当前位置:文档之家› 环状糊精葡萄糖基转移酶的研究

环状糊精葡萄糖基转移酶的研究

环状糊精葡萄糖基转移酶的研究
环状糊精葡萄糖基转移酶的研究

α-环状糊精生成酶的研究

材料和方法

环状糊精是由葡萄糖经α-1,4键首尾相连成环状结构的一组化合物。通常由6、7和8个葡萄糖残基组成,分别命名为α-、β-和γ-环状糊精。其环状分子结构可以包接其它化合物分子,形成包接化合物,使被包接的物质与外界环境隔绝,具有抗氧化、抗挥发、抗光分解、掩盖异味等作用,因此环状糊精广泛应用于食品、医药、化妆品等行业。β-环状糊精在水中的溶解度较低,应用受到一定的限制;α-和γ-环状糊精在水中的溶解度较高,更便于使用。我国目前仅有β-环状糊精实现工业化生产,α-环状糊精曾有人进行过一些研究,尚未投入生产。我们通过紫外线照射,使一株主要生产β-环状糊精的嗜碱芽孢杆菌发生变异,获得一株产α-环状糊精在50%以上的突变株。并对该突变株所产生的环状糊精生成酶(Cyclomaltodexdrin glucanotransferase,,简称CGTase)。的性质进行了研究,本文将报道研究结果。

一. 材料

菌种:

α-CD、β-CD:购自Sigma公司。其余试剂均为国产市售分析纯

二.方法:

(一)酶活力的测定

在10mL比色管,加0.3%可溶性淀粉0.2mL,0.2mol/L,pH10.0的硼酸缓冲液0.2ml,置40℃水浴中预热10分钟,加适当稀释的酶液0.1mL,准确反应10分钟。加4%的醋酸溶液0.5mL,然后加入0.0004mol/L的I2液3mL,摇匀,用蒸馏水定容至10mL。立即在700nm 处用光程1cm的比色杯测定吸光度A,以蒸馏水代替酶液作空白对照,测定淀粉液的吸光度A0。

酶活力的定义:在上述条件下,以使淀粉吸光度降低10%所需的酶量定义为一个酶的活力单位。

(A0-A)

酶活力u/mL == ————-×100×稀释倍数

A0

(二)环状糊精的测定:

1.纸层析定性测定

展开剂:65%正丙醇

显色剂:0.2%碘丙酮溶液

上行法,展开两次。显色后α-CD呈紫色,β-呈黄色,γ-呈褐黄色。

2. 比色法定量测定

⑴试剂

①3.75×10-3mol/L酚酞溶液

精确称取105℃烘干的酚酞0.0597克,溶解于95%的乙醇中,定溶至50mL。置4℃左右冰箱保存。使用前用蒸馏水稀释10倍。

②4×10-2mol/L碳酸钠溶液

精确称取105℃烘干的无水碳酸钠1.0599g,用新煮沸冷却后的蒸馏水溶解并定容至250mL。

③α-CD标准溶液

精确称取105℃烘干的α-CD20mg,用新煮沸并冷却的蒸馏水溶解并定容至25mL。

⑵标准曲线的制作:

在25mL的比色管中,各管分别加入α―CD标准溶液0.4、0.8、1.2、1.6、2.0mL;酚酞工作液2.0mL;振荡1分钟后,加入4×10-2mol/L的Na2CO3溶液2.5mL;补加蒸馏水至刻度。立即在721分光光度计上于550nm处测吸光度E DF。以不加α―CD为对照测定酚酞的吸光度E F,以吸光度减少值△E(△E=E F-E DF)为纵坐标,α―CD浓度为横坐标作标准曲线。

⑶转化液环状糊精浓度的测定

转化液稀释100倍,取2.0mL稀释液,加酚酞工作液2.0mL,振荡1分钟后,加碳酸钠溶液2.5mL。按上述操作测定,并计算△E,从标准曲线上查出CD浓度,计算转化液的CD含量

(三)转化液淀粉浓度的测定

精确吸取转化液0.5mL,加3N盐酸10mL,煮沸水解3分钟,加酚酞指示剂2滴,用2 NaOH中和至中性,用碘量法测定总糖含量,折算成淀粉浓度。

(四)转化率的测定

由上述方法测得转化液的CD含量和淀粉浓度,按下列公式计算:

CD含量

转化率%=——————×100%

淀粉浓度

结果和讨论

一.酶的性质

1.温度对酶活力的影响:

在不同温度测定酶液活力,结果见图1。图1显示该酶的最适温度为50℃。

2.温度稳定性:

将酶液在不同温度下,保温放置22小时后,测定残余活力,结果绘于图2。图2显示该酶在45℃以下稳定。

3.pH对酶活力的影响

用不同pH值的缓冲液测定酶活力,结果见图3。图3结果显示,酶的最适pH为11。

4.酶的pH稳定性

将酶置于不同pH值的缓冲液中,在20℃保温放置24小时后测定酶活力,结果如图4。由图4可见,酶在pH8.0—12的范围内稳定。

5.金属离子对酶活力的影响

各种金属离子分别配成0.005 mol/L。酶液用各种金属离子的溶液适当稀释后。

测定酶活力。以不加金属离子时的酶活力为100%。结果如下表1。表1显示Li、Al和Ca 对酶有激活作用;Ba2+和Fe3+对酶有严重抑制;Ag+、Zn2+、Cu2+、Fe2+对酶有一定的抑制作

6. 酶的K m和V max值

用不同浓度的底物测定反应初速度。按Lineweaver-Burk双倒数法作图,求得K m= V max为

上述结果显示,该菌株产生的环状糊精酶在45℃以下pH8-12活力稳定,最适pH在酶的pH稳定范围以内,转化pH可控制在最适pH附近,因此确定转化淀粉制备环状糊精的

条件为pH10-11,温度40℃。

转化液层析结果见图6。

糖基转移酶的研究概述

糖基转移酶的研究概述 邓传怀 (河北大学生命科学学院2012生物技术中国保定071000) 摘要糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂上,糖基化的产物具有很多生物学功能并具有高度的底物专一性。本文综述了糖基转移酶的种类、功能、特性及其在组合生物合成中的应用与研究前景。 关键词糖基转移酶结构功能应用 Outline about research of glycosyltransferases Deng Chuanhuai ( College of Life Sciences , Biotechnology 2012, Hebei University , Baoding ) Abstract Glycosyltransferase catalyzing the biosynthesis of the sugar attached to different activated receptor molecules, such as proteins, nucleic acids, oligosaccharides, the lipid glycosylation product has many biological functions with a high degree of substrate specificity[1]. In glycosylation project, carried out by enzymatic protein glycosylation and important means of natural glycosylated glycoproteins to study the structure and function of glycoproteins[2].This article provides anoverview of the categories, functions, characteristics of Gtfs, their app lications in combinatorial biosynthesis, and the p rospects for research. Key Words Glycosyltransferase Structure and Function Application 糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶类[3],参与体内重要的活性物质如糖蛋白和糖脂中糖链的合成。其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)

生物化学 第一章 糖

第一章糖类化学 一:填空题 1.糖类是具有________________结构的一大类化合物。根据其分子大小可分为________________、 ________________和________________三大类。 2.判断一个糖的D-型和L-型是以________________碳原子上羟基的位置作依据。 3.糖类物质的主要生物学作用为(1)________________(2)________________(3)________________。 4.糖苷是指糖的________________和醇、酚等化合物失水而形成的缩醛(或缩酮)等形式的化合物。 5.蔗糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。 6.麦芽糖是由两分子________________组成,它们之间通过________________糖苷键相连。 7.乳糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。 8.糖原和支链淀粉结构上很相似,都由许多________________组成,它们之间通过________________和 ________________两种糖苷键相连。两者在结构上的主要差别在于糖原分子比支链淀粉________________、________________和________________。 9.纤维素是由________________组成,它们之间通过________________糖苷键相连。 10.多糖的构象大致可分为________________、________________、________________和 ________________四种类型,决定其构象的主要因素是________________。 11.直链淀粉的构象为________________,纤维素的构象为________________。 12.人血液中含量最丰富的糖是________________,肝脏中含量最丰富的糖是________________,肌肉 中含量最丰富的糖是________________。 13.糖胺聚糖是一类含________________和________________的杂多糖,其代表性化合物有 ________________、________________和________________等。 14.肽聚糖的基本结构是以________________与________________组成的多糖链为骨干,并与 ________________肽连接而成的杂多糖。 15.常用定量测定还原糖的试剂为________________试剂和________________试剂。 16.蛋白聚糖是由________________和________________共价结合形成的复合物。 17.自然界较重要的乙酰氨基糖有________________、________________和________________。 18.鉴别糖的普通方法为________________试验。 19.脂多糖一般由________________、________________和________________三部分组成。 20.糖肽的主要连接键有________________和________________。 21.直链淀粉遇碘呈________________色,支链淀粉遇碘呈________________色,糖原遇碘呈 ________________色。 二:是非题 1.[ ]D-葡萄糖的对映体为L-葡萄糖,后者存在于自然界。 2.[ ]人体不仅能利用D-葡萄糖而且能利用L-葡萄糖。 3.[ ]同一种单糖的α-型和β-型是对映体。 4.[ ]糖的变旋现象是由于糖在溶液中起了化学作用。 5.[ ]糖的变旋现象是指糖溶液放置后,旋光方向从右旋变成左旋或从左旋变成右旋。 6.[ ]由于酮类无还原性,所以酮糖亦无还原性。 7.[ ]果糖是左旋的,因此它属于L-构型。 8.[ ]D-葡萄糖,D-甘露糖和D-果糖生成同一种糖脎。

