成,其3’端的最后3个碱基序列永远是CCA,最后一个碱基的3’或2’自由羟基(—OH)可以被氨酰化。TφC臂是根据3个核苷酸命名的,其中φ表示拟尿嘧啶,是tR NA分子所拥有的不常见核苷酸。反密码子臂是根据位于套索中央的三联反密码子命名的。D 臂是根据它含有二氢尿嘧啶(dihydrouracil)命名的。

最常见的tRNA分子有76个碱基,相对分子质量约为2.5×104。不同的tRNA分子可有74-

95个核苷酸不等,tRNA分子长度的不同主要是由其中的两条手臂引起的。tRNA的稀有碱基含量非常丰富,约有70余种。每个tRNA分子至少含有2个稀有碱基,最多有19个,多数分布在非配对区,特别是在反密码子3’端邻近部位出现的频率最高,且大多为嘌呤核苷酸。这对于维持反密码子环的稳定性及密码子、反密码子之间的配对是很重要的。

2.tRNA的L形三级结构

酵母和大肠杆菌tRNA的三级结构都呈L形折叠式。这种结构是靠氢键来维持的,tRNA的三级结构与AA- tRNA合成酶的识别有关。受体臂和TφC臂的杆状区域构成了第一个双螺旋,D臂和反密码子臂的杆状区域形成了第二个双螺旋。

tRNA的L形高级结构反映了其生物学功能,因为它上所运载的氨基酸必须靠近位于核糖体大亚基上的多肽合成位点,而它的反密码子必须与小亚基上的mRNA相配对,所以两个不同的功能基团最大限度分离。

3.tRNA的功能

转录过程是信息从一种核酸分子(DNA)转移至另一种结构上极为相似的核酸分子(RNA)的过程,信息转移靠的是碱基配对。翻译阶段遗传信息从mRNA分子转移到结构极不相同的蛋白质分子,信息是以能被翻译成单个氨基酸的三联子密码形式存在的,在这里起作用的是解码机制。

4.tRNA的种类

(1)起始tRNA和延伸tRNA

能特异地识别mRNA模板上起始密码子的tRNA叫起始tRNA,其他tRNA统称为延伸tRNA。原核生物起始tRNA携带甲酰甲硫氨酸(fMet),真核生物起始tRNA携带甲硫氨酸(Met)。(2)同工tRNA

代表同一种氨基酸的tRNA称为同工tRNA,同工tRNA既要有不同的反密码子以识别该氨基酸的各种同义密码,又要有某种结构上的共同性,能被AA- tRNA合成酶识别。

(3)校正tRNA

校正tRNA分为无义突变及错义突变校正。

在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基酸的密码子变成终止密码子(UAG、UGA、UAA),使蛋白质合成提前终止,合成无功能的或无意义的多肽,这种突变就称为无义突变。

五.AA- tRNA合成酶是一类催化氨基酸与tRNA结合的特异性酶,其反应式如下:

它实际上包括两步反应:

第一步是氨基酸活化生成酶-氨基酰腺苷酸复合物。

AA+ATP+酶(E)→E-AA-AMP+PPi

第二步是氨酰基转移到tRNA 3’末端腺苷残基上,与其2’或3’-羟基结合。

E-AA-AMP+ tRNA→AA- tRNA +E+AMP

蛋白质合成的真实性主要决定于AA- tRNA合成酶是否能使氨基酸与对应的tRNA相结合。A A-tRNA合成酶既要能识别tRNA,又要能识别氨基酸,它对两者都具有高度的专一性。不同的tRNA有不同碱基组成和空间结构,容易被tRNA合成酶所识别,困难的是这些酶如何识别结构上非常相似的氨基酸。

有两道关口:

The first filter is the initial binding of the amino acid to the enzyme and it s activation to aminoacyl-AMP.

The second filter is the binding of incorrect aminoacyl-AMP products to a separ ate active site on the enzyme.

核糖体像一个能沿mRNA模板移动的工厂,执行着蛋白质合成的功能。它是由几十种蛋白质和几种核糖体RNA(ribosomal RNA,rRNA)组成的亚细胞颗粒。一个细菌细胞内约有2000 0个核糖体,而真核细胞内可达106个,在未成熟的蟾蜍卵细胞内则高达1012。核糖体和它的辅助因子为蛋白质合成提供了必要条件。

1.核糖体的组成

原核生物核糖体由约2/3的RNA及1/3的蛋白质组成。真核生物核糖体中RNA占3/5,蛋白质占2/5。核糖体是一个致密的核糖核蛋白颗粒,可以解离为两个亚基,每个亚基都含有一个相对分子质量较大的rRNA和许多不同的蛋白质分子。

大肠杆菌核糖体小亚基由21种蛋白质组成,分别用S1……S21表示,大亚基由33种蛋白质组成,分别用L1……L33表示。真核生物细胞核糖体大亚基含有49种蛋白质,小亚基有33种蛋白质。

2、rRNA

3.核糖体的功能

核糖体包括至少5个活性中心,即mRNA结合部位、结合或接受AA- tRNA部位(A位)、结合或接受肽基tRNA的部位、肽基转移部位(P位)及形成肽键的部位(转肽酶中心),此外还有负责肽链延伸的各种延伸因子的结合位点。小亚基上拥有mRNA结合位点,负责对序列特异的识别过程,如起始位点的识别和密码子与反密码子的相互作用。大亚基负责氨基酸及tRNA携带的功能,如肽键的形成、AA- tRNA、肽基- tRNA的结合等。A位、P位、转肽酶中心等主要在大亚基上。

核糖体可解离为亚基或结合成70S/80S颗粒。翻译的起始阶段需要游离的亚基,随后才结合成70S/80S颗粒,继续翻译进程。体外反应体系中,核糖体的解离或结合取决于Mg2+离子浓度。在大肠杆菌内,Mg2+浓度在10-3mol/L以下时,70S解离为亚基,浓度达10-2mol/L 时则形成稳定的70S颗粒。细胞中大多数核糖体处于非活性的稳定状态,单独存在,只有少数与mRNA一起形成多聚核糖体。它从mRNA的5’末端向3’末端阅读密码子,至终止子时合成一条完整的多肽链。mRNA上核糖体的多少视mRNA的长短而定,一般40个核苷酸有一个核糖体。

七. 信使核糖核酸

mRNA messenger ribonucleic acidDNA deoxyribonucleic acid.

