当前位置:文档之家› avmg%yho起重机的晶闸管定子调压调速装置的设计应用

avmg%yho起重机的晶闸管定子调压调速装置的设计应用

avmg%yho起重机的晶闸管定子调压调速装置的设计应用
avmg%yho起重机的晶闸管定子调压调速装置的设计应用

.~

①我们‖打〈败〉了敌人。

②我们‖〔把敌人〕打〈败〉了。

0 引言

电动机的调速经过了长期的演变过程,人们在电动机的调速和转矩控制上做过了大量的研究,尝试过使用各种不同形式的调速方法,随着大功率和高开关频率的半导体器件的开发研制成功,以及现代数字技术的普及应用,为我们提供了驱动控制电动机的新的方法。目前起重机电机调速控制应用最多的是三相绕线式电动机转子串电阻调速,下面就介绍一下用于转子串电阻调速与晶闸管定子调压调速的基本工作原理与优缺点。

1 三相异步电动机工作的基本原理

1.1 基本公式

从电网输入电动机的功率

2 三相异步电动机调速

2.1 转子串电阻调速

主要介绍用于起重机起升机构用的两挡反接控制,机械特性如图1 所示。两挡反接制动是指起升机构在满载或75%负载下,可以达到满速下降的目的。在返回停止工作时可达到准确停车,避免在满载情况下下滑而造成意外事故。

上升1、2、3 挡人为逐级切除电动机转子电阻,使电动机由机械特性1、2、3 过渡到机械特性4 上,电动机高速运转。

满载慢速下降电动机工作在特性5上,电机转子串进一定的电阻值,使电动机处于反接制动状态。

轻载下降电动机工作在特性6 上,此时电动机转子串进全部电阻,使电动机的机械特性变得更软。电动机工作在反接制动状态。

虽然在上面两种反接制动状态下能够得到一定的低速,但是不能长时间运行,否则会造成电机发热严重,此时电机的机械特性都比较软,负载转矩瞬间产生的任何波动都会使电机失去控制,将造成严重后果。所以在操作控制时不允许长时间运行在特性5、6上,要在短时间内切掉转子电阻,使电动机工作在再生发电状态下。

绕线式异步电动机转子串电阻调速为开环调速,速度波动比较大,轻载时调速范围比较小,也就是说在载荷较小时起升各挡之间速度变化不明显。下降控制时比较复杂,需要操作人员密切关注机构的运行方向。另外下降过程中无论负载大小,都得不到稳定的低速运行,所以在对下降控制要求较高的冶金及其它行业就不能满足调速要求了。

2.2 晶闸管定子调压调速

2.2.1 调压调速基本原理

由异步电动机的电磁转矩表达式

可知,当电动机各参数及电源频率不变时,且当转差率s 一定时,电动机输出转矩T与电机定子电压U1成正比。当改变定子电压时,可以得到一组人为的机械特性曲线,如图2 所示。

由图2 可以看出,为了在一定的负载转矩下,通过降低定子电压得到低速运转是可能的。但是在降低定子电压得到低速时,由于转差率s 将增大,因此电动机电流随着s 的增大而增大。这样转差功耗就全部消耗在电动机内部,从而致使电动机发热严重。

另外由图猿可见,带恒转矩负载TL 时,普通的笼型异步电动机变电压时的稳定工作点为A、B、C,转差率s 的变化范围不会超过0~sm,调速范围很小。为了能在恒转矩负载下扩大变压调速范围,须使电机在较低速下稳定运行而又不致过热,就要求电动机转子绕组有较高的电阻值。图3 给出了高转子电阻电动机变电压时的机械

特性,显然在恒转矩负载下的变压调速范围增大了,所以异步电动机变电压调速时,采用普通电机的调速范围很窄,为了减少电机发热及扩大调速范围,须采用高转子电阻的电机。

晶闸管定子的调压调速装置,是通过在定子上串联反并联晶闸管并控制其导通角来实现的,可以实现三相绕线转子异步电动机低速稳定运行。但这种调压调速是开环系统,其特性硬度不够,速度波动率大。为了提高其调速性能可采用有双闭环(速度环和电流环)反馈调压调速控制系统,闭环调速时电动机的机械特性曲线如图4 所示。显而易见闭环系统下的机械特性硬度提高了,速度波动率大大减小。

闭环调压调速系统动态过程为当电动机稳定运行在要求的速度时,一旦负载增大,电机会在较大负载拖动下进行减速,速度反馈值也随之降低,闭环系统给定值不变,速度调节器的输入由于速度反馈的下降而增大,经过速度调节器调节控制晶闸管,增加晶闸管导通角,因而电动机定子电压提高,电动机力矩也增大,电动机开始加速,当速度升至要求值时,速度反馈与给定值相等,速度调节器输出值不再变化,晶闸管导通角不变,电动机电压也不再升高,电动机力矩与负载力矩达到平衡,电动机又稳定运行于给定值确定的速度值。这种速度调节器为PID调节器,由于积分的作用,所以速度与给定值相等,属无静差调速系统。

2.2.2 晶闸管定子调压调速特点

定子晶闸管调压调速闭环系统已在近年得到较广泛的使用。

应用了以上所述的闭环调压调速原理,设计生产的用于起重机电动机的调速装置,具体特点如下。

1)这种调压调速装置是专业化设计产品,专门用于驱动起重机的起

升机构和运行机构,对起重绕线式电动机进行控制。

2)该装置是数字化调速设备,由于在设计时充分考虑简便和实用,所以用户在使用时特别方便。该装置的参数少,而且直观简单,当使用时在保证正确接线的基础上,只需要调整电动机电流参数就可进行正常工作,无须长时间调试和调整。

