当前位置:文档之家› 平面几何中线段相等的证明几种方法

平面几何中线段相等的证明几种方法

平面几何中线段相等的证明几种方法
平面几何中线段相等的证明几种方法

平面几何中线段相等的证明几种方法

平面几何中线段相等的证明看似简单,但方法不当也会带来麻烦,特别是在有限的两个小时考试中。恰当选用正确的方法,可取得事半功倍的效果。笔者在教学中总结了几种方法,供中学生读者参考。

一、利用全等三角形的性质证明线段相等

这种方法很普遍,如果所证两条线段分别在不同的三角形中,它们所在三角形看似全等,或者,通过简单处理,它们所在三角形看似全等,可考虑这种方法。

[例1]如图,C是线段AB上一点,△ACD和△BCE是等边三角形。求证:AE=BD。

证明∵△ACB和△BCE都是等边三角形

∴∠ACD=60°,∠BCE=60°,∠DCE=60°

∴∠ACE=∠ACD+∠DCE=120°

∠BCD=∠BCE+∠DCE=120°

∴AC=CD,CE=CB

∴△ACE≌△DCB(SAS)

∴AE=DB

[例2]如图,已知△ABC中,AB=AC,点E在AB上,点F在AC的延长线上,且BE=CF,EF与BC交于D,求证:ED=DF。

证明:过点E作EG//AF交BC于点G

∴∠EGB=∠ACB,∠EGD=∠FCD

∵AB=AC

∴∠B=∠ACB,∠B=∠FGB,BE=GE

∵BE=CF,∴GE=CF

在△EGD和△FCD中,

∠EGD=∠FCD,∠EDG=∠FDC,GE=CF

∴△EGD≌△FCD(AAS)∴ED=FD

二、利用等腰三角形的判定(等角对等边)证明线段相等

如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法。

[例1]如图,已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F。

求证:AF=EF。

证明:延长AD到G,使DG=AD,连结BG。

∵AD=GD,∠ADC=∠GDB,CD=BD

∴△ADC≌△GDB

∴AC=GB,∠FAE=∠BGE

∵BE=AC

∴BE=BG,∠BGE=∠BEG

∴∠FAE=∠BGE=∠BEG=∠AEF

∴AE=EF

[例2]如图,已知△ABC中,AB=AC,DF⊥BC于F,DF与AC交于E,与BA的延长线交于D,求证:AD=AE。

证明:∵DF⊥BC

∴∠DFB=∠EFC=90°,∠D=90°-∠B,∠CEF=90°-∠C

∵AB=AC,∴∠B=∠C

∴∠D=∠CEF

∵∠CEF=∠AED

∴∠D=∠AED

∴AD=AE

三、利用平行四边形的性质证明线段相等

如果所证两线段在一直线上或看似平行,用上面的方法不易,可以考虑此法。

[例1]如图,△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作正△ABE和正△ACD,DE与AB交于F,