虽然mRNA在所有细胞内执行着相同的功能,即通过三联子密码翻译生成蛋白质,其生物合成的具体过程和成熟mRNA的结构在原核和真核生物细胞内是不同的。

八、蛋白质的生物合成

核糖体是蛋白质合成的场所,mRNA是蛋白质合成的模板,tRNA是模板与氨基酸之间的接合体。此外,有20种以上的AA-tRNA及合成酶、10多种起始因子、延伸因子及终止因子,30多种tRNA及各种rRNA、mRNA和100种以上翻译后加工酶参与蛋白质合成和加工过程。

蛋白质合成消耗了细胞中90%左右用于生物合成反应的能量。细菌细胞中的2万个核糖体,10万个蛋白质因子和20万个tRNAs 约占大肠杆菌干重的35%。

在大肠杆菌中合成一个100个氨基酸的多肽只需5分钟。

1.蛋白质生物合成的主要步骤:

翻译的起始——核糖体与mRNA结合并与氨基酰-tRNA生成起始复合物。肽链的延伸——核糖体沿mRNA5’端向3’端移动,导致从N端向C端的多肽合成。肽链的终止以及肽链的释放——核糖体从mRNA上解离,准备新一轮合成反应。

主要分为五步

1、 Activation of Amino Acids (This reaction takes place in the cytosol, not o n the ribosome).

2、 Initiation. The mRNA bearing the code for the polypeptide binds to the smal l ribosomal subunit and to the initiating aminoacyl-tRNA.

3、Elongation. Peptide bonds are formed in this stage.

4、Termination and Release. Completion of the polypeptide chain is signaled b y a termination codon in the mRNA.

5、Folding and Post translational Processing.

肽链延伸分为三步

① Binding of an incoming aminoacyl-tRNA.

② Peptide bond formation.

③ Translocation.

2.与蛋白质合成有关的因子

起始因子Initiation factor(IF)延伸因子Elongation factor(EF)终止因子。原核中有RF1-3。RF-1 识别 UAA和UAG; RF-2 识别 UAA和UGA; RF-3 仅能促进RF-1和RF-2的功能。终止因子行使功能时需要GTP。真核生物中只有一个RF,能识别3个终止子。

3、蛋白质合成的起始

蛋白质合成的起始复合物:

30S 核糖体小亚基

模板mRNA

fMet-tRNAfMet

起始因子

GTP

50S 核糖体大亚基

Mg2+

合成的起始可分为三步:

1、30S 核糖体小亚基与起始因子IF –1和IF-3相结合,诱发模板mRNA与小亚基结合。

2、由30S 小亚基、起始因子IF –1和IF-3及模板mRNA所组成的复合物立即与GTP-IF-2及fMet-tRNAfMet相结合。反密码子与密码子配对。

3、上述六组分复合物再与50S大亚基结合,水解GTP生成并释放GDP和Pi。释放三个起始因子。

表27-9 真核细胞中参与翻译起始的蛋白质因子及其功能

真核因子功能

eIF2 促进Met-tRNAMet与核糖体40S小亚基结合。

eIF2B

eIF3

是最早与核糖体40S小亚基结合的促进因子,蛋白质合成反应的正常进行。

eIF4A 具有RNA解旋酶活性,解除mRNA模板的次级结构并使之与40S小亚基结合,形成eI F4F复合物。

eIF4B 与mRNA模板相结合,协助核糖体扫描模板序列,定位AUG。

eIF4E 与mRNA 5’的帽子结构相结合,形成eIF4F复合物。

eIF4G 与eIF4E和poly(A)结合蛋白(PAB)相结合,形成eIF4F复合物。

eIF5 促使多个蛋白因子与40S小亚基解体,以此帮助大小亚基结合形成80核糖体,形成翻译起始复合物。

eIF6 促进没有蛋白质合成活性的80S核糖体解离成40S和60S两个亚基。

4、肽链的延伸

肽链延伸的基本要求是:

有完整的起始复合物,

有氨基酰-tRNA,

有延伸因子EF-Tu, EF-Ts和EF-G,

有GTP。

肽链延伸也可被分为三步:

第一步,与新进来的氨基酰-tRNA相结合。氨基酰-tRNA首先必须与GTP-EF-Tu复合物相结合,形成氨基酰-tRNA-GTP-EF-Tu复合物并与70S中的A位点相结合。此时,GTP水解并释放GDP-EF-Tu复合物。

第二步,肽键形成。肽键形成之初,两个氨基酸仍然分别与各自的tRNA相结合,仍然分别位于A位点和P位点上。A位点上的氨基酸(第二个氨基酸)中的α-氨基作为亲核基团取代了P位点上的tRNA,并与起始氨基酸中的COOH基团形成肽键。本反应可能由peptidyl t ransferase 催化。

第三步,移位(translocation)。核糖体向mRNA的3’方向移动一个密码子,使得带有第二个氨基酸(现已成为二肽)的tRNA从A位进入P位,并使第一个tRNA从P位进入E 位。此时模板上的第三个密码子正好在A位上。核糖体的移位需要EF-G(translocase)和另一分子GTP水解提供能量。

5、肽链的终止

当终止密码子进入核糖体A位点时,在释放因子RF1-3的作用下:

(1)水解末端肽基tRNA;

(2)释放新生肽和tRNA;

(3)使70S核糖体解离成30S和50S两个亚基。

6、蛋白质合成的抑制剂

抗菌素对蛋白质合成的作用可能是阻止mRNA与核糖体结合(氯霉素),或阻止AA-tRNA与核糖体结合(四环素类),或干扰AA-tRNA与核糖体结合而产生错读(链霉素、新霉素、卡那霉素等),或作为竞争性抑制剂抑制蛋白质合成。

链霉素是一种碱性三糖,干扰fMet-tRNA与核糖体的结合,从而阻止蛋白质合成的正确起始,并导致mRNA的错读。若以poly(U)作模板,则除苯丙氨酸(UUU)外,异亮氨酸(AUU)也会掺入。对链霉素敏感位点在30S亚基上。

嘌呤霉素是AA-tRNA的结构类似物,能结合在核糖体的A位上,抑制AA-tRNA的进入。它所

带的氨基与AA- tRNA上的氨基一样,能与生长中肽链上的羧基生成肽键,这个反应的产物是一条3’羧基端挂了一嘌呤霉素。

青霉素、四环素和红霉素只与原核细胞核糖体发生作用,从而阻遏原核生物蛋白质的合成,抑制细菌生长。氯霉素和嘌呤霉素既能与原核细胞核糖体结合,又能与真核生物核糖体结合,妨碍细胞内蛋白质合成,影响细胞生长。因此,前3种抗生素被广泛用于人类医学,后两种则很少在医学上使用。

---------------------------------------

DNA是贮藏遗传信息的最重要的生物大分子。DNA分子中的核苷酸排列顺序不但决定了胞内所有RNA及蛋白质的基本结构,还通过蛋白质(酶)的功能间接控制了细胞内全部有效成份的生产、运转和功能发挥。贮藏在任何基因中的生物信息都必须首先被转录生成RNA,才能够得到表达。DNA和RNA虽然很相似,只有T或U及核糖的第二位碳原子上有所不同,但它们的生物学活性却很不同。