3)该装置正反向切换采用交流接触器进行,这样设计就彻底避免了环流发生的可能性,因而也不必采用快速熔断器保护晶闸管的设计方法。

用两组晶闸管控制正反向在实际使用中经常产生环流,因而必须采用快速熔断器进行保护。这样在使用时,就必须经常更换快熔,造成故障率提高,给使用维护带来不便。

该装置由于无环流发生的可能性,再加上晶闸管选择上的考虑,因此只需用带电子脱扣器的断路器保护即可,方便使用。

该装置控制接触器切换时,是在无电压无电流的情况下进行的,这样在接触器的选择上就可按接触器的约定发热电流进行,在寿命的选择上,只考虑机械寿命即可。

另外,利用正反向接触器控制电动机比较直观可靠,容易判断故障,同时我们利用正反向接触器辅助触头与制动器进行连锁,就非常可靠的保证了制动器只有在电动机带电的情况下才能开闸,使运行及控制更加可靠。

4)由于调压调速控制系统采用速度闭环,所以必须设置速度检测环节。该装置抛弃了原有的容易损坏的测速发电机和安装困难对环境

要求高的脉冲偏码器的测速方法,采用电动机转子频率反馈进行测速,这样就大大降低了改造难度,降低了使用故障,调速比能够达到1:10。

2.2.3 用于起升机构控制逻辑功能简介

用于起升机构的控制系统如图5 所示,机械特性如图6所示。

1)电源电路断路器1Q1 用于对主起升机构电动机及调压调速装置提供短路及过载保护。

2)数字式定子调压调速装置是一个速度闭环的现代化交流调速系统,无需测速发电机和编码器,而是采用电动机转子频率作为速度反馈信号。当设定电动机低速运行时,通过自动调节电动机定子电压,使电动机稳定运行在设定速度上。由于是闭环调速系统,所以,电动机的运行速度不会因为负载的变化而变化,速度波动率很小。

3)正、反向接触器1KM11与1KM21 用于控制电动机的运行方向。

正反向接触器的动作均由THYROMAT 控制,其动作顺序为机构上升运行时,正向接触器1KM11吸合,电动机加上了正向相序,使电动机处于正向电动状态,带动机构正向起升。上升1、2、3挡为低速调速挡,速度分别设定为10%、20%、30%,上升4 挡为全速挡,此时输出全电压,控制电动机以额定速度运行。机构下降运行1—3挡时,首先正向接触器1KM11吸合,通过调节电动机定子电压,使电动机处于反接制动状态,靠负荷拉动机构下降运行,以获取低速运行。当吊运负荷重量很轻,无法拉动机构下降运行时,会自动进行检测。当在1.5 s内,机构还未运转,就自动判断负荷为轻载,在零电流的情况下控制正反向接触器的切换,使反向接触器1KM21 吸合,让电动机处于反向电动状态,达到设定速度。若由于某种原因吊运的负荷变重,会自动控制正反向接触器回复到反接制动状态。下降4 挡时,控制反向接触器吸合,使电动机处于反向电动状态,当负载重时,电动机速度超过同步速处于再生发电制动状态。

控制手柄由下降4 挡回复到下降1—3挡时,会自动控制正反向接触器在零电流的情况下迅速切换,让电动机迅速进入反接制动状态,制动负荷进入下降低速状态。

4)转子接触器在每个电动机的转子上均串接了电阻,用于消耗电机低速运行时产生的热能,电阻器分为四段。上升调速挡时,1KM43吸合切除最后一段电阻,加大电机启动力矩。上升4 挡时,通过THYROMAT 控制另外两个转子接触器1KM42、1KM41分别在

50%,75%速度下闭合,分别切除第二、第三段电阻,使电机平滑过渡到全速,又使切换电流得到控制。下降1—3 挡时,为了降低电机电流,并使下降4 挡回到下降1—3 挡时,切换力矩足够,增加了最后一段电阻,转子四段电阻全部串联到转子上。当下降4 挡时,通过THYROMAT 控制另外两个转子接触器分别在50%,75%速度下闭合,分别切除第二、第三段电阻,使电动机处于再生发电制动时速度限制在允许范围内。

5)控制电路中还具有零位、失压、限位等保护功能。

3 结语

该装置目前广泛应用于冶金、矿山、水电等行业的起重设备上,使用效果非常好。

这种调压调速装置的使用能够有效地降低起重机的机械冲击,从而使起重机的运行更加稳定、可靠。

反铲挖掘机工作装置设计

机械设计说明书设计题目:反铲单斗液压挖掘机工作装置设计 姓名:舒康 学号:20097588 指导老师:冯鉴 09工程机械2班

目录 一.机械原理设计任务书 (4) §1.1设计题目简介 (4) §1.2设计任务 (4) 二.单斗液压挖掘机结构简图 (6) 三.设计中小型液压挖掘机结构参数一览表(参照下图) (8) §3.1单斗液压挖掘机结构几何参数详表 (8) §3.2斗容量为0.25 m3 的小型单斗液压挖掘机结构详细参数 (9) 四.确定下列所给满足要求的结构参数 (12) §4.1确定长度与角度结构参数 (12) §4.2斗形参数的选择 (15) §4.3最大挖掘深度、停机面最大挖掘半径、最大卸载高度、最大挖掘高度的计算 (16) §4.3.1最大挖掘深度 (16) §4.3.2最大挖掘半径 (17) §4.3.3最大卸载高度 (17) 五.动臂液压缸、斗杆液压缸、铲斗液压缸运动参数确定 (19) §5.1动臂液压缸 (19) §5.2斗杆液压缸 (19) §5.3铲斗液压缸 (20) 六.机构自由度分析 (21) 七.仿真 (22)

八.机构搭建图 (23) 九.参考文献: (25) 十.心得和体会 (24)

完成日期:年月日指导教师 一.机械原理设计任务书 学生姓名舒康班级09工机2班学号20097588 设计题目:反铲液压挖掘机工作装置设计 §1.1设计题目简介 反铲式是我们见过最常见的,向后向下,强制切土。可以用 于停机作业面以下的挖掘,基本作业方式有:沟端挖掘、沟 侧挖掘、直线挖掘、曲线挖掘、保持一定角度挖掘、超深沟 挖掘和沟坡挖掘等。反铲装置是液压挖掘机重要的工作装置, 是一种适用于成批或中小批量生产的、可以改变动作程序的自动搬运和操作设备,它可用于操作环境恶劣,劳动强度大和操作单调频繁的生产场合。 设计数据与要求 题号铲斗容 量挖掘深 度 挖掘高 度 挖掘半 径 卸载高度铲斗挖掘力 B 0.38 m3 4.1m 7.35 m 6.77 m 4.95 m 54.86KN §1.2设计任务 1、绘制挖掘机工作机构的运动简图,确定机构的自由度,对其驱动油缸在几种工况下的运动绘制运动线图; 2、根据所提供的工作参数,对挖掘机工作机构进行尺度综合,确定工作机构各

