当前位置:文档之家› 五年中考三年模拟九年级上数学 北师大版

五年中考三年模拟九年级上数学 北师大版

五年中考三年模拟九年级上数学 北师大版
五年中考三年模拟九年级上数学 北师大版

[第1页第2题]如图1-1-1, 四边形ABCD中, AD∥BC且AD=BC, 当△ABC满足什么条件时, 四边形ABCD是菱形? 请说明理由.

图1-1-1

[答案](答案详见解析)

[解析]当△ABC为等腰三角形, 即AB=BC时, 四边形ABCD为菱形. 理由如下:

∵四边形ABCD中, AD∥BC且AD=BC,

∴四边形ABCD为平行四边形.

又AB=BC, ∴平行四边形ABCD为菱形.

[第1页第3题](2012四川成都中考) 如图1-1-2, 在菱形ABCD中, 对角线AC, BD交于点O, 下列说法错误的是()

图1-1-2

A. AB∥DC

B. AC=BD

C. AC⊥BD

D. OA=OC

[答案] B

[解析]A选项, 菱形的对边平行且相等, 所以AB∥DC, 本选项正确; B选项, 菱形的对角线不一定相等, 本选项错误; C选项, 菱形的对角线一定互相垂直, 所以AC⊥BD, 本选项正确; D选项, 菱形的对角线互相平分, 所以OA=OC, 本选项正确. 故答案为B.

[第1页第4题](2013湖南怀化中考) 如图1-1-3, 在菱形ABCD中, AB=3, ∠ABC=60°, 则对角线AC=()

图1-1-3

A. 12

B. 9

C. 6

D. 3

[答案] D

[解析]∵四边形ABCD是菱形, ∴AB=BC, 又∵∠ABC=60°,

∴△ABC为等边三角形, ∴AC=AB=3. 故选D.

[第1页第1题]用两个边长为a的等边三角形纸片拼成的四边形是()

A. 等腰梯形

B. 正方形

C. 矩形

D. 菱形

[答案] D

[解析]四条边相等的四边形是菱形.

[第1页第6题](2013山东淄博中考) 如图1-1-5, 菱形纸片ABCD中, ∠A=60°, 折叠菱形纸片ABCD, 使点C落在DP(P为AB中点) 所在的直线上, 得到经过点D的折痕DE. 则∠DEC的大小为()

图1-1-5

A. 78°

B. 75°

C. 60°

D. 45°

[答案] B

[解析]连接BD, ∵四边形ABCD为菱形, ∠A=60°, ∴△ABD为等边三角形, ∠ADC=120°, ∠C=60°, ∵P为AB的中点,

∴DP为∠ADB的平分线, 即∠ADP=∠BDP=30°, ∴∠PDC=90°, ∴由折叠的性质得∠CDE=∠PDE=45°, 在△DEC中, ∠DEC=180°-(∠CDE+∠C) =75°. 故选B.

[第1页第7题](2013江苏无锡中考) 如图1-1-6, 菱形ABCD中, 对角线AC交BD于O, AB=8, E是CD的中点, 则OE的长等于.

图1-1-6

[答案] 4

[解析]∵四边形ABCD是菱形, ∴BC=AB=8, OD=BO,

∵E是CD的中点, ∴OE是△DBC的中位线, ∴OE=BC=4.

[第1页第8题]如图1-1-7, 在菱形ABCD中, 已知AB=10, AC=16, 那么菱形ABCD面积为.

图1-1-7

[答案]96

[解析]由题意得AC⊥BD, OA=OC, OB=OD, 又AB=10, AC=16, ∴OA=8. ∴BO==6, ∴BD=12, ∴S菱形

ABCD=AC·BD=×16×12=96.

[第1页第9题](2013四川内江中考) 如图1-1-8, 已知菱形ABCD的两条对角线分别为6和8, M、N分别是边BC、CD的中点, P 是对角线BD上一点, 则PM+PN的最小值=.

图1-1-8

[答案] 5

[解析]作M关于BD的对称点Q, 连接NQ, 交BD于P, 连接MP、NP, 此时MP+NP的值最小, 连接AC, ∵四边形ABCD是菱形, ∴AC⊥BD, ∠QBP=∠MBP, 即Q在AB上, ∵MQ⊥BD, ∴AC∥MQ, ∵M为BC的中点, ∴Q为AB的中点, ∵N为CD的中点, 四边形ABCD是菱形, ∴BQ∥CD, BQ=CN, ∴四边形BQNC是平行四边形, ∴NQ=BC, ∵四边形ABCD是菱形, ∴CP=AP=3, BP=PD=4, 在Rt△BP C中, 由勾股定理得BC=5, 即NQ=5, ∴MP+NP=QP+NP=QN=5, 故答案为5.

[第2页第10题](2013广东广州中考) 如图1-1-9, 四边形ABCD是菱形, 对角线AC与BD相交于点O, AB=5, AO=4, 求BD的长.

图1-1-9

[答案](答案详见解析)

[解析]∵四边形ABCD是菱形,

∴AC⊥BD且BO=OD, 即△ABO是直角三角形,

在Rt△ABO中, BO2=AB2-AO2, 其中AO=4, AB=5,

∴BO=3, 又∵BO=OD, ∴BD=2BO=6, ∴BD的长为6.

[第2页第12题]下列条件:

①四边相等的四边形;

②对角线互相垂直且平分的四边形;

③一组邻边相等的四边形;

④一条对角线平分一组对角的平行四边形.

其中能判断四边形是菱形的有()

A. 1个

B. 2个

C. 3个

D. 4个

[答案] C

[解析]①四边相等的四边形是菱形, 故①正确. ②对角线互相垂直平分的四边形是菱形, 故②正确. ③一组邻边相等的平行四边形是菱形, 故③错误. ④一条对角线平分一组对角的平行四边形是菱形, 故④正确. 故选C.

[第2页第13题](2013海南中考) 如图1-1-11, 将△ABC沿BC方向平移得到△DCE, 连接AD, 下列条件中能够判定四边形ACED 为菱形的是()

图1-1-11

A. AB=BC

B. AC=BC

C. ∠B=60°

D. ∠ACB=60°

[答案] B

[解析]由平移, 得AC∥DE, AC=DE, ∴四边形ACED是平行四边形, 又∵BC=CE, ∴当AC=BC时, AC=CE, ∴平行四边形ACED是菱形. 故选B.

[第2页第11题]四边形ABCD是菱形, 点P是对角线AC上一点, 以点P为圆心, PB为半径画弧, 交BC的延长线于点F, 连接PF, PD, PB.

(1) 如图1-1-10①, 当点P是AC的中点时, 请直接写出PF和PD的数量关系;

(2) 如图1-1-10②, 当点P不是AC的中点时, 求证: PF=PD.

图1-1-10

[答案](答案详见解析)

[解析](1) PF=PD.

(2) 证明: ∵四边形ABCD是菱形,

∴AB=AD, ∠BAC=∠DAC.

在△ABP和△ADP中,

∴△ABP≌△ADP(S AS),

∴PB=PD,

又∵PB=PF,

∴PF=PD.

[第2页第14题](2013四川遂宁中考) 如图1-1-12, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是E, F, 并且

DE=DF.

求证: (1) △ADE≌△CDF;

(2) 四边形ABCD是菱形.

图1-1-12

[答案](答案详见解析)

[解析](1) ∵DE⊥AB, DF⊥BC,

∴∠AED=∠CFD=90°.

∵四边形ABCD是平行四边形,

∴∠A=∠C.

在△ADE和△CDF中,

∴△ADE≌△CDF(AAS).

(2) ∵△ADE≌△CDF, ∴AD=CD,

又∵四边形ABCD是平行四边形, ∴四边形ABCD是菱形.

[第2页第15题](2013山东泰安中考) 如图1-1-13, 在四边形ABCD中, AB=AD, CB=CD, E是CD上一点, BE交AC于F, 连接DF.

(1) 证明: ∠BAC=∠DAC, ∠AFD=∠CFE;

(2) 若AB∥CD, 试证明四边形ABCD是菱形;

(3) 在(2) 的条件下, 试确定点E的位置, 使∠EFD=∠BCD, 并说明理由.