求证:EF=FD。

证明:过D作DO⊥AC交AB于点O

∵OD垂直平分AC,∠ACB=90°

∴BC⊥AC

∴O点必为AB的中点,连结EO,则EO⊥AB

∵∠CAB=30°,∠BAE=∠CAD=60°

∴AD⊥AB,AE⊥AC

∴OE//AD,AE//OD

∴四边形ODAE为平行四边形

∴EF=FD

[例2]如图,AD是△ABC的中线,过DC上任意一点F作EG//AB,与AC和AD 的延长线分别交于G和E,FH//AC,交AB于点H。

求证:HG=BE。

证明:延长AD到A”,使DA”=AD

又∵BD=CD

∴四边形BACA”是平行四边形

∴BA=A”C

由题设可知HFGA也是平行四边形

∴HF=AG

∵HF//AC,∴

又∵,HF=AG,BA=A”C

∴BH=EG

∴四边形BEGH是平行四边形

∴HG=BE

四、利用中位线证明线段相等

如果已知中含有中点或等边等,用上面方法较难,可以考虑此法。

[例1]如图,以△ABC的边AB、AC为斜边向外作直角三角形ABD和ACE,且使∠ABD=∠ACE,M是BC的中点。

证明:DM=EM。

证明:延长BD至F,使DF=BD。

延长CE到G,使EG=CE,连结AF、FC,连结AG、BG

∵BD=FD,∠ADB=∠ADF=90°,AD=AD

∴Rt△ABD≌Rt△AFD

∴∠BAD=∠FAD

同理可得:∠CAE=∠GAE

∵∠ABD=∠ACE

∴∠FAB=∠GAC,故∠FAC=∠GAB

在△ABG和△AFC中,

AB=AF,∠GAB=∠CAF,AG=AC

∴△ABG≌△AFC

∴BG=FC

又∵DF=DB,EC=EG,M是BC的中点

∴DM==EM,即DM=EM

[例2]如图,△ABC中,∠C为直角,∠A=30°,分别以AB、AC为边在△ABC 的外侧作正△ABE与正△ACD,DE与AB交于F。

求证:EF=FD。

证明:过D作DG//AB交EA的延长线于G,可得∠DAG=30°

∵∠BAD=30°+60°=90°

∴∠ADG=90°

∵∠DAG=30°=∠CAB,AD=AC

∴Rt△AGD≌Rt△ABC

∴AG=AB,∴AG=AE

∵DG//AB

∴EF//FD

五、利用“直角三角形斜边上的中线等于斜边的一半”证明线段相等。

如果所证两线段所在的图形能构成直角三角形,并且可能构成斜边及斜边上的中线,用上面方法一时证不出来,可以考虑此法。

[例]如图,正方形ABCD中,E、F分别为AB、BC的中点,EC和DF相交于G,连接AG,求证:AG=AD。

证明:作DA、CE的延长线交于H

∵ABCD是正方形,E是AB的中点

∴AE=BE,∠AEH=∠BEC

∠BEC=∠EAH=90°

∴△AEH≌△BEC(ASA)

∴AH=BC,AD=AH

又∵F是BC的中点

∴Rt△DFC≌Rt△CEB

∴∠DFC=∠CEB

∴∠GCF+∠GFC=∠ECB+∠CEB=90°∴∠CGF=90°

∴∠DGH=∠CGF=90°

∴△DGH是Rt△

∵AD=AH

∴AG==AD

几何变换-轴对称变换提高题

【知识提要】

1. 如果已知平面上直线l 和一点A ,自点A 作l 的垂线,垂足设为H ,在直线AH 上、l 的另一侧取点A ',使得A H AH '=,

如图所示,我们称点A '是点A 关于直线l 的轴对称点,或者说点A 与点A '关

于直线l 为轴对称,其中l 称为对称轴.

2. 图形F 的每一点关于直线l 的对称点组成的图形F ',称为F 关于轴l 的轴对称图形.把一个图形变为关于直线l 的轴对称图形的变换,叫作轴对称变换(或反射变换),直线l 称为对称轴(反射轴).

3. 我们容易想到,一条线段AA '关于它的垂直平分线为轴对称图形,一个角AOA '∠关于它的角平分线为轴对称图形.在几何证题或解题时,如果图形是轴对称图形,则经常要添加对称轴以便充分利用轴对称图形的性质;如果图形不是轴对称图形,往往可选择某直线为对称轴,补为轴对称图形,或将对称轴一侧的图形反射到该直线的另一侧,以实现条件的相对集中.

4. 在几何问题中有两种常用而比较普遍的对称图形,它们是轴对称图形和中心对称图形.利用对称性解题是解决几何问题的有效方法之一,本讲重点讲解轴对称图形.

(1) 轴对称变换:把一个图形变为关于某一直线为对称轴的轴对称图形,这种变换称为轴对称变换.在几何图形中,如果是轴对称图形,则常添加对称轴,以充分利用对称的性质.如等腰三角形、等腰梯形的对称轴可以应用三线合一等;对于正方形、菱形,经常添加对角线等.

(2) 中心对称变换:把一个图形绕着一个定点按一定方向、一个角度旋转而得到另一个图形,这种变换称为旋转变换.特殊地,当旋转角为180 时,称为中心对称变换.平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称图形,又是轴对称图形.在对称变换下,可使某些相关元素相对集中,为充分运用已知条件、转化结论提供方便.

【例题精讲】

【例1】在ABC ?中,由A 点向BC 边引高线,垂足D 落在BC 上,如果2C B ∠=∠,

求证:AC CD BD +=.

【解法1】如图所示,以AD 为对称轴翻折ADC ?到1ADC ?的位置,则1C 在BD 上,

1AC AC =,1C D CD =,12AC D ACD B ∠=∠=∠.

在1ABC ?中,根据外角定理可知11ABC BAC ∠=∠, 所以11AC BC =,

故1111AC CD AC C D BC C D BD +=+=+=.

【解法2】以AD 为对称轴翻折ABD ?到AED ?的

位置,

则12

AED ABD ACB ∠=∠=

∠,

A B C

D A

从而CA CE =.