定子调压调速技术在炼钢天车的应用

定子调压调速技术在炼钢天车的应用 工作单位:酒钢炼轧厂炼钢设备保障作业区作者:裴兴怡

定子调压调速技术在炼钢桥式起重机的应用 摘要:本文主要介绍了三相异步电机的工作原理和调速方法,在调速方法中重点分析对比了转子串电阻调速和晶闸管定子调压调速的基本原理和两种调速方法的各自特点。通过分析对比得知定子调压调速技术在今后的设备改造中将是一种既节约费用,又简单易行的技术方案,同时对炼钢天车技术改造提供了有力的技术支持。 关键字:定子调压调速机械特性串电阻晶闸管 引言: 三相异步电动机的调速经过了长期的演变过程,人们在电动机的调速和转矩控制上做过了大量的研究,尝试过使用各种不同形式的调速方法,随着大功率和高开关频率的半导体器件的开发研制成功,以及现代数字技术的普及应用,为我们提供了驱动控制电动机的新的方法。目前桥式起重机电机调速控制应用最多的是三相绕线式电动机转子串电阻调速,下面就介绍一下用于转子串电阻调速与晶闸管定子调压调速的基本工作原理与优缺点。 1 三相异步电动机工作的基本原理 1.1 基本公式 从电网输入电动机的功率

2 三相异步电动机调速 2.1 转子串电阻调速 主要介绍用于起重机起升机构用的两挡反接控制,机械特性如图1 所示。两挡反接制动是指起升机构在满载或75%负载下,可以达到满速下降的目的。在返回停止工作时可达到准确停车,避免在满载情况下下滑而造成意外事故。上升1、2、3 挡人为逐级切除电动机转子电阻,使电动机由机械特性1、2、3 过渡到机械特性4 上,电动机高速运转。满载慢速下降电动机工作在特性5上,电机转子串进一定的电阻值,使电动机处于反接制动状态。轻载下降电动机工作在特性6 上,此时电动机转子串进全部电阻,使电动机的机械特性变得更软。电动机工作在反接制动状态。 虽然在上面两种反接制动状态下能够得到一定的低速,但是不能长时间运行,否则会造成电机发热严重,此时电机的机械特性都比较软,负载转矩瞬间产生的任何波动都会使电机失去控制,将造成严重后果。所以在操

单斗正铲液压挖掘机工作装置设计综述

正铲液压挖掘机工作装置设计 摘要 液压挖掘机是一种应用广泛的多功能的建设施工机械,作为工程机械的主力机种。由于液压挖掘机具有多品种,多功能,高质量及高效率等特点,因此受到了广大施工作业单位的青睐,其生产制造业也日益蓬勃发展。 液压挖掘机主要有发动机、液压系统、工作装置、回转装置、行走装置和电器控制等部分组成。本文主要研究其工作装置。 挖掘机的主要工作就是土壤的挖掘。工作装置是直接完成挖掘任务的装置,许多挖掘机发达的国家广泛采用新技术、新方法来不断地提高液压挖掘机的作业性能和生产率。正铲装置的各组成部分有各种不同的外形,要根据设计要求选用适合的结构并对其作运动分析。然后,在满足机构运动要求的基础上对各机构参数进行理论计算,确定各机构尺寸参数,确定挖掘机正铲装置的基本轮廓。 挖掘阻力和挖掘力是衡量挖掘机性能参数的重要性能指标,对其分析计算至关重要。挖掘阻力主要与挖掘对象及自身尺寸参数有关,而挖掘力则受众多条件限制,危险工况的分析是关键点。在挖掘力分析基础上,可对各杆件铰接点进行力的分析计算,并进行机构设计的合理性分析。 关键词:正铲挖掘机,工作装置,平面连杆机构,运动分析

第二章液压正铲挖掘机工作装置的总体设计 2.1 液压正铲挖掘机的基本组成和工作原理 液压正铲挖掘机由工作装置,上部转台和行走装置三大部分组成,如图 2.1 所示。其中上部转台包括动力装置、传动机构的主要部分、回转机构、辅助设备和驾驶室;工作装置由动臂、斗杆、铲斗及动臂油缸、斗杆油缸、铲斗油缸组成,如图 2.2 所示。 图 2.1 液压正铲挖掘机的基本组成

图 2.2 液压正铲挖掘机工作装置 挖掘作业时,操纵动臂油缸使动臂下降至铲斗接触挖掘面,然后操纵斗杆油缸和铲斗油缸,使斗进行挖掘和装载工作。铲斗装满后,操纵动臂油缸,使铲斗升高离开挖掘面,在回转马达的驱动下,使铲斗回转到卸载地点,然后操纵斗杆和铲斗油缸使铲斗转动至合适位置,再回缩开斗油缸转动铲斗,使斗前、斗后分开卸载物料。卸载后,开斗油缸伸长使斗前、斗后闭合,将工作装置转到挖掘地点进行第二次循环挖掘工作。转移工作场地时,操纵行走马达,驱动行走机构完成移动工作[4]。 在实际挖掘作业中,由于土质情况、挖掘面条件以及挖掘机液压系统的不同,反铲装置三种液压缸在挖掘循环中的动作配合可以是多样的、随机的。上述过程仅为一般的理想过程。 2.2 工作装置结构方案的确定 正铲工作装置的构造:正铲工作装置由动臂、斗杆、铲斗、工作液压缸和连杆机构等组成。动臂是焊接的箱形结构,由高强度钢板焊成,也有的是铸造的混合结构,和反铲工作装置相比,正铲动臂较短且是单节的。动臂下端和转台铰接,动臂油缸一般为双缸,在布置上动臂的下铰点高于动臂油缸的下铰点且靠后。这种布置方案能保证动臂具有一定的上倾角和下倾角,以满足挖掘和卸载的需要,