图1-1-13

[答案](答案详见解析)

[解析](1) 证明: ∵AB=AD, CB=CD, AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC.

∵AB=AD, ∠BAF=∠DAF, AF=AF,

∴△ABF≌△ADF, ∴∠AFB=∠AFD.

又∵∠CFE=∠AFB, ∴∠AFD=∠CFE.

(2) 证明: ∵AB∥CD,

又∵∠BAC=∠DAC,

∴∠DAC=∠ACD, ∴AD=CD.

∵AB=AD, CB=CD,

∴AB=CB=CD=AD,

∴四边形ABCD是菱形.

(3) 当BE⊥CD时, ∠EFD=∠BCD. 理由:

∵四边形ABCD为菱形,

∴BC=CD, ∠BCF=∠DCF.

又∵CF=CF, ∴△BCF≌△DCF,

∴∠CBF=∠CDF.

∵BE⊥CD, ∴∠BEC=∠DEF=90°,

∴∠EFD=∠BCD.

[第3页第2题](2013山东滨州, 8, ★★☆) 如图1-1-20, 将等边△ABC沿射线BC向右平移到△DCE的位置, 连接AD、BD, 则下列结论: ①AD=BC; ②BD、AC互相平分; ③四边形ACED是菱形. 其中正确的个数是()

图1-1-20

A. 0

B. 1

C. 2

D. 3

[答案] D

[解析]∵△DCE是由△ABC平移得到的, ∴AB∥CD, AB=CD.

∴四边形ABCD是平行四边形. ∴AD=BC, BD、AC互相平分, 即①②正确. 同理, 四边形ACED是平行四边形, 又∵△ABC是等边三角形, ∴AC=CE, ∴平行四边形ACED是菱形, 即③正确.

[第3页第3题](2014辽宁本溪期中, 23, ★★☆) 如图1-1-17, 在△ABC中, D、E分别是AB、AC的中点, BE=2DE, 延长DE到F, 使得EF=BE, 连接CF. (12分)

(1) 求证: 四边形BCFE是菱形;

(2) 若CE=4, ∠BCF=120°, 求四边形BCFE的面积.

图1-1-17

[答案](答案详见解析)

[解析](1) 证明: ∵D、E分别是AB、AC的中点,

∴DE∥BC, BC=2DE.

∵BE=2DE, EF=BE, ∴BC=EF,

∴四边形BCFE是平行四边形,

又EF=BE, ∴平行四边形BCFE是菱形.

(2) 连接BF交CE于点O.

由(1) 知四边形BCFE是菱形.

∴BF⊥CE, ∠BCO=∠BCF=60°, OC=CE=2.

在Rt△BOC中, BO===2.

∴BF=2BO=4,

∴四边形BCFE的面积=CE·BF=×4×4=8.

[第3页第1题](2013广东佛山一模, 7, ★☆☆) 如图1-1-15, 在菱形ABCD中, 对角线AC与BD交于点O, OE⊥AB, 垂足为E, 若∠ADC=130°, 则∠AOE的大小为()

图1-1-15

A. 75°

B. 65°

C. 55°

D. 50°

[答案] B

[解析]在菱形ABCD中, ∠ADC=130°, ∴∠BAD=180°-130°=50°, ∴∠BAO=∠BAD=×50°=25°, ∵OE⊥AB,

∴∠AEO=90°, ∴∠AOE=90°-∠BAO=90°-25°=65°.

[第3页第16题]如图1-1-14①所示, 在△ABC和△EDC中, AC=CE=CB=CD, ∠ACB=∠ECD=90°, AB与CE交于F, ED与AB, BC分别交于M, H.

图1-1-14

(1) 求证: CF=CH;

(2) 如图1-1-14②所示, △ABC不动, 将△EDC绕点C旋转到∠BCE=45°时, 试判断四边形ACDM是什么四边形, 并证明你的结论. [答案](答案详见解析)

[解析](1) 证明: ∵∠ACB=∠ECD=90°,

∴∠1+∠ECB=∠2+∠ECB, ∴∠1=∠2.

又∵AC=CE=CB=CD,

∴△ACB与△ECD都是等腰直角三角形,

∴∠A=∠D=45°.

∴△ACF≌△DCH, ∴CF=CH.

(2) 四边形ACDM是菱形. 证明如下:

∵∠ACB=∠ECD=90°, ∠BCE=45°,

∴∠1=45°, ∠2=45°.

易知∠E=∠B=45°,

∴∠1=∠E, ∠2=∠B.

∴AC∥MD, CD∥AM,

∴四边形ACDM是平行四边形.

又∵AC=CD, ∴平行四边形ACDM是菱形.

[第4页第1题]如图1-1-25所示, 已知以△ABC的三边为边在BC的同侧作等边△ABD、△BCE、△ACF, 请回答下列问题:

(1) 四边形ADEF是什么四边形?

(2) 当△ABC满足什么条件时, 四边形ADEF是菱形?

(3) 当△ABC满足什么条件时, 以A、D、E、F为顶点的四边形不存在?

图1-1-25

[答案](答案详见解析)

[解析](1) 四边形ADEF是平行四边形.

在等边△BCE和等边△ABD中, BD=AB, BE=BC.

又∠DBA=∠EBC=60°, ∴∠DBA-∠EBA=∠EBC-∠EBA, 即∠DBE=∠ABC. ∴△DBE≌△ABC(SAS), ∴DE=AC=AF.

同理, AD=AB=EF.

∴四边形ADEF是平行四边形.

(2) 若AD=AF, 则四边形ADEF为菱形,

∴当△ABC满足AB=AC时, 四边形ADEF为菱形.

(3) 由(1) 可得∠BAC=∠BDE=60°+∠ADE.

当∠ADE=0°时, 以A、D、E、F为顶点的四边形不存在, 此时∠BAC=60°. ∴当∠BAC=60°时, 以A、D、E、F为顶点的四边形不存在.

[第4页第2题]某校九年级学习小组在探究学习过程中, 用两块完全相同的且含60°角的直角三角板ABC与AFE按如图1-1-26①所示位置放置, 现将Rt△AEF绕A点按逆时针方向旋转角α(0°< α< 90°), 如图1-1-26②, AE与BC交于点M, AC与EF交于点N, BC与EF 交于点P.

(1) 求证: AM=AN;

(2) 当旋转角α=30°时, 四边形ABPF是什么样的特殊四边形? 并说明理由.

图1-1-26

[答案](答案详见解析)

[解析](1) 证明: ∵∠α+∠EAC=90°, ∠NAF+∠EAC=90°, ∴∠α=∠NAF. 又∵∠B=∠F, AB=AF, ∴△ABM≌△AFN, ∴AM=AN.

(2) 四边形ABPF是菱形.

理由: ∵∠α=30°, ∠EAF=90°, ∴∠BAF=120°.

又∵∠B=∠F=60°, ∴∠B+∠BAF=60°+120°=180°, ∠F+∠BAF=60°+120°=180°, ∴AF∥BC, AB∥EF, ∴四边形ABPF是平行四边形.

又∵AB=AF, ∴平行四边形ABPF是菱形.

[第4页第3题](2013福建泉州, 16, ★★☆) 如图1-1-21, 菱形ABCD的周长为8, 对角线AC和BD相交于点O, AC∶BD=1∶2, 则AO∶BO=, 菱形ABCD的面积S=.

图1-1-21

[答案]1∶2; 16

[解析]∵四边形ABCD是菱形, ∴AO=AC, BO=BD, AC⊥BD, ∴AO∶BO=AC∶BD=1∶2. ∵菱形ABCD的周长为8, ∴AB=2, 设AO=k,

BO=2k, 则AB==k=2, ∴k=2, ∴AO=2, BO=4, ∴菱形ABCD的面积S=4S△AOB=4××2×4=16. 故答案为16.

[第4页第4题](2013湖北黄冈, 17, ★★☆) 如图1-1-22, 四边形ABCD是菱形, 对角线AC、BD相交于点O, DH⊥AB于H, 连接OH, 求证: ∠DHO=∠DCO. (6分)

图1-1-22

[答案](答案详见解析)

[解析]∵四边形ABCD是菱形, ∴OD=OB, ∠COD=90°.