进而AC CD CE CD DE +=+=,

而DE BD =(由“翻折”的特点决定), 故AC CD BD +=.

【解法3】回顾一下我们在第10讲中所学的知识,可知

2()c b a b =+,即22c b ab -=.

注意到2222222()2c b BD CD a x x a ax -=-=--=-,

故22a ax ab -=, 即2a x b -=,

亦即a x b x -=+,

故BD AC CD =+.

【点评】题设中的2C B ∠=∠给了我们太多的联想!我们不妨回忆一下第4讲、

第5讲、第10讲,看看是否还有其他解法(比如延长AC 至E ,使CE CD =).

【例2】如图所示,在四边形ABCD 中,BC CD =,60BCA ACD ∠-∠=?,求证:AD CD AB +≥.

【解析】注意到60BCA ACD ∠-∠=?,这提示我们可以进行对称变换以“创造”出60?角.

以AC 为对称轴将DAC ?翻折到'D AC ?的位置,连接'BD . 则'CD CD BC ==,

''60BCD BCA ACD BCA ACD ∠=∠-∠=∠-∠=?, 故'D BC ?为等边三角形.

从而''AD CD AD D B AB +=+≥, 等号成立时AC 平分BAD ∠.

【变式】如图所示,在ABC ?中,AB AC >,BE 、CF 为ABC ?的两条高,求证:

AB CF AC BE +>+. D C B A F

A C'

F'E

F A

a-x x c b

D C

B A

【解法1】将AB CF AC BE +>+改写为AB AC BE CF ->-,可形成下面的思路:

BAC ∠的平分线记为l ,作点C 关于l 的对称点'C ,作点F 关于l 的对称点'F ,过点'C 作BE 的垂线'C D ,因为'AB AC BC -=,''BE CF BE C F BD -=-=, 而'BC BD >,

故AB CF AC BE +>+.

【解法2】我们用“分析法”寻求思路:

AB CF AC BE +>+22()()AB CF AC BE ?+>+

222222AB CF AB CF AC BE AC BE ?++?>++?.

注意到224ABC AB CF AC BE S ??=?=,222AB AE BE =+,222AC AF CF =+, 故22AB CF AC BE AE AF AE AF +>+?>?>. 而由ABE ACF ??∽、AB AC AE AF >?>.

【例3】如图所示,在四边形ABCD 中,30AB =,48AD =,14BC =,40CD =,

90ABD BDC ∠+∠= ,求四边形ABCD 的面积.

【解析】直接计算四边形ABCD 的面积有困难,注意到90ABD BDC ∠+∠= ,我们

以BD 的垂直平分线l 为对称轴,作ABD ?的关于l 的轴对称图形'A DB ?,从而可以将角度集中.

1ABD A DB S S ??=,'30A D AB ==,'48A B AD ==,'A DB ABD ∠=∠,

所以''A DC A DB BDC ∠=∠+∠90ABD BDC =∠+∠= , 因此,'A DC ?是直角三角形.

由勾股定理求得'50A C =.

48401430A

B C

D

在'A BC ?中,'50A C =,'48A B =,14BC =.

而2222'1448BC A B +=+1962304=+2500=2250'A C ==. 由勾股定理的逆定理可知'90A BC ∠= .

'ABCD A BCD S S =

''A BC A DC S S ??=+

11

''22A B BC A D CD =?+? 11

4814304022

=

??+?? 336600936=+=.

【变式】在凸四边形ABCD 中,105ADB ABC ∠=∠= ,75CBD ∠= .如果15

AB CD ==厘米,求四边形ABCD 的面积.

【解析】如图所示,以BD 边上的中垂线为对称轴作DBC ?的轴对称图形1BDC ?,

则1

DBC BDC S S ??=,175C DB CBD ∠=∠=?,110575180ADB C DB ∠+∠=?+?=?,

故A 、D 、1C 共线.

又因为1057530ABD ABC CBD ∠=∠-∠=?-?=?,

由ABD ?可知1801053045A ∠=?-?-?=?, 而115C B CD AB ===, 故145C A ∠=∠=?.

因此190ABC ∠=?,1ABC ?是等腰直角三角形. 故1

11515112.52

ABCD ABC S S ?==??=.

【例4】已知点M 是四边形ABCD 的BC 边的中点,且120AMD ∠= ,证明:

1

2

AB BC CD AD ++≥.

A

A B

C D

【解析】显然,要证题设的不等式,应当把AB ,12

BC ,CD 三条线段首尾连接

成一条折线,然后再与线段AD 比较.要实现这一构想,折线之首端应与A 点重合,尾端应与D 点重合,这可由轴对称来实现.