简易单向可控硅交流调压器原理图及工作原理介绍

简易可控硅交流调压器原理图及工作原理介绍 本文介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 可控硅交流调压器电路原理: 电路图如下可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C 充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容 。 C又从新充电……如此周而复始,便可调整负载RL上的功率了 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W 的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。

桥式起重机大车行走机构传动置设计——

机械课程设计计算说明书 设计题目:桥式起重机大车行走机构传动装 置设计 学院:材料科学与工程学院 设计者:杨亚楠 班级:材料09-3 学号:14095511 指导老师:赵子江 日期:2011 年 7 月 4 日

目录 1、机械设计课程设计任务书 (3) 2、传动装置总体设计方案 (4) 3、电动机的选择计算 (5) 4、传动系统运动学和动力学参数计算 (7) 5、传动零件的设计计算 (10) 5.1高速级齿轮参数设计计算 (10) 5.2第二级齿轮参数设计计算 (13) 6、轴系零件的设计计算 (15) 7、键的选择与强度验算 (22) 8、轴承的选择与寿命计算 (25) 9、联轴器的选择 (26) 10、减速器润滑与密封 (26) 11、减速器的结构和附件设计 (27) 12、设计小结 (31) 13、参考文献 (33)

一、机械设计课程设计任务书 1、设计条件 ⑴机器功用:对露天物料进行起吊,装卸,安装,搬运等; ⑵工作情况:间断型工作,正反方向转动,载荷平稳,环境温度不超过40C 。 ; ⑶运动要求:运动速度误差不超过5%; ⑷使用寿命:停歇时间与工作时间近似相等,传动零件工作总时数4 10小时, 滚动轴承寿命4 000小时; ⑸检修周期:500小时小修;2000小时大修; 2、原始数据: 大车运行阻力 F=17kN ; 大车运行速度V= 70 m/min ; 车轮直径 700 mm ; 启动系数 d R = 1.3。 3、设计要求 ⑴设计内容 ①电动机选型; ②减速器设计; ③闭式齿轮传动设计; ④传动件设计; ⑤联轴器选型设计; ⑥车轮及其轴系结构设计。 ⑵设计工作量 ①减速器装配图1张;

晶闸管可控整流技术直流电机调速系统

目录 1.引言 (3) 2.原始资料和数据 (3) 3.电路组成和分析 (4) 3.1工作原理 (4) 3.2对触发脉冲的要求 (5) 3.3晶闸管的选型 (6) 3.4参数计算 (7) 3.5二次相电压U2 (7) 3.6一次与二次额定电流及容量计算 (8) 4.触发电路的设计 (9) 5保护电路的设计 (10) 5.1电力电子器件的保护 (10) 5.2过电压的产生及过电压保护 (11) 5.3过电流保护 (11) 6.缓冲电路的设计 (12) 7.总结 (14) 参考文献 (15) 晶闸管可控整流技术直流电机调速系统设计 摘要:可控整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的可控整流主电路,其输出端的负载,可以是电阻性负载、大电感性负载以及反电动势负载。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发 电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交 流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了保护电路和缓冲电路,通过参数计算对晶闸管进行了选型,也对直流电动机进行了简单的介绍。 关键词:可控整流晶闸管触发电路缓冲电路保护电路 1.引言 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环节 2.原始数据: 1、输入交流电源:

挖掘机_工作装置各部分的基本尺寸计算和验证

三、工作装置各部分的基本尺寸计算和验证 反铲装置的合理设计问题至今尚未理想地解决。以往多按经验,采取统计和作周试凑的方法,现在则尽可能采用数解分析方法。液压挖掘机基本参数是表示和衡量挖掘机性能的重要指标,本文主要计算和验证铲斗、动臂、斗杆的尺寸。 (一)反铲装置总体方案的选择 反铲装量总体方案的选择包括以下方面: 1、动臂及动臂液压缸的布置 确定用组合式或整体式动臂,以及组合式动臂的组合方式或整体式动臂的形状动臂液压缸的布置为悬挂式或是下置式。 2、斗杆及斗杆液压缸的布置 确定用整体式或组合式斗扦,以及组合式斗杆的组合方式或整体式斗扦是否采用变铰点调节。 3、确定动臂与斗杆的长度比,即特性参数112K l =。 对于一定的工作尺寸而言,动臂与斗杆之间的长度比可在很大围选择。—般当K 1>2时(有的反铲取K 1>3)称为长动臂短斗杆方案,当K 1<1.5时属于短动比长斗杆力案。K 1在1.5~2之间称为中间比例方案。要求适用性较强而又无配套替换构件或可调结构的反铲常取中间比例方案。 4、确定配套铲斗的种类、斗容量及其主参数,并考虑铲斗连杆机构传动比是否需要调节。 5、根据液压系统工作压力、流量、系统回路供油方式、工厂制造条件等确定各液压缸缸数、缸径、全伸长度与全纳长度之比λ。考虑到结构尺寸、运动余量、稳定性和构件运动幅度等因素一般取λ1=1.6~1.7。取λ2=1.6~1.7;λ3=1.5~1.7。 (二) 斗形主要参数的确定 当铲斗容量q 一定时,挖掘转角2?,挖掘半径R 和平均斗宽B 之间存在一定的关系,即具有尺寸R 和B 的铲斗转过2?角度所切下的土壤刚好装满铲斗,于是斗容量可按下式计 算: 2 1(2sin 2)2 s q R B K ??= - (4.1) 式中: s K ——土壤松散系数。(取 1.25s K = ) 一般取: (4.2) R 的取值围: (4.3) 式中: q ——铲斗容量,3m ; B ——铲斗平均宽度,m 。 可根据表4-3根据斗容选取B 值。 根据式(4.1)可得 φ值

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验 实验报告 电子与信息工程学院自动化科学与技术系

(5)可调电阻(NMCL—03) (6)电机导轨及测速发电机(或光电编码器) (7)三相线绕式异步电动机 (8)双踪示波器 (9)万用表 (10)直流发电机M03 四.实验原理 1.系统组成及原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流电源及三相绕线式异步电动机(转子回路串电阻)。控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。其系统原理图如图6-1所示。 图6-1 整个调速系统采用了速度,电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