∵DH⊥AB于H, ∴∠DHB=90°, ∴OH=BD=OB,

∴∠OHB=∠OBH.

又∵AB∥CD, ∴∠OBH=∠ODC, ∴∠OHB=∠ODC.

在Rt△COD中, ∠ODC+∠OCD=90°,

又∠DHO+∠OHB=90°,

∴∠DHO=∠DCO.

[第4页第5题](2013江苏常州, 23, ★★☆) 如图1-1-23, 在△ABC中, AB=AC, ∠B=60°, ∠FAC、∠ECA是△ABC的两个外角, AD平分∠FAC, CD平分∠ECA.

求证: 四边形ABCD是菱形. (7分)

图1-1-23

[答案](答案详见解析)

[解析]证法一: ∵AB=AC, ∠B=60°,

∴△ABC是正三角形,

∴∠FAC=120°, AB=AC=BC. 又AD平分∠FAC, ∴∠DAC=∠FAC=60°. 同理可证∠DCA=60°, ∴△ADC是正三角形, ∴AD=AC=DC,

∴AB=BC=AD=DC, ∴四边形ABCD是菱形.

证法二: ∵AB=AC, ∠B=60°, ∴△ABC是正三角形, ∴∠FAC=120°, AB=BC.

又AD平分∠FAC, ∴∠DAF=∠FAC=60°, ∴∠B=∠DAF, ∴AD∥BC(同位角相等, 两直线平行).

同理可证AB∥CD, ∴四边形ABCD是平行四边形.

又AB=BC, ∴平行四边形ABCD是菱形.

[第3页第1题](2013四川凉山州, 9, ★★☆) 如图1-1-19, 菱形ABCD中, ∠B=60°, AB=4, 则以AC为边长的正方形ACEF的周长为()

图1-1-19

A. 14

B. 15

C. 16

D. 17

[答案] C

[解析]∵四边形ABCD为菱形, ∠ABC=60°, ∴△ABC是等边三角形. ∴AB=BC=AC=4. ∴正方形ACEF的周长=4×4=16,

∴选C.

[第4页第6题](2013新疆乌鲁木齐, 19, ★★☆) 如图1-1-24, 在△ABC中, ∠ACB=90°, CD⊥AB于D, AE平分∠BAC, 分别与BC, CD交于E, F, EH⊥AB于H, 连接FH. 求证: 四边形CFHE是菱形. (10分)

图1-1-24

[答案](答案详见解析)

[解析]证法一: ∵AE平分∠BAC, ∴∠CAE=∠HAE. ∵EH⊥AB于H, ∴∠AHE=∠ACB=90°. 又∵AE=AE, ∴△ACE≌△AHE. ∴EC=EH, AC=AH. 又∵∠CAE=∠HAE, AF=AF,

∴△AFC≌△AFH. ∴FC=FH. ∵CD⊥AB于D, ∠ACB=90°,

∴∠DAF+∠AFD=∠CAE+∠AEC=90°. 又∵∠DAF=∠CAE, ∠AFD=∠CFE. ∴∠CFE=∠CEF.

∴CF=CE. ∴EC=EH=HF=FC. ∴四边形CFHE是菱形.

证法二: ∵AE平分∠BAC, EH⊥AB, EC⊥AC, ∴∠1=∠2, EH=EC. ∵∠1+∠3=90°, ∠2+∠4=90°, ∠4=∠5, ∴∠3=∠5. ∴EC=CF. ∴EH=CF. ∵EH⊥AB, CD⊥AB, ∴EH∥CF. ∴四边形CFHE是平行四边形. 又∵EH=EC, ∴平行四边形CFHE是菱形.

[第5页第1题]下面对矩形的定义正确的是()

A. 矩形的四个角都是直角

B. 矩形的对角线相等

C. 矩形是中心对称图形

D. 有一个角是直角的平行四边形

[答案] D

[解析]A、B、C说的全部是矩形的性质, 故A、B、C选项错误, 有一个角是直角的平行四边形是矩形, 故D选项正确. 故选D. [第5页第2题]如图1-2-1, 要使?ABCD成为矩形, 需添加的条件是()

图1-2-1

A. AB=BC

B. AC⊥BD

C. ∠ABC=90°

D. ∠1=∠2

[答案] C

[解析]根据矩形的定义可知, 有一个角是直角的平行四边形是矩形.

[第5页第3题]如图1-2-2所示, 在?ABCD中, AC、BD交于点O, AE⊥BC于E, EF交AD于F, 求证: 四边形AECF是矩形.

图1-2-2

[答案](答案详见解析)

[解析]∵四边形ABCD是平行四边形,

∴AD∥BC, BO=DO, ∴∠1=∠2,

又∵∠FOD=∠EOB,

∴△DOF≌△BOE, ∴DF=BE,

∴AD-DF=BC-BE, 即AF=EC,

又∵AF∥EC, ∴四边形AECF是平行四边形,

又∵AE⊥BC, 所以∠AEC=90°,

∴平行四边形AECF是矩形.

[第5页第5题](2013四川宜宾中考) 矩形具有而菱形不具有的性质是()

A. 两组对边分别平行

B. 对角线相等

C. 对角线互相平分

D. 两组对角分别相等

[答案] B

[解析]熟练掌握菱形与矩形的性质.

[第5页第4题]如图1-2-3, 在△ABC中, D是BC边上的一点, E是AD的中点, 过A点作BC的平行线交CE的延长线于点F, 且AF=BD, 连接BF.

(1) 线段BD与CD有何数量关系, 为什么?

(2) 当△ABC满足什么条件时, 四边形AFBD是矩形? 请说明理由.

图1-2-3

[答案](答案详见解析)

[解析](1) BD=CD.

理由: ∵E是AD的中点, ∴AE=DE.

又∵AF∥BC, ∴∠AFE=∠DCE.

又∵∠AEF=∠DEC, ∴△AEF≌△DEC, ∴AF=CD.

∵AF=BD, ∴BD=CD.

(2) 当△ABC满足AB=AC时, 四边形AFBD是矩形.

理由: ∵AF∥BD, AF=BD,

∴四边形AFBD是平行四边形.

∵AB=AC, BD=CD, ∴AD⊥BC, 即∠ADB=90°,

∴平行四边形AFBD是矩形.

[第3页第4题](2014浙江杭州萧山党湾中学月考, 20, ★★☆) 如图1-1-18, 在?ABCD中, E、F分别为边AB、CD的中点, BD是对角线, 过A点作AG∥D B交CB的延长线于点G. (11分)

(1) 求证: DE∥BF;

(2) 若∠G=90°, 求证: 四边形DEBF是菱形.

图1-1-18

[答案](答案详见解析)

[解析](1) 在?ABCD中, AB∥CD, AB=CD.

∵E、F分别为边AB、CD的中点,

∴DF=DC, BE=AB,

∴DF=BE.

∴四边形DEBF为平行四边形,

∴DE∥BF.

(2) ∵AG∥BD, ∴∠G=∠DBC=90°,

∴△DBC为直角三角形.

又∵F为边CD的中点, ∴BF=DC=DF.

又∵四边形DEBF为平行四边形,

∴四边形DEBF是菱形.

[第5页第6题](2013广东茂名中考) 如图1-2-4, 矩形ABCD的两条对角线相交于点O, ∠AOD=60°, AD=2, 则AC的长是()

图1-2-4

A. 2

B. 4

C. 2

D. 4

[答案] B

[解析]在矩形ABCD中, OC=OD, ∴∠OCD=∠ODC, ∵∠AOD=60°, ∴∠OCD=∠AOD=×60°=30°, 又∵∠ADC=90°, ∴AC=2AD=2×2=4. 故选B.

[第5页第7题](2013贵州遵义中考) 如图1-2-5, 在矩形ABCD中, 对角线AC, BD相交于点O, 点E, F分别是AO, AD的中点, 若AB=6 cm, BC=8 cm, 则△AEF的周长=.

图1-2-5

[答案]9 cm

[解析]在Rt△ABC中, AC==10 cm, ∵点E, F分别是AO, AD的中点, ∴EF是△AOD的中位线, ∴EF=OD=BD=AC=2.5 cm,

AF=AD=BC=4 cm, AE=AO=AC=2.5 cm, ∴△AEF的周长=AE+AF+EF=9 cm.