以AM 为对称轴,作点B 关于AM 的对称点1B ,连接1AB 、1MB , 则1AB AB =,1MB MB =,即1AB M ?≌ABM ?,由此1B MA BMA ∠=∠. 再以DM 为对称轴,作点C 关于DM 的对称点1C ,连接1DC 、1MC , 则1DC DC =,1MC MC =,即1DC M ?≌DCM ?,由此1C MD CMD ∠=∠. 而120AMD ∠= ,所以180********BMA CMD AMD ∠+∠=-∠=-= . 注意到1160B MA C MD BMA CMD ∠+∠=∠+∠= , 因此1111120()B MC B MA C MD ∠=-∠+∠ 1206060=-= , 而1112MB MC BC ==,所以11B MC ?是等边三角形,1112

B C BC =. 由于两点之间以直线段为最短,所以1111AB B C C D AD ++≥, 即12

AB BC CD AD ++≥.

【变式】设M 是凸四边形ABCD 的边BC 的中点,135AMD ∠=?,求证

AB CD AD +≥.

M D

C

B A

熟练运用旋转解决平面几何中的问题平面几何的证题方法多种多样.利用旋转来解决平面几何问题,有时能收到事半功倍的效果.

例图1中以△ABC的边AB、AC为一边向外作正方形ABDE

及正方形ACFG,连结BG、CE.

求证:(1)BG=CE;(2)BG⊥CE.

分析:一般的证法是证明△ABG与△AEC全等,然后应用全等三角形的性质。而如果采用旋转,则可以如下证明:由已知可知,点E绕点A逆时针旋转90°为点B,点C绕点A 逆时针旋转90°为点G,从而知线段EC绕点A逆时针旋转90°为线段BG,故有BG=CE,BG ⊥CE.本文将从最常见的两种旋转出发,谈谈旋转在平面几何中的应用。

一、按旋转的角度进行区分

1、90°角旋转

例1 如图2,E、F分别是边长为1的正方形ABCD的BC、CD—

上的点,且△CEF的周长是2.求∠EAF的大小。

解:将△ABE 绕点A 作逆时针旋转90°,则AB 边与AD 边重合,设旋转后E→E′,由条件△CEF 的周长为2,即CE+EF+CF=2,又BE+CE+CF+ DF=2,且显然有BE=DE′,故CE+ CF+FE′=2.从而必有EF=FE′,又AE= AE′,AF=AF ,故△AEF≌△AE'F,∴∠EAF=E'AF,又从作图知∠EAE′=90°,故∠EAF=45°。

例2(北京东城2010年上学期期末)如图,P 为正方形ABCD 内一点,若

PA =1,PB =2,PC =3 ,求:(1)∠APB 的度数;(2)正方形ABCD 的面积.

分析:三条已知的线段PA 、PB 、PC 具有一个共公顶点,且它们不能构成三角形.但是当把△ABP 按顺时针方向旋转90°后,即会出现等腰直角三角形,于是PA 旋转后的线段与

PC 构成了一个新的三角形.

解:(1)将△ABP 绕点B 顺时针方向旋转90°得△CBQ . 则△ABP ≌ △CBQ 且PB ⊥QB .

于是PB =QB =2a ,PQ a .

在△PQC 中,∵PC 2=9a 2,PQ 2+QC 2=9a 2

. ∴PC 2

=PQ 2

+QC 2

. ∴∠PQC =90°. ∵△PBQ 是等腰直角三角形, ∴∠BPQ =∠BQP =45°.

故∠APB =∠CQB =90°+45°=135°.

(2)∵∠APQ =∠APB +∠BPQ =135°+45°=180°, ∴三点A 、P 、Q 在同一直线上.

在Rt △AQC 中,AC 2

=AQ 2

+QC 2

=(a +a )2

+a 2

=(10+)a 2

故S 正方形ABCD =

12

AC 2

=(5+)a 2. 思考 例2中,如果把△CBP 绕点B 逆时针方向旋转90°得△ABM ,怎样解以上问题?(答:

(1)△PBM是等腰直角三角形,且由勾股定理的逆定理得∠APM=90°;(2)过点B作

BN⊥AP,垂足为N.则PN=BN,于是在△ABN中可求出边长AB的平方,即得正方形的面积.)

2、60°角旋转.