(2)空载电压为200V时 n/(r/min) 1281 1223 1184 1107 1045 I G/A 0.10 0.11 0.12 0.13 0.13 U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.2831 2.闭环系统静特性 n/(r/min) 1420 1415 1418 1415 1416 1412 电子与信息工程学院自动化科学与技术系

最新挖掘机工作装置设计设计

挖掘机工作装置设计 设计

郑州科技学院 本科毕业设计(论文) 题目挖掘机工作装置设计 学生姓名王利军 专业班级机械设计制造及其自动化 08级本科(6)班 学号200833467 院(系)机械工程学院 指导教师(职称)陈长庚工程师 完成时间2012年 5 月 16 日

挖掘机工作装置设计 摘要 单斗挖掘机是一种重要的工程机械,广泛应用于房屋建筑、筑路工程、水利建设、农林开发、港口建设、国防工事等的土石方施工和矿山采掘工业中,对减轻繁重的体力劳动、保证工程质量、加快建设速度、提高劳动生产率起着十分巨大的作用。随着国家经济建设的不断发展,单斗挖掘机的需求量将逐年大幅度增长,其在 国民经济建设中的作用将越来越显著。 反铲装置作为单斗挖掘机工作装置的一种主要形式,在工程实践中占有重要地位。反铲装置的各组成部分有各种不同的外形,要根据设计要求选用适合的结构并对其作运动分析。然后,在满足机构运动要求的基础上对各机构参数进行理论计算,确定各机构尺寸参数,确定挖掘机反铲装置的基本轮廓。 挖掘阻力和挖掘力是衡量挖掘机性能参数的重要性能指标,对其分析计算至关重要。挖掘阻力主要与挖掘对象及自身尺寸参数有关,而挖掘力则受众多条件限制,危险工况的分析是关键点。在挖掘力分析基础上,可对各杆件铰接点进行力的分析计算,并进行机构设计的合理性分析。 关键词:单斗挖掘机运动分析力学分析强度校核

SINGLE DOU EXCAVATOR WORKING DEVICE DESIGN ABSTRACT Single d o u excavator is a kind of important engineering machinery, widely used in building, road engineering, water conservancy construction, forestry development, port construction, national defense construction and the conditions of fortifications mining extraction industries, to reduce heavy manual labor, ensuring the quality of projects and accelerate the construction speed and improve labor productivity plays an enormous role. With the continuous development of national economic construction, d o u excavator demand will greatly increas e year by year, its role in national economic construction will become more and more prominent. The shovel device as a single d o u excavator working device of a main form in engineering practice, occupies an important position. The shovel device of each component of a variety of different shape, according to the design requirements for the selection of the structure and kinematic analysis. Then, on the basis of the requirement of motion parameters of various institutions, organizations, and determine the size parameters of the shovel device determine excavator basic outline. Digging resistance and mining force is the important measure excavator performance parameters on its performance index analysis, calculation is very important. Digging resistance with mining and relevant parameters, and their size by numerous dig power restriction, dangerous working conditions, the analysis is the key point. Based on the analysis in the mining strength to the bar on the pivotal point force calculation and analysis and the rationality of the design. KEY WORDS: Single d o u excavator, Motion analysis, Mechanics analysis,Strength Check

可控硅调速电路

可控硅调压调速原理 小功率分体机室内风机目前用的是PG调速塑封电机,为单向异步电容运转电动机。为了满足空调正常的运转,达到制冷、制热能力的平衡,所以必须保证室内风机的转速满足系统的要求,并保持转速的稳定。因此采用可控硅调压调速的方法来调节风机的转速。 1.电路原理图 2.工作原理简介 可控硅调速是用改变可控硅导通角的方法来改变电动机端电压的波形,从而改变电动机端电压的有效值,达到调速的目的。 当可控硅导通角α1=180°时,电动机端电压波形为正弦波,即全导通状态;(图示两种状态)当可 控硅导通角α1 <180°时,电动机端电压波形如图实 线所示,即非全导通状态,有效值减小;α1越小, 导通状态越少,则电压有效值越小,所产生的磁场越 小,则电机的转速越低。但这时电动机电压和电流波 形不连续,波形差,故电动机的噪音大,甚至有明显 的抖动,并带来干扰。这些现象一般是在微风或低风 速时出现,属正常。由以上的分析可知,采用可控硅 调速其电机转速可连续调节。 3.各元器件作用及注意事项 3.1D15、R28、R29、E9、Z1、R30、C1组成降压、整流、虑波稳压电路,获得相对直流电压 12V,通过光电偶合器PC817给双向可控硅BT131提供门极电压; 3.2R25、C15组成RC阻容吸收网络,解决可控硅导通与截止对电网的干扰,使其符合EMI测试标准;同时防止可控硅两端电压突变,造成无门极信号误导通。 3.3TR1选用1A/400V双向可控硅,TR1有方向性,T1、T2不可接反,否则电路不能正常工作。 3.4L2为扼流线圈,防止可控硅回路中电流突变,保护TR1,由于它是储能元件,在TR1关断和导通过程中,尖峰电压接近50V,R24容易受冲击损坏,因此禁止将L2放置在TR1前端。