[第5页第8题]如图1-2-6所示, 矩形ABCD中, AE⊥BD, ∠DAE∶∠BAE=3∶1, 求∠BAE、∠EAO的度数.

图1-2-6

[答案](答案详见解析)

[解析]∵四边形ABCD是矩形,

∴∠DAB=90°, ∴∠BAE+∠DAE=90°,

又∵∠DAE∶∠BAE=3∶1, ∴∠BAE=22.5°, ∠DAE=67.5°.

∵AE⊥BD, ∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,

∴∠OAB=∠ABO=67.5°,

∴∠EAO=67.5°-22.5°=45°.

[第5页第9题]如图1-2-7所示, 矩形ABCD中, E为AD上一点, EF⊥CE交AB于F, 若DE=2, 矩形的周长为16, 且CE=EF, 求AE 的长.

图1-2-7

[答案](答案详见解析)

[解析]∵四边形ABCD是矩形,

∴∠A=∠D=90°, AD=BC, AB=DC.

∵EF⊥CE, ∴∠AEF+∠DEC=90°.

又∵∠AEF+∠AFE=90°, ∴∠AFE=∠DEC.

又∵EF=CE, ∴△AEF≌△DCE. ∴AE=DC.

∵AB+BC+DC+AD=16, ∴AD+DC=8.

∴AE+2+AE=8, ∴AE=3.

[第6页第10题]如图1-2-8, 矩形ABCD的对角线相交于点O, OF⊥BC, CE⊥BD, OE∶BE=1∶3, OF=4, 求∠ADB的度数和BD的长.

图1-2-8

[答案](答案详见解析)

[解析]由矩形的性质可知OD=OC.

又由OE∶BE=1∶3可知E是OD的中点.

又因为CE⊥OD, 所以OC=CD,

所以OC=CD=OD, 即△OCD是等边三角形.

故∠CDB=60°, 所以∠ADB=30°.

又OB=OC, OF⊥BC, 所以点F为BC的中点, 所以CD=2OF=8, 所以BD=2OD=2CD=16.

[第6页第14题]如图1-2-12, 在△ABC中, D是AB边的中点, △ACE和△BCF分别是以AC、BC为斜边的等腰直角三角形, 连接DE、DF.

求证: DE=DF.

图1-2-12

[答案](答案详见解析)

[解析]分别取AC、BC的中点M、N, 连接MD、ND、EM、FN, 又∵D为AB的中点, ∠AEC=90°, ∠BFC=90°,

∴EM=DN=AC, FN=MD=BC,

DN∥CM且DN=CM,

∴四边形MDNC为平行四边形,

∴∠CMD=∠CND.

∵∠EMC=∠FNC=90°,

∴∠EMC+∠CMD=∠FNC+∠CND,

即∠EMD=∠FND,

∴△EMD≌△DNF.

∴DE=DF.

[第6页第11题](2013重庆A卷中考) 如图1-2-9, 在矩形ABCD中, E、F分别是AB、CD上的点, AE=CF, 连接EF、BF, EF与对角线AC交于点O, 且BE=BF, ∠BEF=2∠BAC.

(1) 求证: OE=OF;

(2) 若BC=2, 求AB的长.

图1-2-9

[答案](答案详见解析)

[解析](1) ∵四边形ABCD是矩形,

∴CD∥AB, ∴∠FCO=∠EAO.

在△FCO与△EAO中,

∴△FCO≌△EAO(AAS),

∴OF=OE.

(2) 如图, 连接OB,

∵BE=BF, OE=OF, ∴BO⊥EF.

∵△FCO≌△EAO, ∴OA=OC,

∴OB=AC=OA, ∴∠BAC=∠ABO.

在Rt△BEO中, ∠BEF=2∠BAC, ∠BAC=∠ABO,

∴2∠BAC+∠BAC=90°, 解得∠B AC=30°.

∵BC=2, ∴AC=2BC=4, ∴AB==6.

[第6页第15题]如图1-2-13, E、F、G、H分别是四边形ABCD四条边的中点, 要使四边形EFGH为矩形, 四边形ABCD应具备的条件是()

图1-2-13

A. 一组对边平行而另一组对边不平行

B. 对角线相等

C. 对角线互相垂直

D. 对角线互相平分

[答案] C

[解析]因为E、H分别是AB、AD的中点, 所以EH是△ABD的中位线, 所以EH平行且等于BD, 同理, FG平行且等于BD, 故EH 平行且等于FG. 由一组对边平行且相等的四边形是平行四边形, 可知四边形EFGH是平行四边形. 要使四边形EFGH为矩形, 只需满足一个角是直角即可. 由EH∥BD, 知只要满足AC⊥BD就能得到一个角为直角, 因此选C.

[第6页第12题]如图1-2-10, △ABC中, ∠C=90°, D是AB边的中点, AC=3, BC=4, 则CD=.

图1-2-10

[答案] 2.5

[解析]由勾股定理可求得AB==5, 再根据直角三角形斜边上的中线等于斜边的一半求出CD=2.5.

[第6页第16题]如图1-2-14, ?ABCD中, 点O是AC与BD的交点, 过点O的直线与BA、DC的延长线分别交于点E、F.

(1) 求证: △AOE≌△COF;

(2) 请连接EC、AF, 则EF与AC满足什么条件时, 四边形AECF是矩形? 并说明理由.

图1-2-14

[答案](答案详见解析)

[解析](1) 证明: ∵四边形ABCD是平行四边形,

∴OA=OC, AB∥CD. ∴∠AEO=∠CFO.

在△AOE和△COF中,

∴△AOE≌△COF.

(2) 当AC=EF时, 四边形AECF是矩形. 理由: ∵△AOE≌△COF, ∴OE=OF, AO=CO. ∴四边形AECF是平行四边形. 又∵AC=EF, ∴平行四边形AECF是矩形.

[第6页第13题]如图1-2-11, 在?ABCD中, AE⊥BD于点E, CF⊥BD于点F, G, H分别是AB, CD的中点, 求证: 四边形EGFH为平行四边形.

图1-2-11

[答案](答案详见解析)

[解析]∵AE⊥BD, G是AB的中点,

∴EG=AB=BG, ∴∠GEB=∠GBE.

同理可得FH=DC=D H, ∠DFH=∠FDH.

∵在?ABCD中, AB=CD, AB∥CD,

∴EG=FH, ∠GBE=∠FDH.

∴∠GEB=∠DFH, ∴EG∥FH.

∴四边形EGFH为平行四边形.

[第7页第1题](2013辽宁沈阳一模, 5, ★★☆) 顺次连接矩形四边中点所得的四边形一定是()

A. 正方形

B. 矩形

C. 菱形

D. 等腰梯形

[答案] C

[解析]如图所示, E、F、G、H分别是矩形ABCD各边的中点, 连AC、BD,

因为E、F分别是AB、BC的中点, 所以EF=AC, 同理, HG=AC, FG=BD, EH=BD. 又因为四边形ABCD是矩形, 所以AC=BD, 所以EF=FG=GH=HE, 所以四边形EFGH是菱形. 故选C.

[第7页第2题](2014山东泰安期中, 17, ★☆☆) 如图1-2-16, ?ABCD的对角线相交于点O, 请你添加一个条件(只添一个即可), 使?ABCD是矩形.

图1-2-16

[答案]∠ABC=90°(答案不唯一)

[解析](无解析)

[第7页第2题](2013湖南邵阳, 10, ★★☆) 如图1-2-20, 点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连接BE交CD 于点O, 连接AO, 下列结论不正确的是()

图1-2-20

A. △AOB≌△BOC

B. △BOC≌△EOD

C. △AOD≌△EOD

D. △AOD≌△BOC

[答案] A

[解析]∵四边形ABCD是矩形, ∴AD=BC, ∠ADO=∠EDO=∠C=90°, ∵AD=DE, ∴BC=DE. 在△BOC与△EOD中, ∠EDO=∠C=90°, BC=DE, ∠BOC=∠DOE, ∴△BOC≌△EOD, 故B选项正确. 在△AOD和△EOD中, ∠ADO=∠EDO=90°, AD=DE, OD=OD, ∴△AOD≌△EOD, 故C选项正确. 由B、C知△AOD≌△BOC, 故D选项正确.