RNA主要以单链形式存在于生物体内,其高级结构很复杂;RNA既担负着贮藏及转移遗传信息的功能,又能作为核酶直接在细胞内发挥代谢功能。

蛋白质是生物信息通路上的终产物,一个活细胞在任何发育阶段都需要数千种不同的蛋白质。因此,活细胞内时刻进行着各种蛋白质的合成、修饰、运转和降解反应。

一、核苷酸的合成与代谢

核苷酸是DNA和RNA的前体是细胞内化学能流通领域中的载体(ATP, GTP),是NAD、FAD、S-adenosylmethionine及 Coenzyme A等的重要成份。在糖代谢中也有重要作用,如生成U DPG和 CDP-diacylglycerol等。cAMP, cGMP还是第二信使。

1、De Novo嘌呤核苷酸的生物合成始于PRPP (Phosphoribosyl 1-pyrophosphate)

这一途径的第一步是由谷氨酰胺捐献一个氨基到PRPP的C-1位上,生成5-phosphoribosyl amine。

其次,把甘氨酸中的三个基团加到PRA上。

第三,由N10-甲基四氢叶酸提供一个甲基。

第四,谷氨酰胺提供另一个N。

第五,脱水环化形成咪唑环。

第六,羧基化

第七,通过分子重排将羧基从咪唑第4碳的环外氨基上转移到第5位碳原子上。

第八-九,由天门冬酰胺把另一个氨基加到第5位碳原子上。

第十,再由N10-甲基四氢叶酸提供一个甲基。

第十一,脱水环化,形成嘌呤IMP。

参与合成AMP的是①腺苷琥珀酸合成酶和②腺苷琥珀酸裂解酶。

参与合成GMP的是③IMP脱氢酶和④XMP-谷氨酰胺酰胺转移酶。

2. 嘌呤核苷酸合成中的反馈调节

3.嘧啶核苷酸是由天门冬酰胺、 PRPP和氨基甲酰磷酸等共同形成的

嘧啶从头合成途径不同于嘌呤的合成,6-原子嘧啶环首先被合成,然后才与核糖-5-磷酸相连。这个反应需要氨基甲酰磷酸(Carbamoyl phosphate)。

4.核苷单磷酸转化为核苷三磷酸

反应生成的ADP可通过糖酵解酶或氧化磷酸化途径被进一步磷酸化。

ATP能够把磷酸基团加到其它所有核苷单磷酸上生成核苷三磷酸。

核苷二磷酸可通过一个公用的核苷二磷酸激酶被进一步磷酸化生成核苷三磷酸。

5.核糖核苷酸(ribonucleotides)是脱氧核糖核苷酸(Deoxyribonucleotides)的前体。所有dNTP都直接来自于NTP(其实是NDP)。这个反应很特殊,因为核糖上的还原反应发生于一个没有活化的碳原子上。催化该反应的酶是核糖核苷酸还原酶。

大肠杆菌核苷酸还原酶有两大特征,它的生物学活性和底物特异性同时受效应子(effecto r molecules)的影响。每个R1亚基上都有两个调节位点,当影响整体酶活性的那个位点与ATP相结合时,酶活性增加;而当它与dATP结合时,酶活性消失。

第二个调节位点控制了底物特异性。当dATP与该位点相结合时,UDP和CDP的还原反应优先进行。当dTTP与该位点相结合时,GDP的还原反应优先进行。

核糖核苷酸还原反应的主要过程

1. 还原酶R2亚基处于氧化态-X˙,向核糖3’位碳原子上的H发起攻击,生成3’位自由基。

2. R1亚基上的-SH基团为2’-OH提供一个H原子,使之生成-OH2基团。

3. 脱水后,3’位自由基帮助维持2’位O+基团。

4. R1亚基上的另一个-SH基团为2’-CH+提供一个H原子

5. 2’上的C˙-OH向R2亚基上的X-H发起攻击。

6. 2’上的C-OH失去氧原子,生成dNDP。其中,dTMP(thymidylate)来自于dCDP和dUM P,其直接前体是dUMP,由胸苷酸合酶(thymidylate synthase)将dUMP转化为dTMP;反应中的甲基来自于N5,N10-Methylene-tetrahydrofolate。

7、嘌呤和嘧啶降解后分别生成Uric Acid和Urea。

嘌呤核苷酸降解

第一步是在5’-核苷酸酶(5’-nucleotidase)的作用下消去磷酸基团,由Adenosine-mo nophosphate变成Adenosine,或从GMP变成Guanosine。

二、在Adenosine deaminase的作用下生成Inosine;

三、在nucleosidase的作用下生成Hypoxanthine或由Guanosine生成Guanine;

四、在Xanthine oxidase或Guanine deaminase作用下生成Xanthine;

五、在Xanthine oxidase的作用下生成Uric acid。

嘌呤代谢突变会引起重要疾病。

如人体内缺失adenosine deaminase,会引发严重的免疫缺失性疾病,因为此时T-淋巴和B -淋巴细胞不能正常发育。AD缺失后,细胞内dATP的含量将高达正常细胞中的100倍,而过量的dATP则抑制了其余dNTP在T-淋巴细胞中的合成。许多化疗(chemotherapy)药剂都针对核苷酸合成途径。如Azaserine和Acivicin都是Glutamine类似物,被用于阻断核苷酸的生物合成。

胸苷合成中的主要抑制剂有fluorouracil(氟脲)、methotrexate(氨甲基叶酸)和amin

opterin(氨喋呤)。氟脲本身不是thymidylate synthase 抑制剂,但它在细胞中被转化为FdUMP以后,就能直接与TS相结合并使之失活。氨甲基叶酸和氨喋呤都是dihydrofolat e reductase的抑制剂,氨甲基叶酸与该酶的亲和力比底物dihydrofolate高100倍。

二、氨基酸代谢

按所占的质量比例计算,N在生物体内的重要性排在CHO之后,列第4位。大量N元素都是有机氮,被结合于氨基酸或核苷酸分子中。

地球上的动植物共含氮约1.5×1010t,而每年通过硝化细菌以气态氮的形式释放到大气中的氮就有2×108—5×108t。全世界氮肥厂每年生产的化肥仅含氮约108t,所以,如果没有生物固氮,生命很快就不复存在了。

1. 铵通过谷氨酸→谷氨酰胺被结合到有机物质中。

主要有两步反应:

⑴Glutamate+ATP→γ-glutamylphosphate+ADP

⑵γ-Glutamyl phosphate+NH4+→glutamine+Pi+H+

总结:

Glutamyl+NH4++ATP→glutamine+ ADP+Pi+H+

因此,谷氨酰胺合成酶是氮代谢中的主要调控位点。

在大肠杆菌中,GS由12个相同的亚基(50kDa)聚合而成,其活性既通过构象变化,也能通过共价修饰的方式得到调节。Alanine,Glycine和其它至少6种gln代谢产物都是GS活性的变构抑制剂,每个抑制剂都只有部分抑制作用。除变构抑制之外,GS活性还受共价修饰调节。当第397位酪氨酸被腺苷化后(加上AMP),该酶更容易受变构抑制剂的反馈调节。

2.氨基酸的生物合成

高等动物不能合成大约一半氨基酸,只能从食物中直接获取这些必需氨基酸(Essential)。

表18-1 人体必需氨基酸(*.哺乳期至幼儿期必需)

表22-1 氨基酸合成的六条主要途径

3.氨基酸脱羧基化后生成有机胺。许多重要的神经递质都是胺或其次生代谢产物。Tyrosin e降解产物有dopamine(多巴胺),epinephrine(肾上腺素),norepinephrine,统称为Catecholamines(儿茶酚胺)。

4.精氨酸降解产生NO˙(Nitric Oxide)。

本世纪80年代,科学家发现NO是人体内重要的信号分子,它参与神经传递、凝血和血压调控等一系列生理反应。虽然它是气体,极易扩散,但由于它十分活跃,其扩散半径一般只有1mm。

三、氨基酸及功能蛋白质合成后的修饰

1.蛋白质刚刚被合成时,都以fMet(原核)或Met(真核)开始,多肽合成后,N端的for myl group、Met残基,有时还包括N揣多个残基或C端的残基都会被切除。50%的真核蛋白中,N-端残基的氨基酸会被N-乙基化。

2.切除信号肽。许多蛋白质都带有15-30个残基的signal peptides,负责指导蛋白质在细胞中的精确定位。

3.特定氨基酸的修饰。

4.氨基酸的糖苷化

5.氨基酸的异戊烯化(Addition of Isoprenyl Groups)

6.有些蛋白质还要与辅基(prosthetic groups)相结合;

Cytochrome C只有与血红素(heme)相结合才有功能。此外,Acetyl-CoA羧化酶常与Biot in分子相结合。有些蛋白质必须经蛋白酶切割后才有功能。有些蛋白质只有在形成二硫键之后才有功能。

四、蛋白质的运输和降解

1、绝大部分被运入ER内腔的蛋白质都带有一个Signal peptide。该序列常常位于蛋白质的氨基末端,长度一般在13-36个残基之间,有三个特点:(1)一般带有10-15个疏水氨基酸;(2)常常在靠近该序列N-端疏水氨基酸区上游带有1个或数个带正电荷的氨基酸;(3)在其C-末端靠近蛋白酶切割位点处常常带有数个极性氨基酸,离切割位点最近的那个氨基酸往往带有很短的侧链(Ala或Gly)。

研究发现,信号肽把Ribosome牵引到ER上。蛋白质合成之初,一旦信号肽序列的N端暴露在核糖体外,该序列(包括核糖体)就迅速与SRP(signal recognition particle)相结合,诱发SRP与GTP相结合,停止新生肽的进一步延伸(此时新生肽一般长约70个残基左右)。

受位于ER外膜上的SRP-receptor及ribosome-receptor的牵引,这个复合物(GTP-SRP-r ibosome-mRNA-新生肽)立即向ER外膜靠拢,并通过peptide transport complex进入ER 内腔。

5.Rough ER上的蛋白质常常通过运转载体将经过修饰的蛋白质送入高尔基体,再分别送到各个亚细胞位点。

6.蛋白质中的核定位序列一般不被切除。

蛋白质的核定位是通过多个蛋白的共同作用来实现的。Importin (α,β亚基)的作用有点像SRP受体。NLS蛋白-Importin复合物停留在核孔上,并在Ran-GTPase的作用下通过核孔。细菌细胞内也存在类似的蛋白质运转系统。

7、蛋白质降解是一个有序的过程。

在大肠杆菌中,许多蛋白质的降解是通过一个依赖于ATP的蛋白酶(称为Lon)来实现的。当细胞中存在有错误或半衰期很短的蛋白质时,该蛋白酶就被激活。每切除一个肽键要消耗两分子ATP。

在真核生物中,蛋白质的降解需要Ubiquitin,一个有76个氨基酸残基组成极为保守的蛋白参与。与Ubiquitin相连的蛋白将被送到一个依赖于ATP的蛋白质降解系统(Proteasom e,Mr. 1×106)。

成熟多肽N-端第一个残基对蛋白质的稳定性有重要影响。

五、DNA代谢

无论是只含有一对染色体的原核细胞还是带有多对染色体的真核细胞,只有整个基因组得到了完整准确的复制,细胞分裂才能顺利发生。所以说,DNA复制的起始,标志了细胞进入一个新的周期。

一、DNA复制

根据反应阶段和所需的不同酶类,DNA的复制可被分为三个阶段,即复制起始、延伸和终止。每个DNA复制的独立单元被称为复制子(replicon),主要包括复制起始位点(Origine o f replication)和终止位点(terminus)。原核生物的整个染色体上一般只有一个复制起始位点。

大肠杆菌DNA的复制需要有20种左右的酶和蛋白质因子参与,整个DNA复制机器被称之为

DNA replicase system或replisome。

Helicase,任何DNA在被复制前都必须解开双链,这个过程是由helicase来完成的,它可在ATP的作用下将DNA母链不断解开形成单链。

Topoisomerase,主要功能是消除DNA解链过程中所产生的扭曲力。

DNA结合蛋白,使新解链的DNA保持稳定结构。

Primases,为DNA复制提供RNA引物。

DNA polymerases,合成新生DNA链,切除RNA引物。

DNA Ligases,使新生DNA链上的缺口(3’-OH, 5’-p)生成磷酸二酯键。

1. DNA复制的起始

大肠杆菌中的复制起始位点是Ori C,全长245Bp,该序列在所有细菌复制起始位点中都是保守的。

DNA复制起始中的主要步骤

a. 大约20个左右的DnaA蛋白首先与OriC中的4个9碱基重复区相结合;

b. 识别并使3个13碱基串联重复区DNA形成开环结构;

c. DnaB蛋白在DnaC的帮助下与未解链序列结合。每六个DnaB蛋白形成一组并与一条DNA 母链结合,可在不同方向同时起始DNA的复制。当细胞中存在足够的SSB和DNA gyrase时,DnaB的解链效率非常高。

整个DNA复制过程中,只有复制起始受细胞周期的严格调控。

"Once in each cell cycle。"