挖掘机工作装置

机械原理设计任务书 学生姓名朱班级学号20127462 设计题目:挖掘机工作装置机构设计 一、设计题目简介 单斗挖掘机是一种重要的工程机械,广泛 应用于房屋建筑、筑路工程、水利建设、农林 开发、港口建设、国防工事等的土石方施工和 矿山采掘工业中,对减轻繁重的体力劳动、保 证工程质量、加快建设速度、提高劳动生产率 起着十分巨大的作用。随着国家经济建设的不 断发展,单斗挖掘机的需求量将逐年大幅度增 长,其在国民经济建设中的作用将越来越显 著。 反铲装置作为单斗挖掘机工作装置的一种主要形式,在工程实践中占有重要地位。反铲装置的各组成部分有各种不同的外形,要根据设计要求选用适合的结构并对其作运动分析。然后,在满足机构运动要求的基础上对各机构参数进行理论计算,确定各机构尺寸参数,确定挖掘机反铲装置的基本轮廓。 挖掘阻力和挖掘力是衡量挖掘机性能参数的重要性能指标,对其分析计算至关要。挖掘阻力主要与挖掘对象及自身尺寸参数有关,而挖掘力则受众多条件限制,危险工况的分析是关键点。在挖掘力分析基础上,可对各杆件铰接点进行力的分析计算,并进行机构设计的合理性分析。 二、设计数据与要求 该型挖掘机工作装置,由两节臂,一挖斗组成,停机面最大挖掘半径(mm):9850;最大挖掘深度(mm):6710;最大挖掘高度(mm):9840,液压缸驱动。 三、设计任务 1、提出可能的运动控制方案,绘制方案的机构简图,计算工作装置的自由度,进行方 案分析评比,从中选取最适合挖掘机工作装置的机构; 2、根据所确定的机构方案进行杆及运动副的尺寸计算,要有计算过程(图解法也必须 有作图步骤),并根据所计算尺寸依据国家相关标准提出油缸的布置及其运动要求; 3、在机械基础实验室应用机构综合实验装置验证设计方案的可行性。 4、用软件(VB、MATLAB、ADAMS或SOLIDWORKS等均可)对执行机构进行运动仿真,并画出输出机构的位移、速度、和加速度线图。 5、编写说明书,说明书应包括设计思路、计算及运动模型建立过程以及效果分析等。 四、提示 1、每一节斗杆应有一个油缸控制,即该机构应由多个自由度 2、按设计要求,主要考虑几个极限位置的相关数据 完成日期:年月日指导教师

装载机工作装置设计

装载机工作装置设计 任务书 1.课题意义及目标 装载机是一种用途十分广泛得工程机,它被广泛应用于建筑、公路、及国防 等工程中,对加快工程建设速度、减轻劳动强度、提高工程质量、降低工程成本 具有重要作用,所以装载机在国内外不论是品种或是在产量方面都得到迅速发展,成为工程机械得主要品种之一。而合理的工作装置结构更能起到事半功倍之 成效。 2.主要任务 根据给定的原始参数,采用设计装载机工作装置六连杆机构,并分析其运动 特性和动力特性。主要内容包括:连杆机构绞点位置的设计以及各构件的结构设计;主要构件的强度与刚度校核计算;连杆机构运动特性与动力特性的分析。原 始参数如下: 额定斗容: 2 m3 额定载重量: 36 KN 整机质量: 115 KN 轮距: 1950 mm 轴距: 2660 mm 轮胎规格: 16.00—24 最大卸载高度: 2800 mm 最小卸载距离: 1115 mm 3.主要参考资料 [1] 杨晋升. 铲土运输机械设计(M). 北京:机械工业出版社. 1981. 5. [2] 周复光. 铲土运输机械设计与计算(M). 北京:水利水电出版社. 1988. 6. 审核人:年月日

装载机工作装置设计 摘要:装载机是现代工程建设中所用机械的一个主要机种,主要用途有装卸搬运成堆的散料、轻度的铲掘、清理工作面、牵引等。为了减少生产成本,必须采用高效的机械装卸设备。装载机工作装置的设计主要是对装载机铲斗、连杆机构、动臂的设计,而工作装置设计的合理性直接影响到了装载机的工作性能及其使用寿命,随着优化设计方法进一步发展,机器自动化和智能化不断提高。在对铲斗设计时要对铲斗的形状、容积进行分析。然后在对装载机的连杆机构设计中要计算出组件的尺寸,各点之间的位置关系和动臂的数据计算。最后对工作装置进行受力分析和强度计算,以确定该型号装载机实际载荷是否在设计载荷范围之内。关键词:装载机,工作装置,动力学分析 The design of Loader Working device Abstract: The loader is a main type of machinery used in modern engineering construction with the main purpose of handling stacks of bulk materials, mild shovel, clean face and traction. In order to reduce the cost of production, efficient mechanical handling equipment must be adopted. Design of working device of loader is mainly on the design of loader bucket linkage arm, and the work will directly impact on device design to the performance of the loader and its service life, with the continuous method development of modern optimization design to constantly improve the machine automation and intelligence. In the design of bucket to shape and specific parameters, volum es of the bucket are analyzed. And then to calculate the size of componentsin the design of loader connecting rod mechanism, position relation between points and armdata calculation. Finally,the stress analysis and strength calculation of the working device is carried out to determine whether the actual load of wheel loader is within the scope of the design load. Keywords: Loaders,Work equipment,Dynamics analysis

定子调压调速系统原理及应用

定子调压调速系统原理 及应用 SANY GROUP system office room 【SANYUA16H-

定子调压调速系统原理及应用 1.1工作原理 定子调压调速控制器是把两种传统的调速方式有机地结合起来用于控制三相交流绕线电机: ?1~3档时通过控制定子回路晶闸管导通角来改变电动机定子电压; ?4档时通过改变电动机转子电阻,改变电动机的机械特性。 两种调速方式的结合产生了非常好的控制效果,两种方式的优点得到了充分的发挥。 1.1.1 控制原理 定子调压调速控制器闭环控制的原理见图1-1,图中Ag为主令给定,F/V 为频率电压变换,I/V为电流电压变换,MCU为单片机,AT为触发器。 、V、 不同系列的控制器运行方式基本相同,只是在细节上有所不同。因此下面就介绍其运行方式。