[第7页第1题](2013湖北宜昌, 7, ★★☆) 如图1-2-19, 在矩形ABCD中, AB< BC, AC, BD相交于点O, 则图中等腰三角形的个数是()

图1-2-19

A. 8

B. 6

C. 4

D. 2

[答案] C

[解析]∵四边形ABCD是矩形, ∴OA=OB=OC=OD, 又∵AB< BC, ∴△AOB, △COB, △COD, △AOD都是等腰三角形. 故选C.

[第7页第3题](2013福建宁德质检, 18, ★★☆) 如图1-2-17, 在Rt△ABC中, ∠C=90°, AC=8, BC=6, 点P是AB上的任意一点, 作PD⊥AC于点D, PE⊥CB于点E, 连接DE, 则DE的最小值为.

图1-2-17

[答案] 4.8

[解析]∵Rt△ABC中, ∠C=90°, AC=8, BC=6, ∴AB=10, 连接CP, ∵PD⊥AC, PE⊥CB, ∴四边形DPEC是矩形,

∴DE=CP, 当DE最小时, CP最小, 根据垂线段最短可知, 当CP⊥AB时, CP最小, 且最小值为=4.8, 故答案为4.8.

[第7页第17题](2013湖南张家界中考) 如图1-2-15, △ABC中, 点O是边AC上一个动点, 过O作直线MN∥BC. 设MN交∠ACB 的平分线于点E, 交∠ACB的外角平分线于点F.

(1) 求证: OE=OF;

(2) 若CE=12, CF=5, 求OC的长;

(3) 当点O在边AC上运动到什么位置时, 四边形AECF是矩形? 并说明理由.

图1-2-15

[答案](答案详见解析)

[解析](1) 证明: ∵CF平分∠ACD, 且MN∥BD,

∴∠ACF=∠FCD=∠CFO, ∴OF=OC,

同理可证OC=OE, ∴OE=OF.

(2) 由(1) 知OF=OC, OC=OE,

∴∠OCF=∠OFC, ∠OCE=∠OEC,

∴∠OCF+∠OCE=∠OFC+∠OEC,

而∠OCF+∠OCE+∠OFC+∠OEC=180°,

∴∠ECF=∠OCF+∠OCE=90°, ∴△ECF是直角三角形,

∴EF===13,

∴OC=EF=.

(3) 当点O移动到AC的中点时, 四边形AECF为矩形.

理由如下: 由(1) 知OE=OF,

∵O是AC的中点, ∴OA=OC,

∴四边形AECF为平行四边形,

又∵∠ECF=90°,

∴平行四边形AECF为矩形.

[第7页第3题](2013北京, 11, ★★☆) 如图1-2-21, O是矩形ABCD的对角线AC的中点, M是AD的中点, 若AB=5, AD=12, 则四边形ABOM的周长为.

图1-2-21

[答案]20

[解析]∵AB=5, AD=12, ∴AC=13, ∴BO=6.5. ∵M、O分别为AD、AC的中点, 又CD=5, ∴MO=2.5, AM=6, ∴C四边形

ABOM=AM+MO+BO+AB=6+2.5+6.5+5=20.

[第7页第4题](2013浙江温州一模, 21, ★★☆) 已知: 如图1-2-18, D是△ABC的边AB上一点, CN∥AB, DN交AC于点M, MA=MC.

(1) 求证: CD=AN;

(2) 若∠AMD=2∠MCD, 求证: 四边形ADCN是矩形.

图1-2-18

[答案](答案详见解析)

[解析](1) ∵CN∥AB, ∴∠DAC=∠NCA,

在△AMD和△CMN中,

∴△AMD≌△CMN(ASA), ∴AD=CN, 又∵AD∥CN, ∴四边形ADCN是平行四边形, ∴CD=AN.

(2) ∵∠AMD=2∠MCD, ∠AMD=∠MCD+∠MDC,

∴∠MCD=∠MDC, ∴MD=MC,

由(1) 知四边形ADCN是平行四边形, ∴MD=MN, MA=MC, ∴MD=MN=MA=MC, ∴AC=DN, ∴平行四边形ADCN是矩形.

[第8页第1题]如图1-2-25, P是矩形ABCD内的任意一点, 连接PA、PB、PC、PD, 得到△PAB、△PBC、△PCD、△PDA, 设它们的面积分别是S1、S2、S3、S4. 给出如下结论:

图1-2-25

①S1+S4=S2+S3;

②S2+S4=S1+S3;

③若S3=2S1, 则S4=2S2;

④若S1=S2, 则P点在矩形的对角线上.

其中正确结论的序号是(把所有正确结论的序号都填在横线上).

[答案]②④

[解析]因为△APB和△CPD的高的和恰好等于AD的长, △APD和△CB P的高的和恰好等于AB的长, 所以S1+S3=S矩形ABCD, S2+S4=S

, 所以S1+S3=S2+S4, 故②正确, ①③错误; 若S1=S2, 因为S1+S3=S2+S4=S矩形ABCD, 所以S3=S4, 所以P点在矩形ABCD的对角线矩形ABCD

上, 故④正确.

[第8页第5题](2013云南西双版纳, 20, ★★☆) 如图1-2-23, 已知AB∥DE, AB=DE, AF=CD, ∠CEF=90°.

(1) 若∠ECF=30°, CF=8, 求CE的长;

(2) 求证: △ABF≌△DEC;

(3) 求证: 四边形BCEF是矩形.

图1-2-23

[答案](答案详见解析)

[解析](1) ∵∠CEF=90°, ∠ECF=30°, CF=8,

∴EF=CF=4, ∴CE==4.

(2) 证明: ∵AB∥DE, ∴∠A=∠D.

在△ABF和△DEC中,

∴△ABF≌△DEC(SAS).

(3) 证明: 由(2) 可知△ABF≌△DEC,

∴BF=CE, ∠AFB=∠DCE,

∴∠BFC=∠ECF,

∴BF∥EC, ∴四边形BCEF是平行四边形.

又∵∠CEF=90°, ∴平行四边形BCEF是矩形.

[第8页第1题]下面四个定义中不正确的是()

A. 有一个角是直角的平行四边形叫做矩形

B. 有一组邻边相等的四边形叫菱形

C. 有一个角是直角且有一组邻边相等的平行四边形叫正方形

D. 两腰相等的梯形叫等腰梯形

[答案] B

[解析]一组邻边相等的平行四边形是菱形, B错误.

[第8页第2题]正方形具有而矩形不一定具有的特征是()

A. 四个角都相等

B. 四边都相等

C. 对角线相等

D. 对角线互相平分

[答案] B

[解析]根据正方形和矩形的性质知, 它们具有的相同的特征有: 四个角都是直角, 对角线都相等, 对角线互相平分, 但矩形的长和宽不相等. 故选B.

[第8页第6题](2013辽宁锦州, 20, ★★☆) 如图1-2-24, 点O是菱形ABCD对角线的交点, DE∥AC, CE∥BD, 连接OE.

求证: OE=BC.

图1-2-24

[答案](答案详见解析)

[解析]∵DE∥AC, CE∥BD,

∴四边形OCED是平行四边形.

∵四边形ABCD是菱形,

∴AD=DC=BC, AC⊥BD,

∴∠D OC=90°.

∴四边形OCED是矩形.

∴OE=CD.

∵四边形ABCD是菱形,

∴CD=BC.

∴OE=BC.

[第8页第3题]如图1-3-1, 四边形ABCD是正方形, 点G是BC上的任意一点, DE⊥AG于点E, BF∥DE, 且交AG于点F, 则下列结论不正确的是()

图1-3-1

A. EF=CG

B. BF=AE

C. AF=DE

D. AF-BF=EF

[答案] A

[解析]∵四边形ABCD是正方形, ∴AB=AD, ∠BAD=90°, ∵DE⊥AG, ∴∠AED=90°, ∴∠ADE+∠DAE=90°, 又∵∠BAF+∠DAE=∠BAD=90°, ∴∠BAF=∠ADE, ∵BF∥DE,

∴∠AED=∠BFA=90°,

在△ABF和△DAE中,

∴△ABF≌△DAE(AAS), ∴BF=AE, AF=DE, ∴EF=AF-AE=AF-BF, 而EF与CG的关系无法确定. 故选A.