例1 如图3,分别以△ABC的边AB、AC为一边向外作等边三

角形ABD及等边三角形ACE。连结BE、CD。设M、N分别是BE、

CD的中点。求证:△AMN是等边三角形。

证明:由条件可知,△ADC绕点A逆时针旋转60°为△ABE。

即线段CD绕点A逆时针旋转60°得BE中点M,故AN=AM,∠NAM二60°,即△AMN是等边三角形。

例2 如图4,P是等边三角形ABC内一点,且PA=3,PB=4,

PC=5.求∠APB的大小。

解:将△APC绕点A顺时针旋转60°,由ABC为等边三角形知,

此时所得新三角形—边与AB重合。设P旋转后为P′,则△APP′

的边长为3的等边三角形,P'B=PC=5,又PB=4,故pp'2+PB2=P′B2.从

而△P'PB是以∠P′PB为直角的直角三角形,从而∠APB=∠APP′+

∠P'PB=60°+90°=150°。

例3 如图,在凸四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC.证

明:BD2=AB2+BC2.

分析:所证结论即是三条线段BD、AB、BC能构成一个直角三角形.因

此需利用图形变换把它们集中到一个三角形中.

证:连接AC.

∵AD=DC,∠ADC=60°,

∴△ADC是等边三角形.

故将△DCB绕点C顺时针方向旋转60°时可得△ACE.连接BE.

于是△DCB≌△ACE且CB=CE,∠BCE=60°.

∴△BCE是等边三角形,∴BC=BE,∠CBE=60°.

∵∠ABC=30°,∴∠ABE=90°.

故AB2+BC2=AB2+BE2=AE2=BD2.

练习.已知:如图,M是等边△ABC内的一个点,且MA=2cm,

MB=,MC=4cm,求:△ABC的边AB的长度。

3、旋转到特殊位置

例1 如图,在△ABC中,∠ACB=90°,∠A=25°,以点C为旋转中心将△ABC旋转α角到△A1B1C的位置,使B点恰好落在A1B1上.求旋转角α的度数.

分析:将△ABC旋转到点B落在A1B1上的特殊位置时,即确定了旋转角α的大小.于是∠A1BB1是平角,它是解题的切入点,通过平角可列方程求出角α.

解:∵△ABC≌△A1B1C(旋转前后的图形全等).

∴∠A=∠A1且CB=CB1.

∵∠ADC=∠A1DB,∴∠A1BD=α.

在△ABC中,∠ABC=90°-25°=65°.

∵∠BCB1=α(对应点与旋转中心所连线段的夹角等于旋转角).

∴∠CBB1=1

2

(180°-α)

∵点A1、B、B1在同一直线上,

∴α+65+1

2

(180-α)=180.

解之得α=50°.

思考例1中,若∠A=θ,那么α与θ有何数量关系?(答: α=2θ)

二、按计算要求进行区分

1、求角度

例1(青岛)、如图1,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10,求∠APB 的度数。

分析:由题中已知条件中的 6、8、10这组勾股数联想到直角 三角形,于是设法将PA 、PB 、PC 集中到一个三角形中,可以将△APC

绕着A 点逆时针旋转60°得到△AFB , 图1 图2 从而可得∠APB=∠APF+∠BPF ,然后设法求出∠APF 、∠BPF 的度数即可。

解:将△APC 绕点A 逆时针旋转60°后,得△AFB ,连接FP (如图2),则FB=PC=10,FA=PA=6,∠FAP=60°。∴△FAP 是正三角形,FP=PA=6,在△PBF 中,PB 2

+PF 2

=82

+62

=102

=BF 2

,∴∠BPF=90°,∠APB=∠APF+∠FPB=60°+90°=150°。

例2、如图所示,△ABC 中,∠ACB=120°,将该图形绕点C 按顺时针旋转30°后,得到△A ’B ’C ,则∠AB ’C 的度数是 。

分析:根据旋转的性质可以知道∠BCB ’是旋转角,它的度数应该是30°,∠AB ’C 可以看成是∠ACB 和∠BCB ’的和,所以∠AB ’C=120°+30°=150°。

答:∠AB ’C 的度数是150°。

2、求线段间的关系或长度

例1(旅顺)操作:如图3,△ABC 是正三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连MN 。探究:线段BM 、MN 、NC 之间的关系,并加以证明。

分析:本题要探究的三条线段不在同一个三角形之中,必须设法将

A

F

P

B C

C

P

B'

A'

C

B 图3

它们集中到一个三角形中。易知∠DBA=∠DCA=90°,BD=CD ,于是将△DBM 绕D 点顺时针旋转120°到△DCP 的位置,则BM=CP ,DM=DP ,再证MN=NC+CP 即可得证。