α-葡萄糖苷酶(α-Glucosidase)使用说明

α-葡萄糖苷酶(α-Glucosidase)使用说明 货号:G8820 规格:1g/5g 级别:BR 其他名称:α-D-葡萄糖苷酶;α-葡糖苷酶 CAS号:9001-42-7 提取来源:黑曲霉 产品简介: α-葡萄糖苷酶(α-Glucosidase,EC 3.2.1.20)又被称为α-葡萄糖苷水解酶或葡萄糖基转移酶(GTase),是一种α-D-葡萄糖苷酶。它可以从低聚糖类底物的非还原末端切开α-1,4-糖苷键释放出葡萄糖,或将游离的葡萄糖残基转移到另一糖类底物形成α-1,6-糖苷键,从而得到非发酵性的低聚糖。α-葡萄糖苷酶来源广泛,在人体糖原的降解和动植物、微生物的糖类代谢方面具有重要的生理功能。α-葡萄糖苷酶广泛应用于食品和发酵工业、化学工业以及医学应用等行业。 酶活定义: 每小时产生1μg葡萄糖所需的酶量定义为一个α-葡萄糖苷酶活力单位。 酶活检测方法:参见QB2525-2001。 产品特性: 酶活力:300000U/g 最适作用温度:50℃,合适的作用温度:50-55℃。 最适作用pH:5.0,合适的作用pH:4.8-5.4。

外观:淡白色粉末或淡黄色液体,分子量约为68.5KD,无臭无味,溶于水,不溶于乙醚和乙醇。 用途: 生化研究。能水解葡萄糖苷(Glucoside)成葡萄糖和其他组成物质,是一种具有生物催化剂功能的蛋白质。本产品的建议添加量为800U/g干物质,根据实际情况改变添加量。 抑制剂: 铜、钛、钴等金属离子对本品有一定的影响。铅、铝、锌等金属离子对本品有较强的抑制作用。 贮存: 建议密封储藏于干燥、低温的环境中(≤25℃),最好在冷藏条件下(4-8℃)储藏。25℃以下,液体可以储存3个月,保质期内酶活不会降低于产品标示的活力;4℃以下,可较长时间储存。

糖生物学_植物糖基转移酶研究进展

期末考核 课程:Glycobiology 植物糖基转移酶研究进展 :*** 学号:*** 班级:*** 时间:****

植物糖基转移酶研究进展 摘要:糖基转移酶一类是能够催化糖基从激活的供体转移到特定的受体分子上的一类酶,在生物体中普遍存在并形成了超基因家族。糖基转移酶广泛参与植物生命活动的各种生物学过程。本文综述了近年来的研究报道,综述了糖基转移酶的分类、分离鉴定方法及在生物学功能方面的研究进展,期望为相关研究工作提供参考。 关键词:植物糖基转移酶,分类,分离鉴定,生物学功能 糖基转移酶(Glycosyltransferases,GT,EC 2.4.x.y)是一类催化糖基转移的酶,通过产生糖苷键将供体糖分子或相关基团转移至特异的受体上。糖基转移酶几乎存在于所有的生物体中,其所催化的糖基化反应是最重要的生物学反应之一,直接参与二糖、单糖苷、聚糖苷等的生物合成。糖基供体分子包括双糖、多糖、1-磷酸糖、尿苷二磷酸葡萄糖醛酸,植物中最常见的供体为UDP-Glc。受体可以是糖类、脂类、蛋白质、抗生素和核酸。糖基转移酶催化供体-受体形成α、β两种糖苷键,产物为多糖、糖蛋白、糖脂以及糖苷化合物等。全基因组测序发现真核生物中约1%的基因编码糖基转酶。 1糖基转移酶的分类 目前,对糖基转移酶的分类主要根据Campbell等提出的GT Family 分类系统(数据收录在CAZy数据库中)。糖基转移酶作为高度分歧的多源基因家族,根据蛋白氨基酸序列的一致性、催化特性以及保守序列对其进行分类。因此,一特定的糖基转移酶既可以通过生物化学的方法鉴定其底物,也可以通过生物信息学方法研究其与已知酶基因或酶蛋白氨基酸序列的同源性对其进行分类。目前,依据这种分类方法,糖基转移酶被分为94个家族。根据其的折叠方式可将绝大多数酶分为两个超家族,GT-A超家族和GT-B超家族(图1)。根据催化反应机制、产物的立体化学异构性,在这两个超家族中糖基转移酶又分为反向型和保留型两大类(图2)。 GT-A型折叠的空间结构有两个紧密相连的β/α/β类Rossmann折叠区域。GT-A家族成员需要一个D-X-D基序用来结合二价金金属离子(多为Mn2+),这有助于UDP-糖供体的PPi在酶活性位点上的固定,对于催化反应是不可或缺的。GT-A难以识别UDP-糖供体以外的供体,所以受体的多样性较低。GT-B型折叠的空间含有两个正对的β/α/β类Rossmann折叠区域,连接方式灵活。GT-B成员无需二价金属离子维持活性,这是GT-B与GT-A家族成员的一个显著区别。此外,通过结构分析和PSI-BLAST发现了由跨膜GT组成GT-C超家族,其折叠方式全为反向型,活性位点位于长环部,一般含有8-13个跨膜螺旋。