[第8页第4题](2013宁夏, 22, ★★☆) 如图1-2-22, 在矩形ABCD中, 点E是BC上一点, AE=AD, DF⊥AE, 垂足为F.

求证: DF=DC. (6分)

图1-2-22

[答案](答案详见解析)

[解析]∵四边形ABCD是矩形,

∴AB=CD, AD∥BC, ∠B=90°.

∵DF⊥AE, ∴∠AFD=∠B=90°.

∵AD∥BC, ∴∠DAE=∠AEB.

又∵AD=AE, ∴△ADF≌△EAB, ∴DF=AB,

∴DF=DC.

[第9页第4题]如图1-3-2, 已知正方形ABCD的边长为1, 连接AC、BD, CE平分∠ACD交BD于点E, 则DE=.

图1-3-2

[答案]-1

[解析]设AC与BD的交点为O.

过E作EF⊥DC于F, ∵四边形ABCD是正方形, ∴AC⊥BD,

又∵CE平分∠ACD交BD于点E,

∴EO=EF, ∵正方形ABCD的边长为1,

∴AC=, ∴CO=AC=,

∴易知CF=CO=,

∴EF=DF=DC-CF=1-,

∴DE==-1.

[第9页第9题]如图1-3-7, 已知平行四边形ABCD中, 对角线AC, BD交于点O, E是BD延长线上的点, 且△ACE是等边三角形.

(1) 求证: 四边形ABCD是菱形;

(2) 若∠AED=2∠EAD, 求证: 四边形ABCD是正方形.

图1-3-7

[答案](答案详见解析)

[解析](1) ∵四边形ABCD是平行四边形, ∴AO=CO.

又∵△ACE是等边三角形,

∴EO⊥AC(三线合一), 即AC⊥BD,

∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).

(2) ∵四边形ABCD是平行四边形, ∴AO=CO.

又∵△ACE是等边三角形, ∴EO平分∠AEC(三线合一),

∴∠AED=∠AEC=×60°=30°,

又∵∠AED=2∠EAD, ∴∠EAD=15°, ∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一个外角等于和它不相邻的两内角之和), ∵四边形ABCD是菱形, ∴∠ADC=2∠ADO=90°,

∴菱形ABCD是正方形.

[第9页第10题](2013江苏南京中考) 如图1-3-8, 在四边形ABCD中, AB=BC, 对角线BD平分∠ABC, P是BD上一点, 过点P作PM⊥AD, PN⊥CD, 垂足分别为M, N.

(1) 求证: ∠ADB=∠CDB;

(2) 若∠ADC=90°, 求证: 四边形MPND是正方形.

图1-3-8

[答案](答案详见解析)

[解析](1) ∵BD平分∠ABC,

∴∠ABD=∠CBD.

又∵BA=BC, BD=BD,

∴△ABD≌△CBD.

∴∠ADB=∠CDB.

(2) ∵PM⊥AD, PN⊥CD,

∴∠PMD=∠PND=90°.

又∵∠ADC=90°, ∴四边形MPND是矩形.

∵∠ADB=∠CDB, PM⊥AD, PN⊥CD, ∴PM=PN.

∴矩形MPND是正方形.

[第9页第5题](2013福建莆田中考) 如图1-3-3, 正方形ABCD的边长为4, 点P在DC边上且DP=1, 点Q是AC上一动点, 则DQ+PQ的最小值为.

图1-3-3

[答案] 5

[解析]连接BP交AC于点Q', 连接Q' D.

∵点B与点D关于AC对称, ∴BP的长即为PQ+DQ的最小值, ∵CB=4, DP=1, ∴CP=3, 在Rt△BCP中, BP===5. 故答案为5.

[第9页第6题]如图1-3-4, 四边形ABCD和四边形AEFG均为正方形, 连接BG与DE相交于点H. 证明: △ABG≌△ADE.

图1-3-4

[答案](答案详见解析)

[解析]在正方形ABCD和正方形AEFG中,

∠GAE=∠BAD=90°,

∴∠GAE+∠EAB=∠BAD+∠EAB,

即∠GAB=∠EAD,

在△ABG和△ADE中,

∴△ABG≌△ADE(SAS).

[第9页第7题]如图1-3-5, 已知正方形ABDE和正方形ACFG, DM⊥BC, FN⊥BC, 垂足分别为M, N. 试说明: BC=DM+FN.

图1-3-5

[答案](答案详见解析)

[解析]过点A作AH⊥BC, 垂足为H.

∵∠MDB+∠DBM=90°,

∠DBM+∠ABH=90°,

∴∠MDB=∠ABH.

又AB=BD, ∠M=∠AHB,

∴△DMB≌△BHA.

∴DM=BH.

同理可得FN=CH.

∵BC=BH+CH,

北师大版九年级数学上册知识点总结

北师大版初中数学知识点汇总九年级(上册) 班级姓名 第一章证明(二) 1、三角形全等的性质及判定 全等三角形的对应边相等,对应角也相等 判定:SSS、SAS、ASA、AAS、 2、等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”) 3、等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。 含30度的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。 4、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 (2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。 (3)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 5、线段的垂直平分线 (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 (2)三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(3)如何用尺规作图法作线段的垂直平分线 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。 6、角平分线 (1)角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。

最新北师大版九年级数学下册全套教案

第一章 直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(第一课时) 学习目标: 1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系. 2.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. 学习重点: 1.从现实情境中探索直角三角形的边角关系. 2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 学习难点: 理解正切的意义,并用它来表示两边的比. 学习方法: 引导—探索法. 学习过程: 一、生活中的数学问题: 1、你能比较两个梯子哪个更陡吗?你有哪些办法? 2、生活问题数学化: ⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的? ⑵以下三组中,梯子AB 和EF 哪个更陡?你是怎样判断的? 二、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵ 2 2 2111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢?

三、例题: 例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡? 例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求tanA和tanB 的值. 四、随堂练习: 1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗? 2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001) 3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置 升高________米. 4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则 tanθ=______. 5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长.(结果保留根号) 五、课后练习: 1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______. 2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______. 3、在△ABC中,AB=AC=3,BC=4,则tanC=______. 4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值.

北师大版数学九年级上册知识点归纳

北师大版《数学》(九年级上册)知识点归纳 第一章 证明(二) 一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。 (2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。 (3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。 (4)全等三角形的对应边相等、对应角相等。 推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。 二、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 ③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2 b

新北师大九年级数学下册知识点总结

新北师大九年级数学下 册知识点总结 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

新北师大版九年级数学下册知识点总结 第一章 直角三角形边的关系 一.锐角三角函数 1.正切: 定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切.. ,记作tanA , 即的邻边 的对边A A A ∠∠=tan ; ①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”; ④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。 2.正弦.. : 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即 斜边 的对边A A ∠=sin ; 3.余弦: 定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即 斜边的邻边 A A ∠=cos ;

图1 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。 二.特殊角的三角函数值 三.三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. 2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.. 3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。(2)0≤sin α≤1,0≤cos α≤1。 4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比.. )。用字母i 表示,即A l h i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角... 。如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。 6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角... 。如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。 7.同角的三角函数间的关系: 30 o 45 o 60 o sin α cos α tan α 1 图2 h i=h:l l B

最新北师大版九年级数学上册知识点总结

最新北师大版九年级数学上册知识点总结 第一章证明(一) 1、你能证明它吗? (1)三角形全等的性质及判定 全等三角形的对应边相等,对应角也相等 判定:SSS、SAS、ASA、AAS、 (2)等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴. 判定定理:有一个角是60度的等腰三角形是等边三角形.或者三个角都相等的三角形是等边三角形. (4)含30度的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半. 2、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方. 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. (2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理. (3)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 3、线段的垂直平分线 (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等. 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. (2)三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. (3)如何用尺规作图法作线段的垂直平分线 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线. 4、角平分线 (1)角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. (2)三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等. (3)如何用尺规作图法作出角平分线