1.1.2上升运行 ●重载 主令置上升某档速度时,上升接触器先接通,电机得电建立力矩,随后制动器打开,电机启动,系统进入闭环控制状态。此后只要主令置于上升调速档,通过主令的速度给定和速度反馈,系统都能很快使电机达到设定的速度。主令置全速档时,系统进入开环状态,晶闸管全导通,电机平稳加速,当速度大于50%和75%时,分别切除两级转子电阻,使速度到达全速。 当主令回到调速档时,两级转子电阻同时接入,系统重新进入闭环控制。 由于负载本身很重,此时电机转矩小于负载转矩,电机迅速减至设定速 度,并稳定运行。当主令回到零位时,无论电机处于何种速度,制动器都立即制动。制动器从开始动作到真正闭合需要一定的时间(液压抱闸一般在500ms左右),因此控制器延时一段时间再令电机断电。 ●轻载 由于负载轻,因此减速和制动的运行状况和重载不同。当主令从全速档回到调速档时,由于负载本身很轻(尤其是空钩时),电机转矩只是略小于负载转矩,因此减速时间很长,减到调速档一般需要数秒时间。当主令回到零位时,和重载一样,制动器立即闭合。 1.1.3下降运行 ●重载 当主令置下降调速档时,也是上升接触器先接通。此时电机输出的是反向转矩,小于负载转矩,因此电机处于倒拉反转状态。和上升相同,系统也是处于闭环控制状态,只要主令置于下降调速档,通过主令的速度给定和

可控硅在单相电机中的调速电路

可控硅在单相电机中的调速电路 发布时间:2009-12-09 09:44 本文介绍一种简易电机调速电路,不用机械齿轮转化来变速,改善了机械设备使用的效率。 此简易电子调速电路适用于220V市电的单相电动机,电机额定电流在6.5A以内,功率在1kW左右,适用于家庭电风扇、吊扇电机及其它单相电机,若电路加以修改,则可作调光、电磁振动调压、电风扇温度自动变速器等用途。其电路如图1所示。 硅二极管VD1~VD4构成一个桥式全波整流电路,电桥与电机串联在电路中,电桥对可控硅VS提供全波整流电压。当VS接通时,电桥呈现本电机串联的低阻电路。当图1中A点为负半周时,电流经电机、VD1、VS、R1、VD3构成回路,当B 点为正半周时电流经VD2、VS、R1、VD4、电机M构成回路,电机端得到的是交变电流。电机两端的电压大小主要决定于可控硅VS的导通程度,只要改变可控硅的导通角,就可以改变VS的压降,电机两端的电压也变化,达到调压调速的目的,电机端电压Um=U1-UVD1-Uvs-UR1-UVD3,上式中,UVD1、UVD3的压降均很小,而反馈UR1也不大,故电机端电压就简化为Um=U1-Uvs。

可控硅VS的触发脉冲靠一只简单的单结晶体管VS电路产生,电容器C2通过电阻R4、R5充电到稳压管DW的稳定电压UZ,当C2充电到单结晶体管的峰点电压时,单结晶体管就触发,输出脉冲而使可控硅导通。在单结晶体管发射极电压充分衰减后,单结晶体管就断开,VS一经接通,那么a、b两点之间的电压就下降到稳压管DW的稳定电压UZ以下,电容器C2再充电就依赖于点a到b点间的电压,因稳压管的电压已经降低到它的导通区域以外,点a到b点的电压取决于电动机的电流、R1和VS导通时的电压降。这样,当VS导通时,电容器C2的充电电流取决于电动机的电流,在这种情况下便得到了反馈,这就使得电动机在低速时转矩所受损失的问题得到补救。 反馈电阻R1的数值经过实验得出,因此,VS在导通周期的时间内,电容 C2便不能充电到足以再对单结晶体管触发的高压,然而,电容C2会充电到电动机电流所决定的某一数值。如果在某一导通周期电动机的电流增加,则C2上的电压也增加,故在下一周期开始时,C2就不需那么长的时间才能充电到单晶体的峰点电压。这种情况下,触发角就被减少了(导通角更大),加到电机上的方根电压就成比例增加,致使有效转矩增加。二极管VD5和电容器C1防止在导通期中由于触发单结晶体所造成的反馈,反馈电阻R1的取值具体如附表所示。 R2为限流电阻,它应保证稳定DW1在稳压范围,稳定电流在10~20mA左右,它并保证了脉冲移相角,当R2增大,移相角减小,电机两端的电压调节范围减少。 R4应保证电机两端电压的上限值,当R4增大时,输出到电机的电压上限下降。

塔式起重机传动机构设计

1.塔式起重机概述 在建筑安装工程中,能同时完成重物的垂直升降和水平移动的起重机很多,其中应用最广泛的是塔式起重机。塔式起重机具有其他起重机械难以相比的优点,如塔身高,起重臂长,有效作业面广,能同时进行起升,回转行走,变幅等动作,生产效率高;采用电力操纵,动作平衡,安全可靠;结构相对较为简单,运转可靠,保养维修业较为容易。因此,他是起重机已成为现代工业与民用建筑不可缺少的主要施工机械。 塔式起重机工作高度大,一般自升式塔机工作高度可在100m左右,特殊用途的可在300m以上。因此塔机的起升机构必须要有较大的容绳量。塔机起升起升机构的卷筒都采用多层缠绕的方式。塔机分为上回转塔机(本次设计题目)和下回转塔机两大类。其中前者的承载力要高于后者,在许多的施工现场我们所见到的就是上回转式上顶升加节接高的塔机。按能否移动又分为:行走式和固定式。固定式塔机塔身固定不转,安装在整块混凝土基础上,或装设在条形式X形混凝土基础上。在房屋的施工中一般采用的是固定式的。 塔机机械通常结构庞大,机构复杂。塔机的工作机构有五种:起升机构(本次设计题目)、变幅机构、小车牵引机构、回转机构和大车走行机构(行走式的塔机)。 2.专业课程设计的题目 上回转自升式塔式起重机起身机构设计 型号:QTZ200 起重力矩(Kn·m):2000 最大幅度/起重载荷(m/KN):40/35 最小幅度/起重载荷(m/KN):10/200 起升高度(m):162(附着式)55(固定式) 工作速度(m/min):6~80(2绳)3~40(4绳) 起重臂长(m):40 平衡臂长(m):20 3.塔式起重机起升机构设计 起重机起升机构用来实现物品的上升与下降。起升机构是任何起重机必须具备的,使物品获得升降运动的基本组成。起升机构工作的好坏将直接影响整台起重机的工作性能。塔式起重机起升机构具有一般起重机起升机构的组成特点。起升机构应具备起升高度大、制动平稳、慢速就位、就位准确、起升速度可调等特点。 起升机构的组成和工作原理 起身机构主要由驱动装置(原动机)、传动装置(减速器)、卷筒、滑轮组、取