DNA甲基化与DNA复制起始密切相关。OriC中有11个GATC回文结构(一般说来,256bp才应有一个GATC重复)。DNA子链被合成后,母链立即被甲基化(称为hemimethylated)。此时,oriC与细胞原生质膜相结合。只有当oriC被从膜上释放出来,子链被Dam甲基化后,才能有效地与DnaA蛋白结合,起始新一轮的DNA复制。复制起始可能还受ATP水解过程调控,因为DnaA只有与ATP相结合时才能与oriC区DNA相结合。

2. DNA子链的延伸

主要包括两个不同但相互有联系的事件,即前导链和滞后链的合成。由DNA helicase解开双螺旋,由拓朴异构酶消除DNA链上的扭曲力,SSB结合使DNA单链稳定。

前导链的合成:由DnaG(primase)在复制起始位点附近合成一个10-60 nt的RNA引物,然后由polII把dNTP加到该引物上。

滞后链的合成:产生Okazaki fragments,消除RNA引物并由DNA pol I补上这一小段DNA 序列,由DNA Ligase把两个片段相连。

3. DNA链的终止

当子链延伸达到terminus region(ter,带有多个20bp序列)时,DNA复制就终止了。Te r有点像一个陷井(trap),使复制叉只能进入,不能出来。Ter的功能主要是由Ter-Tus 复合物(ter utilization substance)来完成的。

4. 真核细胞DNA的复制比大肠杆菌更复杂

真核生物的origin of replication被称为ARS-autonomously replicating sequences或者被称为replicators。Yeast replicators长约150dp,有多个保守重复区,共有约500个replicators分布于酵母的17条染色体中。

二、DNA的损伤修复

1.错配修复(mismatch Repair)

错配修复对DNA复制忠实性的贡献力达102-103,DNA子链中的错配几乎完全都被修正,充分反映了母链的重要性。

2. 碱基切除修复(Base-Excision Repair)

DNA gylcosylases能特异性识别常见的DNA损伤(如胞嘧啶或腺嘌呤去氨酰化产物)并将受损害碱基切除。去掉碱基后的核苷酸被称为AP位点(apurinic or apyrimidinic)。细胞中最常见的Uracil Glycosylase就能特异性切除细胞中的去氨基胞嘧啶。

3. 核苷酸切除修复(nucleotide-excision repair)

当DNA链上相应位置的核苷酸发生损伤,导致双链之间无法形成氢键,由核苷酸切除修复系统负责进行修复。

4.DNA的直接修复(Direct repair)

三、DNA的转座

DNA的转座,或称移位(transposition),是由可移位因子(transposable element)介导的遗传物质重排现象。已经发现"转座"这一命名并不十分准确,因为在转座过程中,可移位因子的一个拷贝常常留在原来位置上,在新位点上出现的仅仅是拷贝。因此,转座有别于同源重组,它依赖于DNA的复制。

1.转座子的分类和结构特征

a. 简单转座子

转座子(transposon,Tn)是存在于染色体DNA上可自主复制和移位的基本单位。

最简单的转座子不含有任何宿主基因而常被称为插入序列(insertion sequence,IS),它们是细菌染色体或质粒DNA的正常组成部分。一个细菌细胞常带有少于10个IS序列。转座子常常被定位到特定的基因中,造成该基因突变。IS序列都是可以独立存在的单元,带有介导自身移动的蛋白。

b.复合式转座子(composite transposon)是一类带有某些抗药性基因(或其他宿主基因)的转座子,其两翼往往是两个相同或高度同源的IS序列,表明IS序列插入到某个功能基因两端时就可能产生复合转座子。一旦形成复合转座子,IS序列就不能再单独移动,因为它们的功能被修饰了,只能作为复合体移动。

2、转座作用的机制

转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的(3-12bp)、被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。不同转座子的靶序列长度不同,但对于一个特定的转座子来说,它所复制的靶序列长度都是一样的,如IS1两翼总有9个碱基对的靶序列,而Tn3两端总有5bp的靶序列。

转座可被分为复制性和非复制性两大类。在复制性转座中,所移动和转位的是原转座子的拷贝。转座酶(transposase)和解离酶(resolvase)分别作用于原始转座子和复制转座子。TnA类转座主要是这种形式。在非复制性转座中,原始转座子作为一个可移动的实体直接被移位,IS序列、Mu及Tn5等都以这种方式进行转座。

3.转座作用的遗传学效应

①转座引起插入突变;②转座产生新的基因;③转座产生的染色体畸变;④转座引起的生物进化.

六、RNA代谢

除了某些RNA病毒之外,所有RNA分子都来自于DNA。基因组DNA通过一个被称为转录的过程把贮存在双链DNA分子中的遗传信息转换到与模板DNA链相互补的RNA单链上。mRNA,编码了一个或多个蛋白质序列;tRNA,把mRNA上的遗传信息变为多肽中的氨基酸信息;rRNA,是合成蛋白质的工厂核糖体中的主要成份。

1.依赖于DNA的RNA合成

从DNA合成反应的化学本质、极性和模板的使用这三方面来说,转录与复制是相同的。但是,也存在三个主要不同点:

A.转录中不需要RNA引物;

B.转录反应一般只用一小段DNA做模板;

C.在转录区,一般都只有一条DNA链可以作为模板。

2.RNA合成的终止

一旦RNA聚合酶启动了基因转录,它就会沿着模板5’→3’方向不停地移动,合成RNA链,直到遇到终止信号时才释放新生的RNA链,并与模板DNA脱离。

研究RNA链终止时遇到最常见的问题是3’端核苷酸的定位,因为活细胞内部根据终止信号正确终止的RNA与一个经过剪接的RNA在3’端没有两样,都是-OH基团。模板DNA上都有终止转录的特殊信号--终止子,每个基因或操纵子都有一个启动子,一个终止子。在新生R NA中出现发卡式结构会导致RNA聚合酶的暂停,破坏RNA-DNA杂合链5’端的正常结构。寡聚U的存在使杂合链的3’端部分出现不稳定的rU.dA区域。

a. 依赖于ρ因子的终止

ρ因子是一个相对分子质量为2.0×105的六聚体蛋白,它能水解各种核苷三磷酸,实际上是一种NTP酶。由于催化了NTP的水解,ρ因子能促使新生的RNA链从三元转录复合物中解离出来,从而终止转录。

有人认为,在RNA合成起始以后,ρ因子即附着在新生的RNA链上,靠ATP水解产生的能量,沿着5’→3’方向朝RNA聚合酶移动,到达RNA的3’-OH端后取代了暂停在终止位点上的RNA聚合酶,并从模板和酶上释放RNA,完成转录过程。终止过程需要消耗能量,所以,ρ因子具有终止转录和核苷三磷酸酶两种功能。

b、不依赖于ρ因子的终止

若终止点上游存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构;在终止点前面有一段由4-8个A组成的序列,导致转录产物的3‘端为寡聚U。这两种结构特征的存在同样决定了转录的终止。