北师大版九年级数学下册教学计划.doc

九年级数学下册教学计划 李艳娟 一、学情分析: 本学期我仍担任初三年级的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自知能力较差,特别是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。 二、教材分析 本学期的内容只剩两章,:圆与统计与概率。 圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图。本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,是本章的难点。 统计与概率这章有总体与样本、用样本估计这两节内容。统计是统计理论和应用的一项重要内容,其基本思想是通过部分估计全体。本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。 除了这两章,还要复习初中数学教材其他的内容。 三、教学目标: 1、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。 2、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又

北师大版数学九年级上册知识点总结

九年级上册数学知识点总结 第一章 证明(二) 一、全等三角形的判定:SSS 、SAS 、AAS 、ASA 、HL 二、等腰三角形 1、等腰三角形“三线合一”顶角的平分线、底边上的中线、底边上的高 2、等腰三角形:等边对等角,等角对等边。 三、等边三角形 (1)等边三角形的三个角都相等,并且每个角都等于60°。 (2)“三线合一” 四、直角三角形 1、直角三角形的两个锐角互余 2、在直角三角形中,30°角所对的直角边等于斜边的一半。 3、直角三角形斜边上的中线等于斜边的一半 4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2 2 2 c b a =+ 5、常用关系式: 由三角形面积公式可得:两直角边的积=斜边与斜边上的高的积 五、角的平分线及其性质与判定 1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。 定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 (如图1所示,AO=BO=CO ) 3、角的平分线的判定定理: 在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。 六、线段垂直平分线的性质与判定 1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 2、线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 3、定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 (如图2所示,OD=OE=OF) 线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 A C B O 图1 图2 O A C B D E F

2020新版北师大版数学九年级下册教案(全)

2020新版北师大版数学九年级下册教案(全) 第1课时 §1.1.1 锐角三角函数 教学目标 1、 经历探索直角三角形中边角关系的过程 2、 理解锐角三角函数(正切、正弦、余弦)的意义;并能够举例说明 3、 能够运用三角函数表示直角三角形中两边的比 4、 能够根据直角三角形中的边角关系;进行简单的计算 教学重点和难点 重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计 ? 从学生原有的认知结构提出问题 直角三角形是特殊的三角形;无论是边;还是角;它都有其它三角形所没有的性质。这一章;我们继续学习直角三角形的边角关系。 ? 师生共同研究形成概念 1、 梯子的倾斜程度 在很多建筑物里;为了达到美观等目的;往往都有部分设计成倾斜的。这就涉及到倾斜角的问题。用倾斜角刻画倾斜程度是非常自然的。但在很多实现问题中;人们无法测得倾斜角;这时通常采用一个比值来刻画倾斜程度;这个比值就是我们这节课所要学习的——倾斜角的正切。 1) (重点讲解)如果梯子的长度不变;那么墙高与地面的比值越大;则梯子越陡; 2) 如果墙的高度不变;那么底边与梯子的长度的比值越小;则梯子越陡; 3) 如果底边的长度相同;那么墙的高与梯子的高的比值越大;则梯子越陡; 通过对以上问题的讨论;引导学生总结刻画梯子倾斜程度的几种方法;以便为后面引入正切、正弦、余弦的概念奠定基础。 2、 想一想(比值不变) ☆ 想一想 书本P 2 想一想 通过对前面的问题的讨论;学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。当倾斜角确定时;其对边与邻边的比值随之确定。这一比值只与倾斜角的大小有关;而与直角三角形的大小无关。 3、 正切函数 (1) 明确各边的名称 (2) 的邻边 的对边 A A A ∠∠=tan (3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与 ∠A 的邻边的比值。 ☆ 巩固练习 a 、 如图;在△ACB 中;∠C = 90°; 1) tanA = ;tanB = ; 2) 若AC = 4;BC = 3;则tanA = ;tanB = ; 3) 若AC = 8;AB = 10;则tanA = ;tanB = ; b 、 如图;在△ACB 中;tanA = 。(不是直角三角形) (4) tanA 的值越大;梯子越陡 4、 讲解例题 A B C A B C ∠A 的对边 ∠A 的邻边 斜边 A B C

北师大版九年级数学上册知识点归纳总结

九年级数学上册知识点归纳(北师大版) 第一章特殊平行四边形 第二章一元二次方程 第三章概率的进一步认识 第四章图形的相似 第五章投影与视图 第六章反比例函数 (八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形 .....,平行四边形不相邻的 两顶点连成的线段叫做它的对角线 ...。 ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。 第一章特殊平行四边形

1菱形的性质与判定 菱形的定义:一组邻边相等的平行四边形叫做菱形。 ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ※菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 2矩形的性质与判定 ※矩形的定义:有一个角是直角的平行四边形叫矩形 ..。矩形是特殊的平行四边形。 ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 ※推论:直角三角形斜边上的中线等于斜边的一半。 3正方形的性质与判定 正方形的定义:一组邻边相等的矩形叫做正方形。 ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ※正方形常用的判定:有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。 正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。 ※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。 一个内角为直角 菱形 一组邻边相等

北师大版九年级数学上册知识点总结

九(上)数学知识点答案 第一章证明(一) 1、你能证明它吗? (1)三角形全等的性质及判定 全等三角形的对应边相等,对应角也相等 判定:SSS、SAS、ASA、AAS、 (2)等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。 判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。 (4)含30度的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。 2、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。 (3)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 3、线段的垂直平分线 (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 (2)三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 (3)如何用尺规作图法作线段的垂直平分线 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。 4、角平分线 (1)角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。 (2)三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 (3)如何用尺规作图法作出角平分线

北师大版九年级初三数学下册第二学期教学计划

九年级数学下册教学计划 一、学情分析: 本学期我仍担任初三年级的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自知能力较差,特别是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。 二、教材分析 本学期的内容只剩两章,:圆与统计与概率。 圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图。本章设涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,是本章的难点。 统计与概率这章有总体与样本、用样本估计这两节内容。统计是统计理论和应用的一项重要内容,其基本思想是通过部分估计全体。本章在介绍总体、个体、样本、样本容量的概念后,先后以百分比、平均数和方差为例,介绍了用样本估计总体的统计思想方法。 除了这两章,还要复习初中数学教材其他的内容。 三、教学目标: 1、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。 2、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,

最新北师大版九年级数学上册教案

最新北师大版九年级数学上册教案 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题。一起看看最新北师大版九年级数学上册教案!欢迎查阅! 最新北师大版九年级数学上册教案1 学习目标 1.了解圆周角的概念. 2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题学习过程

一、温故知新: (学生活动)同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 二、自主学习: 自学教材P90---P93,思考下列问题: 1、什么叫圆周角?圆周角的两个特征: 。 2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题. (1)一个弧上所对的圆周角的个数有多少个? (2).同弧所对的圆周角的度数是否发生变化? (3).同弧上的圆周角与圆心角有什么关系? 3、默写圆周角定理及推论并证明。 4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗? 5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

北师大版九年级数学下册试题 期末.docx

初中数学试卷 桑水出品 九年级数学试题 亲爱的同学: 这份试卷将记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题. 预祝你取得好成绩! 请注意: 1.选择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在表格里. 2.填空题、解答题不得用铅笔或红色笔填写. 3.考试时,不允许使用科学计算器. 4 .试卷分值:120分. 题号一二三总分 19 20 21 22 23 24 25 得分 第Ⅰ卷(选择题共36分) 一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选 项选出来填在相应的表格里.每小题3分,共36分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案 司在上海签署了《中俄东线供气购销合同》,这份有效期为30年的合同规定,从2018年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为()A.3.8×1010m3 B.38×109m3 C.380×108m3 D.3.8×1011m3 2如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是() A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n 3如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()

A . AE=BE B .= C . OE=DE D . ∠DBC=90° 4(2014?东营)81的平方根是( ) A . 3± B . 3 C . 9± D . 9 5在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图1所示,若油面的宽 AB =160cm ,则油的最大深度为 ( ) (A )40cm (B )60cm (C )80cm (D )100cm 6如图,△ABC 的边AC 与⊙O 相交于C 、D 两点,且经过圆心O ,边AB 与⊙O 相切,切点为B .已知∠A=30°,则∠C 的大小是( ) A . 30° B . 45° C . 60° D . 40° 7如图,已知扇形的圆心角为60?,半径为3,则图中弓形的面积为( ) A 433π-3π-233π- D 33π-