解:∵△ABC 为正三角形,∴∠ABC=∠ACB=60°, 又∵∠BDC=120°,DB=DC ,∴∠DBC=∠DCB=30°。 ∴∠DBM=∠DCN=90°。于是将△DBM 绕D 点顺时针

旋转120°到△DCP 位置,则BM=CP 、DM=DP 、∠MDP=120°, 又∵∠MDN=60°,∴∠PDN=60°,∴∠PDN=∠MDN ,∵DN=DN , ∴△MDN ≌△PDN ,∴MN=NP=NC+CP ,∴BM+NC=MN 。

答:∠AB ’C 的度数是150°。

例2、如图4所示,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFGH ,EF 交AD 于点H ,那么DH 的长是 。

分析:由旋转的性质可以知道∠BFC=∠DCG=30°,所以∠FCD=60°,可以连结线段HC (如图4所示),由已知可知∠F=∠D=90°,FC=DC ,HC 是Rt △FHC 和Rt △DHC 公共的斜边,根据HL 公理可以判断Rt △FHC ≌Rt △DHC ,所以∠FHC=∠DHC=30°,所以HC=2DH ,根据勾

股定理可得222

DH DC HC +=,即()2

2

2

DH DC DC +=,因为DC=3,所以

答:DH

H

G

D

B

A

F E

图4 H

G

D

C

B

A

F E

图5

如何做几何证明题(方法情况总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。求证:KH∥BC 例4. 已知:如图4所示,AB=AC,。 求证:FD⊥ED 三. 证明一线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例5. 已知:如图6所示在中,,∠BAC、∠BCA的角平分线AD、

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

初中数学几何证明技巧资料讲解

辅助线的添加 一、添辅助线有二种情况: 1.按定义添辅助线: 如:证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2.按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质,但基本图形不完整时。因此“添线”应该叫做“补图”!这样可防止乱添线 也有规律可循。 (1)平行线是个基本图形: 当几何中出现平行线时,添辅助线的关键是:添与二条平行线都相交的第三条直线 (2)等腰三角形是个基本图形: 当几何问题中出现一点发出的二条相等线段时,往往要补全完整的等腰三角形; (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点,添底边上的中线; (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点,往往添斜边上的中线。 (5)三角形中位线基本图形 几何问题中出现多个中点时,往往添加三角形中位线基本图形 (6)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时,(中点可看成比为1)可添加平行线得平行线型相似三角形。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为 1:1:√2;30度角直角三角形三边比为1:2:√3 (9)半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径; 二、基本图形的辅助线的画法 1.三角形问题添加辅助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。 方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段2.平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理 (1)连对角线或平移对角线 (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

高中平面几何常用定理总结

高中平面几何常用定理 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 (高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 6. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 7. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 8. 余弦定理:C ab b a c cos 2222-+=. 9. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 10. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

用旋转法………作辅助线证明平面几何题.

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC 中;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求∠BPC 的度数。证明:把ABP 绕点B 顺时钍方向旋转90?,得?CBD ,则ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90? 所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。 则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

初中几何证明常用方法归纳

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法

1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。 2、等就在:有两个点它们到这条线段的两个端点的距离相等。重复强调是有两个点 十、证明线段垂直的常用方法。 1、两线的夹角90度。 2、等就在:有两个点它们到这条线段的两个端点的距离相等。重复强调是有两个点十一、证明线平行的常用方法内错角相等,同位角相等,同旁内角互补。十二、证明三角形全等的常用方法 SSS,SAS,AAS,ASA, 十三、证明直角三角形全等的常用方法 HL , SSS,SAS,AAS,ASA, 十四、证明两条线段等于第三线段的常用方法截一段证一段

(完整版)做几何证明题方法归纳

做几何证明题方法归纳 知识归纳: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1 求证:DE =DF 分析:由?ABC 连结CD ,易得CD = 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连

初中数学几何证明题小妙招

初中数学几何证明题小妙招几何证明题入门难,证明题难做,是很多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不但要标记,还要记在脑海中,做到不看题,就能够把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还能够得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在

图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举能够做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。使用逆向思维解题,能使学生从不同角度,不同方向思考问题,

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

做几何证明题方法归纳

做几何证明题方法归纳

∴?∴=??A D E C D F DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 证明:连结AC 在?ABC 和?C D A 中, AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?B C E 和?D A F 中,

做几何证明题方法归纳 第 6 页 共 20 页 BE DF B D BC DA BCE DAF SAS E F =∠=∠=???? ?∴?∴∠=∠??() 说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。 二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP 、CQ 是?ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。 求证:KH ∥BC

初中几何证明题思路及做辅助线总结

中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,错角相等或同旁角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。

几何证明的思路与方法(一).