在新生RNA中出现发卡式结构会导致RNA聚合酶的暂停,破坏RNA-DNA杂合链5’端的正常结构。寡聚U的存在使杂合链的3’端部分出现不稳定的rU.dA区域。

3.RNA聚合酶II及转录因子在启动子上的装配

TFⅡH还参与DNA的损伤修复。当RNA polⅡ转录过程中碰到受损伤的核苷酸时,TFⅡH能及时启动核苷酸切除修复系统,将损伤修复。

Actinomycin D和Acridine阻断RNA链的延伸

4.RNA的加工成熟

所以,RNA加工成熟主要包括:5’加帽子结构;3’加多聚A;切除内含子。

在Group I内含子切除体系中,鸟苷或鸟苷酸的3’-OH 作为亲核基团向Intron 5’的磷酸二酯键发起进攻。

Group II内含子切除体系

核内mRNA原始转录产物的剪辑方式可能是最常见的。在这一模式中,RNA的剪辑需要特异性RNA-protein-复合物small nuclear rebonucleoproteins(snRNP)和small nuclear R NAs(snRNAs)。已经发现至少有5种snRNAs--U1,U2,U4,U5,U6。

------------------------------------------------------------

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

中南大学_医学分子生物学试题库答案.pdf

医学分子生物学习题集 (参考答案) 第二章基因与基因组 一、名词解释 1.基因(gene):是核酸中储存有功能的蛋白质多肽链或RNA序列信息及表达这些信息 所必需的全部核苷酸序列。 2.断裂基因(split gene):真核生物基因在编码区内含有非编码的插入序列,结构基因 不连续,称为断裂基因。 3.结构基因(structural gene):基因中用于编码RNA或蛋白质的DNA序列为结构基因。 4.非结构基因(non-structural gene):结构基因两侧一段不编码的DNA片段,含有基 因调控序列。 5.内含子(intron):真核生物结构基因内非编码的插入序列。 6.外显子(exon):真核生物基因内的编码序列。 7. 基因间DNA (intergenic DNA):基因之间不具有编码功能及调控作用的序列。 8. GT-AG 法则 (GT-AG law):真核生物基因的内含子5′端大多数是以GT开始,3′ 端大多数是以 AG 结束,构成 RNA 剪接的识别信号。 9.启动子(promoter):RNA聚合酶特异识别结合和启动转录的DNA序列。 10.上游启动子元件(upstream promoter element ):TATA合上游的一些特定的DNA序 列,反式作用因子,可与这些元件结合,调控基因转录的效率。 11.反应元件(response element):与被激活的信息分子受体结合,并能调控基因表达的 特异DNA序列。 12.poly(A)加尾信号 (poly(A) signal) :结构基因末端保守的 AATAAA 顺序及下游 GT 或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。 13.基因组(genome):细胞或生物体一套完整单倍体的遗传物质的总称。 14.操纵子(operon):多个功能相关的结构基因成簇串联排列,与上游共同的调控区和下 游转录终止信号组成的基因表达单位。 15.单顺反子(monocistron):一个结构基因转录生成一个mRNA分子。 16.多顺反子(polycistron):原核生物的一个mRNA分子带有几个结构基因的遗传信息,

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

中南大学分子生物学

什么叫分子生物学?它包括哪些主要内容? 简述分子学研究现状及其在医学上的应用。 人类基因组计划研究的主要目标是什么? 什么是人类基因组计划,它包含了哪些内容? 什么是Alu序列?简述Alu序列的基本特征及其应用。 什么是选择性剪切?简述mRNA选择性剪切的生物学意义。 什么是基因定点诱变技术?简述基因定点诱变技术的应用并举例说明。 简述PCR的基本原理及其应用。 什么是半保留复制?简述半保留复制的基本过程。 什么是人类基因组计划(HGP)?阐述HGP的科学意义及其对未来医学发展的影响。 什么是操纵子学说?阐述原核生物基因表达调控机制。 什么是α-互补作用?简述α-互补作用的产生机制。 什么是RNA干扰现象?简述RNA干扰的产生机制及其应用。 什么是DNA指纹图谱?阐述DNA指纹图谱的产生机制及其应用。 什么是基因治疗?阐述逆转录病毒的生活周期及其在基因治疗中的应用。 试述在基因克隆中阳性克隆的筛选方法和原理. 基因重组技术有哪几个方面的应用? 什么是功能基因组学,它包含了哪些研究内容? 试述引物二聚体形成的原因。 什么是细胞凋亡,细胞凋亡和坏死之间有哪些主要区别? DNA左右手双螺旋DNA结构上有何特点,并说明其主要的生物学功能。 三股螺旋DNA和四股DNA结构上有何特点,并说明其主要的生物学功能。 真核生物与原核生物的mRNA结构各有何特点? RNA有哪几种?其主要生物学功能是什么? 影响DNA变性、复性的因素有哪些? 举例说明蛋白质一级结构与功能的关系? 举例说明蛋白质空间结构与功能的关系。 简述糖蛋白的结构特点及其生物学功能。 比较真核基因组和原核基因组的异同。 简述真核基因组的组织特征。 试述人类基因组DNA重复序列多态性的分子基础及分类。 试述肿瘤病毒的致瘤机理。 与原核基因组和真核基因组相比,病毒基因组有何特点。 何谓DNA复制的半不连续性?大肠杆菌中前导链与随从链的合成各有何特点。 简述DNA复制过程,参与的酶及蛋白质因子,以及他们在复制中的作用。 比较原核生物和真核生物DNA复制的异同。 何谓逆转录?它具有什么生物学意义?逆转录酶的酶活性包括哪些方面? 何谓端粒DNA?端粒酶的特性及生物学特性是什么? 紫外线造成的DNA损伤是如何进行修复的? DAN复制与RNA转录有何异同 简要说明DNA聚合酶、RNA聚合酶、逆转录酶及RNA复制酶催化不同的核酸生物合成有哪些共性? 真核生物的RNA转录有何特点? RNA的加工过程主要有几种类型?试述mRNA是如何进行加工修饰的?