新版九年级数学上册知识点归纳(北师大版)

2014年(新版)九年级数学上册知识点归纳(北师大版) (八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形 .....,平行四边形不相邻的两顶点连成 的线段叫做它的对角线 ...。 ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。 第一章特殊平行四边形 1菱形的性质与判定 菱形的定义:一组邻边相等的平行四边形叫做菱形。 ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ※菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 2矩形的性质与判定 ※矩形的定义:有一个角是直角的平行四边形叫矩形 ..。矩形是特殊的平行四边形。 ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 ※推论:直角三角形斜边上的中线等于斜边的一半。 3正方形的性质与判定 正方形的定义:一组邻边相等的矩形叫做正方形。 ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ※正方形常用的判定:有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。 正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

北师大版九年级数学下册各章知识点汇总

第一章 直角三角形的边角关系 1 锐角三角函数 2 30°,45°,60°角的三角函数值 3 三角函数的计算 4 解直角三角形 5 三角函数的应用 6 利用三角函数测高 ※一. 正切: 定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切.. ,记作tanA ,即的邻边 的对边 A A A ∠∠= tan ; ①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan ”乘以“A ”; ④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。 ※二. 正弦.. : 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即 斜边 的对边 A A ∠= sin ; ※三. 余弦: 定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即 斜边 的邻边 A A ∠= cos ;

※余切: 定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即 的对边 的邻边 A A A ∠∠= cot ; ※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。 0o 30 o 45 o 60 o 90 o sin α 0 2 1 2 2 2 3 1 cos α 1 23 2 2 2 1 0 tan α 0 3 3 1 3 — cot α — 3 1 3 3 0 (通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-?=; )90sin(cos A A ∠-?= ②)90cot(tan A A ∠-?=; )90tan(cot A A ∠-?= ※当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. ※当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.. ※利用特殊角的三角函数值表,可以看出,(1)当 角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。(2)0≤sin α≤1,0≤cos α≤1。 ※同角的三角函数间的关系: 倒数关系:tg α·ctg α=1。

北师大九年级数学下册知识点总结

图 1 图 3 图4 九年级数学下册知识点归纳 第一章 直角三角形边的关系 一.锐角三角函数 1.正切: 定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边 的对边A A A ∠∠=tan ; ①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”; ④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。 2.正弦.. : 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ; 3.余弦: 定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。 二.特殊角的三角函数值 三.三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. 2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.. 3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。(2)0≤sin α≤1,0≤cos α≤1。 4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比.. )。用字母i 表示,即A l h i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。 6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角...。如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。 7.同角的三角函数间的关系: ①互余关系sinA=cos(90°-A)、cosA=sin(90°-A ) ②平方关系:③商数关系: 图2 h

北师大九年级数学下册知识点汇总

图 1 北师大版初中数学定理知识点汇总[九年级(下册) 第一章 直角三角形边的关系 ※一. 正切: 定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切.. ,记作tanA ,即的邻边 的对边 A A A ∠∠=tan ; ①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”; ④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。 ※二. 正弦..: 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边 的对边 A A ∠=sin ; ※三. 余弦: 定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边 A A ∠=cos ; ※余切: 定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边 A A A ∠∠= cot ; ※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。 (通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-?=; )90sin(cos A A ∠-?= ②)90cot( tan A A ∠-?=; )90tan(cot A A ∠-?= ※当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角.. ※当从高处观测低处的目标时,视线与水平线所成 的锐角称为俯角.. ※利用特殊角的三角函数值表,可以看出,(1)当 角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。(2)0≤sin α≤1,0≤cos α≤1。 ※同角的三角函数间的关系: 倒数关系:tg α·ctg α=1。 ※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出 0o 30 o 45 o 60 o 90 o sin α 0 2 1 22 2 3 1 cos α 1 23 2 2 2 1 0 tan α 0 3 3 1 3 — cot α — 3 1 3 3 0

北师大版数学九年级上

一、填空题 1.一个矩形的面积是48平方厘米,它的长比宽多8厘米,则矩形的宽x (厘米),应满足方程__________. 2.有一张长40厘米、宽30厘米的桌面,桌面正中间铺有一块垫布,垫布的面积是桌面的面积的21,而桌面四边露出部分宽度相同,如果设四周宽度为x 厘米,则所列一元二次方程是__________. 3.在一块长40 cm ,宽30cm 的矩形的四个角上各剪去一个完全相同的正方形,剩下部分的面积刚好是矩形面积的3 2,则剪下的每个小正方形的边长是__________厘米. 4.一个两位数,十位上的数字是a ,个位上的数字是b ,则这个两位数可以表示为__________. 5.两个连续整数,设其中一个数为n ,则另一个数为__________. 6.两个数之差为5,之积是84,设较小的数是x ,则所列方程为__________. 7.增长率问题经常用的基本关系式: 增长量=原量×__________ 新量=原量×(1+__________) 8.产量由a 千克增长20%,就达到_______千克. 二、选择题 1.用10米长的铁丝围成面积是3平方米的矩形,则其长和宽分别是 A.3米和1米 B.2米和1.5米 C.(5+3)米和(5-3)米 D.米米和21352135-+ 2.如果半径为R 的圆和边长为R +1的正方形的面积相等,则 A.11--=ππR B.1 1-+=ππR §2.5.1 一元二次方程

C.112--+=ππR D.1 12-++=ππR 3.一个两位数,个位上的数比十位上的数小4,且个位数与十位数的平方和比这个两位数小4,设个位数是x ,则所列方程为 A.x 2+(x +4)2=10(x -4)+x -4 B.x 2+(x +4)2=10x +x +4 C.x 2+(x +4)2=10(x +4)+x -4 D.x 2+(x -4)2=10x +(x -4)-4 4.三个连续偶数,其中两个数的平方和等于第三个数的平方,则这三个数是 A.-2,0,2或6,8,10 B.-2,0,2或-8,-8,-6 C.6,8,10或-8,-8,-6 D.-2,0,2或-8,-8,-6或6,8,10 5.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二、三月份平均每月增长率是多少?设平均每月增长率为百分之x ,则 A.50(1+x )2=175 B.50+50(1+x )2=175 C.50(1+x )+50(1+x )2=175 D.50+50(1+x )+50(1+x )2=175 6.一项工程,甲队做完需要m 天,乙队做完需要n 天,若甲乙两队合做,完成这项工程需要天数为 A.m +n B.21(m +n ) C.mn n m + D.n m mn + 三、请简要说出列方程解应用题的一般步骤。 四、列方程解应用题 如右图,某小区规划 在长32米,宽20米的矩形场地ABCD 上修建三条同样宽的3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分 种草,若使草坪的面积为566米2,问小 路应为多宽?

北师大版数学九年级下册知识点总结及例题不错!)

北师大版数学九年级下册知识点总结及例题 第一章 直角三角形的边角关系 1.正切: 在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切.. ,记作tanA ,即的邻边 的对边 A A A ∠∠= tan ; ①tanA 是一个完整的符号,它表示∠A 的正切,常省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”; ④tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。 例 在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化 2. 正弦.. : 在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即 斜边 的对边 A A ∠= sin ; 例 在ABC ?中,若90C ∠=?,1 sin 2 A =,2A B =,则AB C ?的周长为 3. 余弦: 在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即 斜边 的邻边 A A ∠= cos ; 例 等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4 B .23 C .2 D .22

4. 一个锐角的正弦、余弦分别等于它的余角的余弦、正弦。 例 △ABC 中,∠A ,∠B 均为锐角,且有2 |tan 3|2sin 30B A -+ -=(),则△ABC 是( ) A .直角(不等腰)三角形 B .等腰直角三角形 C .等腰(不等边)三角形 D .等边三角形 5.当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. 当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.. 6.在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。 7.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有 (1)三边之间的关系:a 2+b 2=c 2; (2)两锐角的关系:∠A +∠B=90°; (3)边与角之间的关系: ,tan , cos ,sin b a A c b A c a A = == ,tan , cos , sin a b B c a B c b B === 30 o 45 o 60 o sin α 2 1 2 2 2 3 cos α 23 2 2 2 1 tan α 3 3 1 3

相关主题
文本预览
相关文档 最新文档