几何证明的思路与方法(一) 宝山区教师进修学院张波 图形与几何的学习,帮助我们认识了丰富多彩的几何图形、发展了我们的空间观念、增进了我们逻辑推理的意识与能力,并增强了运用这些知识认识世界与改造世界的能力。 学习几何离不开几何证明。几何学是适合培养我们逻辑思维能力的绝好资源。 但是,我们发现有不少学生害怕几何,害怕几何证明。原因之一是大家感到几何证明似乎找不到一种通用的方法,不同的问题常常需要不同的处理。 我们很容易掌握解方程,因为它们有着较为固定的处理程序。如解一个一元一次方程,我们只要按照“去分母、去括号、移项、合并、未知数的系数化为1”这样的步骤,就可以求出一元一次方程的解。 而几何问题的解决就很难形成这样的程序步骤,它常常需要我们根据具体的问题做出具体的分析,才能找到解决问题的路径和方法。 但这并不是说几何问题的解决没有规律。我们还是可以在实践与反思的基础上,整理、归纳出一些思考问题的一般次序,这样的思维序列可以指导我们面对几何问题如何去思考,进而找到解决问题的办法。 下面我们就来一起梳理处理几何证明问题时值得总结的思维角度与思维次序。 一、思路梳理: 我们都知道,证明题的结构基本上由“题设”和“结论”两部分组成,通常的表现形式是“已知------,求证------。”这里的“已知------”就是题设,或者称为条件,“求证------”就是结论。

拿到一个几何证明题,我们都是如何思考的呢?我们都思考什么?有哪些思考的角度?有没有一个思考的次序? 很多同学可能会说:“拿到一个几何证明题,我要先弄清楚已知条件。” 很好。那么,怎样算是弄清楚了已知条件呢?你都做些什么事情去帮助自己弄清楚已知条件? 同学们会说:“我会把已知条件在图上标记出来。” 这是一个不错的做法,在图上做标记。 事实上,图形是几何证明题的一个重要组成部分。几何问题离不开图形,如果一个几何问题没有相应的图形,我们首先要做的事情就是画一张符合条件的图形。 又有同学说:“我会思考条件的作用,由某些条件会推出些什么样的结论。” 这也是一个好的习惯,思考条件的可能作用。 大家还会说:“在清楚条件之后,我会从结论入手,进行分析。” 非常好!从结论入手,分析要证结论成立,需要证什么。 不同的结论形式,我们会有不同的想法。如“要证明线段相等,我们可能会想证明三角形全等、或者等角对等边、或者平行四边形对边相等,还有线段垂直平分线的性质、角平分线的性质,或者通过等量代换等等,最近,我们有时还会利用比例式去证明线段相等。” 要证明某个结论成立,可能的路径、方法有很多种。我们又如何选择呢? 大家可能会说,这时要结合条件进行判断,也有的同学会说,要看图形,看图形的结构特点,直觉判断有怎样的可能,或者排除某些方法。 非常好!图形结构。这又是解决几何问题时,一个非常值得关注的部分。事实上,几何离不开图形,图形中蕴含着重要的信息。

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

初中几何证明很简单

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等 2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

立体几何证明方法总结

一、线线平行的证明方法: 1、利用平行四边形。 2、利用三角形或梯形的中位线。 3、如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线就与交线平行。 (线面平行的性质定理) 4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。(面面平行的性质定理) 5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理) 6、平行于同一条直线的两条直线平行。 7、夹在两个平行平面之间的平行线段相等。(需证明) 二、线面平行的证明方法: 1、定义法:直线与平面没有公共点。 2、如果平面外一条直线与这个平面内的一条直线平行,那么这条直线与这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。 三、面面平行的证明方法: 1、定义法:两平面没有公共点。 2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。(面面平行的判定定理) 3、平行于同一平面的两个平面平行。 4、经过平面外一点,有且只有一个平面与已知平面平行。 5、垂直于同一直线的两个平面平行。 四、线线垂直的证明方法: 1、勾股定理。 2、等腰三角形。 3、菱形对角线。