研究生-分子生物学Ⅱ笔记整理版

分子生物学Ⅱ 专题一细胞通讯与细胞信号转导(一)名词解释 (1)信号分子(signal molecule):是指在细胞间或细胞内进行信息传递的化学物质。 (2)受体(receptor):是指细胞中能识别信息分子,并与之特异结合、引起相应生物效应的蛋白质。 (3)蛋白激酶(protein kinase):是指使蛋白质磷酸化的酶。 (二)简答分析 (1)细胞通讯的方式及每种作用方式的特点。 答: (2)膜受体介导的信息传递途径的基本规律。

答:配体→膜受体→第二信使→效应蛋白→效应。(3)试以肾上腺素、干扰素、胰岛素、心纳素为例,阐述其信息转导过程。 答:①肾上腺素:cAMP-PKA途径; 过程:首先肾上腺素与其受体结合,使G蛋白被激活;然后G蛋白与膜上的腺苷酸环化酶相互作用,后者将ATP转化为cAMP;最后cAMP磷酸化PKA,从而产生一系列生物学效应。 ②胰岛素:受体型TPK途径; 过程:胰岛素与其靶细胞上的受体结合后,可使其受体中的TPK激活,随后通过下游的Ras途径继续传递信号,直至发生相应的生物学效应。 ③干扰素:Jak-STAT途径; 过程:首先干扰素与受体结合导致受体二聚化,然后受体使JAK(细胞内TPK)激活,接着JAK将下游的STAT磷酸化形成二聚体,暴露出入核信号,最后STAT进入核内,调节基因表达,产生生物学效应。 ④心钠素:cGMP-PKG途径; 过程:心钠素与其受体结合,由于该受体属于GC型酶偶联受体,具有鸟苷酸环化酶的的活性,因此结合后可直接将GTP转化为cGMP,进而激活下游的PKG,最终产生一系列的生物学效应。

(4)类固醇激素是如何调控基因表达的? 答:类固醇激素穿膜后与细胞内(或核内)受体结合,使受体变构形成激素受体活性复合物并进入细胞核中,然后以TF的形式作用于特异的DNA序列,从而调控基因表达。 专题二基因分析的策略 (一)名词解释 (1)分子杂交(molecular hybridization):是指具有一定同源序列的两条核酸单链(DNA或RNA)在一定条件下,按碱基互补配对原则经退火处理,形成异质双链的过程。(2)核酸分子杂交技术:是指采用杂交的手段(方式),用一已知序列的DNA或RNA片段(探针)来测检样品中未知核苷酸顺序。 (3)探针(Probe):是指用来检测某特定核苷酸序列的标记DNA或RNA片段。 (4)增色效应:是指DNA变性时260nm紫外吸收值增加的现象。 (5)解链温度(Tm):是指加热DNA溶液,使其对260nm 紫外光的吸光度达到其最大值一半时的温度,即50%DNA 分子发生变性的温度。 (6)转基因:是指是借助基因工程将确定的外源基因导入

现代分子生物学考研复习重点

现代分子生物学考研复习资料整理 第一章绪论 分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学 分子生物学的主要研究内容 1、DNA重组技术 2、基因表达调控研究 3、生物大分子的结构功能研究——结构分子生物学 4、基因组、功能基因组与生物信息学研究 5、DNA的复制转录和翻译 第二章染色体与DNA 半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制 DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制 原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因 真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构 DNA转座(移位)是由可移位因子介导的遗传物质重排现象 DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化 转座子分为插入序列和复合型转座子两大类 环状DNA复制方式:θ型、滚环型和D-环型 第三章生物信息的传递(上)从DNA到RNA 转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程 启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性 原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力 终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列) 终止子的类型:不依赖于ρ因子和依赖于ρ因子 增强子:能增强或促进转录起始的序列 增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具

中南大学生物化学与分子生物学复习规划+考试大纲

中南大学生物化学与分子生物学 课程大纲 课程总述 中南大学生物化学与分子生物学考研有以下四门课程:英语一(100分),政治(100分),731生物学综合(150分),811细胞生物学(150分)。本课程负责731/811两门专业课。 根据协议,一共43小时,每节课60分钟,共43小时。 731生物学综合:23小时 811细胞生物学:20小时 整个课程体系 1、基础班 2、强化班 3、冲刺班 基础班:主要讲解基础知识,帮助考生打扎实基础,理解基础知识点,有利于应付小题考点。强化班:在基础班的学习上,总结真题考点,大纲考点,突击考试重点,讲解考研专业课真题。 冲刺班:重在进一步搞清楚真题考点,通过模拟题的训练,熟悉考题风格,以及答题技巧。 (1)731《生物综合》考试大纲-------考卷结构 细胞生物学约30% 动物的形态与功能约20% 遗传与变异约30% 生物进化与多样性约10%

生态学与动物行为约10% (2)参考书目 陈阅增《普通生物学》,主编吴相钰高等教育出版社2009年第三版 《细胞生物学》,主编刘艳平湖南科学技术出版社2008年第一版 (一)细胞基本知识概要 细胞的基本概念、原核细胞与真核细胞基本知识概要。 (二)细胞膜、跨膜运输与信号传递 细胞膜的基本结构,跨膜运输的主要方式及基本过程,信号传递的类型及其作用机制。 (三)细胞质基质与内膜系统 细胞质基质基本知识,内质网、高尔基复合体的基本结构以及功能,溶酶体与过氧化物酶体的结构特点以及功能,信号假说与蛋白质分选信号,蛋白质分选的基本途径与类型,膜泡运输。 (四)细胞的能量转换——线粒体 线粒体的结构与功能,线粒体的半自主性。 (五)细胞核与染色体 核被膜基本知识,核孔复合体的结构模型及功能,染色体的概念及其化学组成,核小体,染色体的形态结构,核仁的基本知识。 (六)核糖体 核糖体的结构成分及其功能,多聚核糖体与蛋白质的合成。 (七)细胞骨架

完整word版,分子生物学总结完整版,推荐文档

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

2014-2015年中南大学博士生分子生物学考试试题

2015年 问答题 1.什么是RNAi?简述RNAi技术的原理和其应用前景。 答:RNAi是指在进化过程中高度保守的、由双链RNA诱发的,同源mRNA高效特异性降解的现象。 应用前景:1.研究基因功能的新工具,利用RNAi技术选择性沉默基因进行功能学实验的检测;2.研究基因传导通路的新途径,利用传统的缺失突变技术和RNAi技术可以很容易地确认复杂的信号传导途径中不同基因的上下游关系。3.开展基因治疗的新策略,RNAi具有抵抗病毒入侵,抑制转座子活动,防止有害基因序列过度增殖的作用,还可以抑制单一癌基因的过度增殖,达到治疗肿瘤的目的。 2.什么是重组DNA技术?简述重组DNA技术的基本过程。 答:它是将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序; 基本过程:1.目的基因的获取;2.克隆基因与载体的连接;3.重组DNA导入受体菌;4.重组体的筛选;6.克隆基因的表达。 3.与传统医学诊断方法相比,基因诊断有哪些特点或优势? 答:基因诊断是利用分子生物学技术从DNA水平检测人类遗传性疾病的基因缺陷,是一种新的临床诊断方法。 基因诊断的特点:1.不受材料来源的影响:外周血,活体穿刺组织,孕妇外周血,血斑等;2.症状前诊断:尤其对一些迟延显性疾病如Huntingtong舞蹈病;3.产前诊断:避免患儿出生,提高人口质量。 4.与双脱氧末端终止法为基础的第一代测序相比,新一代测序技术在测序原理和应用范围 上有哪些不同? 5.简述逆转录病毒载体的基本结构特点及其在基因治疗中的应用。 答:1.结构基因gag,pol,evn被删除;2.病毒的包装信号被保留;3.载体中带有一个抗性标记基因,供阳性筛选用,常用的新霉素磷酸转移酶基因neo。4.载体中有合适的酶切位点,供插入目的基因。5’端LTR中的增强子,启动子序列,3’端LTR中的polyA信号均可用于目的基因的表达。 1.转染范围广,可以感染各种细胞类型,如淋巴细胞,肝细胞,肌细胞; 2.转入的外源基因可以完全整合; 3.感染细胞不产生病变,可建立细胞系长期持续表达外源基因。