叉车工作装置设计

叉车工作装置液压系统设计 叉车作为一种流动式装卸搬运机械,由于具有很好的机动性和通过性,以及很强的适应性,因此适合于货种多、货量大且必须迅速集散和周转的部门使用,成为港口码头、铁路车站和仓库货场等部门不可缺少的工具。本章以叉车工作装置液压系统设计为例,介绍叉车工作装置液压系统的设计方法及步骤,包括叉车工作装置液压系统主要参数的确定、原理图的拟定、液压元件的选择以及液压系统性能验算等。 3.1概述 叉车也叫叉式装卸机、叉式装卸车或铲车,属于通用的起重运输机械,主要用于车站、仓库、港口和工厂等工作场所,进行成件包装货物的装卸和搬运。叉车的使用不仅可实现装卸搬运作业的机械化,减轻劳动强度,节约大量劳力,提高劳动生产力,而且能够缩短装卸、搬运、堆码的作业时间,加速汽车和铁路车辆的周转,提高仓库容积的利用率,减少货物破损,提高作业的安全程度。 3.1.1叉车的结构及基本技术 按照动力装置不同,叉车可分为内燃叉车和电瓶叉车两大类;根据叉车的用途不同,分为普通叉车和特种叉车两种;根据叉车的构造特点不同,叉车又分为直叉平衡重式叉车、插腿式叉车、前移式叉车、侧面式叉车等几种。其中直叉平衡重式叉车是最常用的一种叉车。 叉车通常由自行的轮式底盘和一套能垂直升降以及前后倾斜的工作装置组成。某型号叉车的结构组成及外形图如图3-1所示,其中货叉、叉架、门架、起升液压缸及倾斜液压缸组成叉车的工作装置。

1-货叉2-叉架3-门架及起升液压缸4-倾斜液压缸5-方向盘6-操纵杆 7-底盘及车轮 图3-1 叉车的结构及外形 叉车的基本技术参数有起重量、载荷中心矩、起升高度、满载行驶速度、满载最大起升速度、满载爬坡度、门架的前倾角和后倾角以及最小转弯半径等。 其中,起重量(Q)又称额定起重量,是指货叉上的货物中心位于规定的载荷中心距时,叉车能够举升的最大重量。我国标准中规定的起重量系列为:0.50,0.75,1.25,1.50,1.75,2.00,2.25,2.50,2.75,3.00,3.50,4.00,4.50,5.00,6.00,7.00,8.00,10.00…….吨。 载荷中心距e,是指货物重心到货叉垂直段前表面的距离。标准中所给出的规定值与起重量有关,起重量大时,载荷中心距也大。例如平衡重式叉车的载荷中心距如表3-1所示。 起升高度h max,指叉车位于水平坚实地面上,门架垂直放置且承受额定起重量的货物时,货叉所能升起的最大高度,即货叉升至最大高度时水平段上表面至地面的垂直距离。现有的起升高度系列为:1500,2000,2500,2700,3000,3300,3600,4000,4500,5000,5500,6000,7000mm。 满载行驶速度v max,指货叉上货物达到额定起重量且变速器在最高档位时,叉车在平直干硬的道路上行驶所能达到的最高稳定行驶速度。 满载最大起升速度v amax,指叉车在停止状态下,将发动机油门开到最大时,起升大小为额定起重量的货物所能达到的平均起升速度。 满载爬坡度a,指货叉上载有额定起重量的货物时,叉车以最低稳定速度行驶所能爬上的长度为规定值的最陡坡道的坡度值。其值以半分数计。 门架的前倾角β f 及后倾角β b ,分别指无载的叉车门架能从其垂直位向前和 向后倾斜摆动的最大角度。 最小转弯半径R min,指将叉车的转向轮转至极限位置并以最低稳定速度作转

多功能挖掘机工作装置设计开题报告 (87)

毕业设计(论文)开题报告题目:多功能挖掘机工作装置设计

图1 整体式直动臂图2 整体式弯动臂

注:1. 正文:宋体小四号字,行距22磅。 2. 开题报告由各系集中归档保存。 参考文献 [1] 任友良.液压挖掘机工作装置结构性能分析[D].杭州:浙江大学,2010:9-22 [2] 康海洋.液压挖掘机动臂结构动态分析[D].长沙:长沙理工大学,2007:6-18 [3] 王建军,冯光金,占必红等.小型挖掘机工作装置三维建模及有限元分析[J].中国工程 机械学报,2011,(9) [4] 牛多青,尹成龙,汪振乾等.基于SolidWorks的挖掘机工作装置虚拟设计[J].机械制造, 2007,(45) [5] 周勇,宋春华.国内外液压挖掘机的发展动向[J].矿山机械,2008,(36) [6] 朱建新,邹湘伏,黄志雄.谈国产液压挖掘机未来的发展趋势[J].凿岩机械气动工具, 2003,(3) [7] 何清华,张大庆,郝鹏等.液压挖掘机工作装置仿真研究[J].系统仿真学报,2006,(18) [8] 刘韬,胡军科,谢平.液压挖掘机工作装置结构的优化设计[J].建设机械技术与管理, 2010 [9] 张林艳,邓子龙,张红亮等.挖掘机工作装置虚拟样机的建立与动力学仿真[J].辽宁石 油化工大学学报,2008,(28) [10] 张卫国. 液压挖掘机工作装置动力学仿真分析及研究[D].山西:太原理工大学,2010 [11] 郑东京.挖掘机工作装置的有限元分析及其仿真[D].陕西:西北农林科技大学,2011 [12] 陈玉峰.液压挖掘机工作装置运动与动力综合优化研究[D].重庆:重庆大学,2005 [13] 杜文靖,崔国华,刘小光.液压挖掘机工作装置整体集成有限元分析[J].农业机械学报, 2007(38) [14]GU Jun and SEW ARD Derek.Digital Servo Control of a Robotic Excavator[J].CHINESE

相关主题
文本预览
相关文档 最新文档