4、圆所对的圆周角就是直角。 5、点在线上的射影。 6、如果一条直线与一个平面垂直,那么这条直线就与这个平面内任意的直线都垂直。 7、在平面内的一条直线,如果与这个平面一条斜线的射影垂直,那么它也与这条斜线垂直。(三垂线定理,需证明) 8、在平面内的一条直线,如果与这个平面一条斜线垂直,那么它也与这条斜线的射影垂直。(三垂线逆定理,需证明) 9、如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。 五、线面垂直的证明方法: 1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。 3、如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面。 6、一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面。 7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。 8、过一点,有且只有一条直线与已知平面垂直。 9、过一点,有且只有一个平面与已知直线垂直。 六、面面垂直的证明方法: 1、定义法:两个平面的二面角就是直二面角。 2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。(面面垂直的判定定理) 3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。 4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。

平面几何常用证明方法

平面几何常见证明方法 1,分析法 分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。 分析法主要应用与的几何问题特点主要是:从证明推理的时候出现多个方向,不知道哪个方向能够成功推导到结论,也就是说从正向推导比较迷茫的时候,比较适合用分析法来解决这些问题。 例1 如图2.1.1,四边形ABCD 的一条对角线BD 平行于两对边之交点的连线EF ,求证:AC 平分BD 。[1] 证明:设AC 交BD 于M ,交EF 于N 则 NF MD EN BM =,欲证MD BM = 作方向猜测,只需证NF EN =或 1==NF EN MD BM 即可。 但我们意识到这不容易证明, (图2.1.1) 再作方向猜测,欲证MD BM =,只需证明 BM MD MD BM =即可。而NF EN MD BM =,从而只需证NF EN BM MD =即可,又只需证NF BM EN MD =即可。而NF BM CN MC EN MD ==,故得证。 2 综合法 综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。综合法和分析法有些不同的是分析法的思路从结论开始,综合法的思路从题设开始。 例2如图2.2.1设D 是ABC ?底边BC 上任一点, 则CD BD BC BD AC CD AB BC AD ??-?+?=?2 22。[1] 证明:在ADB ?和ABC ?中 BD AD AB BD AD ADB ?-+=∠2cos 2 22 BD AD AC CD AD ADC ?-+=∠2cos 2 22 由ADC ADB ∠-=∠cos cos ,所以 (图2.2.1) BD AD AC CD AD BD AD AB BD AD ?-+-=?-+222 22222

几何证明的基本方法1.

几何证明的基本方法 一.割补法: 1.(全等)如图,点E 是BC 中点,CDE BAE ∠=∠,求证:CD AB = (相似)如图,点E 是BC 上一点,EC k BE ?=,CDE BAE ∠=∠,猜想AB 、CD 的数量关系. 2. (全等)如图,在ABC ?中,?=∠90BAC ,AC AB =,BA CD //,点P 是BC 上一点,连结AP ,过点P 做AP PE ⊥交CD 于E . 探究PE 与PA 的数量关系. (相似)如图,在ABC ?中,?=∠90BAC ,AC k AB ?=,BA CD //,点P 是BC 上一点,连结AP ,过点P 做AP PE ⊥交CD 于E . 探究PE 与PA 的数量关系. --1--

3. (全等)如图,在ABC ?中,AC AB =,点D 在AB 上,点E 在AC 的延长线上,且CE BD =,DE 交BC 于点P . 探究PE 与PD 的数量关系. (相似)如图,在ABC ?中,AC k AB ?=,点D 在AB 上,点E 在AC 的延长线上,且CE BD =,DE 交BC 于点P . 探究PE 与PD 的数量关系. 4. (全等)如图,在ABC ?中,A ECB DBC ∠=∠=∠2 1,BD 、CE 交于点P . 探究BE 与CD 的数量关系. (相似)如图,在ABC ?中,A ECB DBC ∠=∠+∠,BD 、CE 交于点P ,PC k PB ?=. 探究BE 与CD 的数量关系. --2--

5.(全等)如图,在EBC ?中,BD 平分EBC ∠,延长DE 至点A ,使得ED EA =,且C ABE ∠=∠. 探究AB 与CD 的数量关系. (相似)如图,BD 平分EBC ∠,D '是BD 上一点,且D B k BD '?=,连结C D '、DE ,并延长DE 至点A ,使得ED EA =,且C ABE ∠=∠. 探究AB 与D C '的数量关系. 6.(全等)如图,在ABC ?中,?=∠90C ,BC AC =,P 为AB 的中点,PF PE ⊥分别交AC 、BC 于E 、F . 探究PE 、PF 的数量关系. (相似)如图,在ABC ?中,?=∠90C ,BC AC =,P 为AB 上一点,且PB k AP ?=,PF PE ⊥分别交AC 、BC 于E 、F . 探究PE 、PF 的数量关系. --3--

相关主题
文本预览
相关文档 最新文档