分子生物学笔记完全版

分子生物学笔记 第一章基因的结构 第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生有功能的基因产物,这种基因称为假基因(Pseudogene).Ψa1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1.功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构, 2.结构基因中没有内含子,也无重叠现象。 3.细菌DNA大部分为编码序列。 二、病毒基因组的特点 1.每种病毒只有一种核酸,或者DNA,或者RNA; 2.病毒核酸大小差别很大,3X103一3X106bp; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4.大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5.真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6.有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone):一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere):真核生物线状染色体分子末端的DNA区域 端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考 题答案 1 染色体具有哪些作为遗传物质的特征? 1 分子结构相对稳定 2 能够自我复制,使亲子代之间保持连续性 3 能够指导蛋白质的合成,从而控制整个生命过程 4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。 由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。 核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。 核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程 除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。 4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征 DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征? 1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。 2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。 3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义 DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

现代分子生物学名词解释

现代分子生物学名词解释 1. 现代分子生物学必考要点超全版必考要点 2. 基因 产生一条多肽链或功能RNA所必需的全部核苷酸序列。 3. 基因组 基因组是生物体内遗传信息的集合,是指某个特定物种细胞内全部DNA分子的总和。 4. 顺反子 由顺/反测验定义的遗传单位,与基因等同,都是代表一个蛋白质质的DNA 单位组成。一个顺反子所包括的一段DNA与一个多肽链的合成相对应。 5. 基因表达 DNA分子在时序和环境的调节下有序地将其所承载的遗传信息通过转录和翻译系统转变成蛋白质分子(或者RNA分子),执行各种生理生化功能,完成生命的全过程。 6. ribozyme【已考试题】 即核酶,由活细胞所分泌的具有像酶那样催化功能的RNA分子。 7. SD序列 原核生物起始密码AUG上游7~12个核苷酸处的一段保守序列,能与16S rRNA 3′端反向互补,被认为在核糖体-mRNA的结合过程中起作用。 8. 限制性内切酶 限制性内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列,并在相关位置切割DNA双链结构的核酸内切酶。 9. 内含子和外显子 真核细胞DNA分子中能转录到mRNA前体分子中但会在翻译前被切除的非编码区序列称内含子。而编码区称为外显子。 10. C值和C值反常现象 C值指一种生物单倍体基因组DNA的总量,一般随生物进化而增加,但也存在某些低等生物的C值比高等生物大,即C值反常现象。原因是真核生物基因组中含大量非编码序列。 11. 卫星DNA 在DNA链上串联重复多次的短片段碱基序列。因能在密度梯度离心中区别与主DNA峰而单独成小峰而得名。 12. 重叠基因 一段能够携带多种不同蛋白质信息的DNA片段。 13. 断裂基因【已考试题】 在DNA分子的结构基因内既含有能转录翻译的片段,也含有不转录翻译的片段,这类基因称断裂基因。 14. 复制子【已考试题】 DNA分子上一个独立的复制单位,包括复制原点。 15. 同义突变

现代分子生物学笔记(基础理论部分)汇总

第二章染色体与DNA 第一节染色体 1、真核细胞的染色体具有如下性质:分子结构相对稳定;能够自我复制,使亲子代保持连 续性;能指导蛋白质的合成,从而控制生命过程;能产生可遗传的变异。 2、染色体上的蛋白质包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体。组蛋白分为H1、H2A、H2B、H 3、H4。 组蛋白:histones真和生物体细胞染色质中的碱性蛋白质含精氨酸和赖氨酸等碱性氨基酸特 别多,二者加起来约为所有氨基酸残基的四分之一。 3、组蛋白的一般特性: ○1进化上的极端保守:不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4 可能对稳定真核生物的染色体结构起重要作用。 ○2无组织特异性 ○3肽链上氨基酸分布的不对称性 ○4存在较普遍的修饰作用 ○5富含赖氨酸的组蛋白H5 4、非组蛋白:主要包括与复制和转录有关的酶类、与细胞分裂有关的蛋白等。 5、真核生物基因组DNA: 真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开。人们把一种生物单倍体基因组DNA的总值称为C值。在真核生物中C值一般是随生物进化而增加的,高等生物的C值一般大于低等生物,但某些两栖 类的C值甚至比哺乳类还大,这就是著名的“C值反常现象”。 6、真核细胞DNA序列可分为三类: ○1不重复序列:在单倍体基因组里,一般只有一个或几个拷贝,占DNA总量的40%~80%。结构基因基本上属于不重复序列。 ○2中度重复序列:重复次数在10~104之间,占DNA总量的10%~40%,各种rRNA、tRNA 以及某些结构基因(如组蛋白基因)都属于此类。 ○3高度重复序列:如卫星DNA。只在真核生物中出现占基因组的10%~60%,由10~60个碱基组成,在DNA链上串联重复高达数百万次,这类DNA高度浓缩,是异染色质的组成部分,可能与染色体的稳定性有关。 7、染色质与核小体:染色质纤维细丝是由DNA和组蛋白构成,DNA和组蛋白构成核小体,核小体连成念珠状构成染色质。 ○1核小体的装配过程: 两分子的H3和两分子的H4先形成四聚体,然后由H2A和H2B构成的异二聚体在该四聚体 的两侧分别结合而形成八聚体。长146bp的DNA按左手螺旋盘绕在八聚体上 1.8圈,形成核小体的核心颗粒,每圈约80bp。核心颗粒两端的DNA各有11bp与H1结合,形成完整的核小体。核小体的形成是染色体压缩的第一个阶段。 ○2染色体的压缩: DNA双链以左手螺旋盘绕在组蛋白形成的八聚体核心上即核小体------念珠状结构-----核小体结构进一步盘绕折叠形成染色质丝----组成突环----玫瑰花结------螺线圈-----由螺线圈组成染色单体。 8、真核生物基因组的特点: ○1真核基因组庞大,一般都远大于原核生物的基因组 ○2真核基因组存在大量的重复序列

相关主题
文本预览
相关文档 最新文档