糖生物学研究进展

糖生物学研究进展 张文辉 (单位:航天医学工程研究所 学号:w24013 E-mail:pangzizhang503@https://www.doczj.com/doc/7917827967.html,)摘要:本文主要介绍了糖化学和生物学相结合产生的新学科-糖生物学的概况,主要研究内容、特点及在医学领域中研究动向。 关键词:糖生物学,研究内容,动向。 糖生物学是糖的化学和生物学研究相结合而产生的一门新兴学科,主要研究糖缀合物糖链的结构生物合成和生物学功能,其研究领域包括糖化学、糖链生物合成、糖链在复杂生物系统中的功能和糖链操作技术.糖生物学一经提出,便得到了科学界的广泛认同,并在西方发达国家受到高度重视,在即将到来的后基因组学时代,糖生物学研究更是揭示生命本质所不可缺少的重要方面.已知糖链在细胞内可修饰调控蛋白质、脂类的结构与功能,在细胞外环境参与免疫应答、感染和癌症等过程中的细胞识别但对其作用机制还不完全清楚.近10年来,随着分析技术的进步和分子生物学的发展,糖的研究也取得的了巨大进展,糖生物学研究正成为生命科学研究中又一新的前沿和热点. 糖生物学研究内容: 糖生物学以生物大分子的组成部分糖链为研究对象,研究它作为信息分子在多细胞生物高层次生命活动中的功能,主要包括糖链的结构和功能两个方面的内容。糖链的结构具有惊人的多样性、复杂性和微观不均一性,其一级结构的内容不仅包括各糖基的排列顺序,还包括各糖基的环化形式、各糖基本身异头体的构 型、各糖基间的连接方式以及分支结构的位点和分支糖链的结构。6种单糖形成带分支的六糖有1012异构体。糖链结构的复杂性给糖链的研究带来了很大的困难,同时也使它能携带巨大的生物信息。实际上,糖链的种间特异性、组织特异性以及发育特异性都很强,并且都来源于糖基转移酶不同时间和不同空间的表达。因此,糖基转移酶的研究已成为了当前糖生物学的研究重点。糖复合物中糖链的功能多种多样,如从空间上调节糖复合物的整体结构,保护多肽链不被蛋白酶水解,防止与抗体识别等。近年来的研究表明:糖链作为信息分子涉及多细胞生命的全部空间和时间过程,如精卵识别、组织器官形态形成、老化、癌变等,在血液和淋巴循环中,起着动态的更为灵敏的信号识别和调控作用,涉及到多种严重疾病的发生过程,如炎症和自身免疫病等。关于糖链的生物学作用,有如下一般规则:1)很难预知某一特定的糖链的功能和对生物体的重要性;2)同一寡糖序列在生物体的不同部位和不同的个体发育阶段有不同的功能;3)较为专一的生物作用通常是通过不寻常的序列或常见序列的不寻常表达或修饰来介导的,而这些特殊的糖链也常是毒素和病原体的识别目标。归根结底,糖链的共同特点是介导专一的“识别”和“调控”生物学的过程,因此对糖链的生物学作用也只能逐个地分别研究。当前,糖生物学研究得最多的仍然是糖蛋白。在糖蛋白中,糖链对蛋白质的功能起修饰作用,它通过影响蛋白质的整体构象从而影响由构象决定的所有功能,如蛋白质的正确折叠、细胞内定位、抗原性、细胞-细胞黏附和结合病原体等。在糖脂中人们已经证明了血型的决定物质是糖链,在神经组织及脑中更是存在大量的糖脂,但它们的生理意义至今仍了解得不多。蛋白聚糖主要有维持或抑制细胞生长以及在正常发育和病理条件下结合、贮存及向靶细胞释放生长因子和参与信号转导等作用。细胞表面糖复合物上的糖链是信息功能的承担者,承担着细胞-细胞和细胞-胞外基质的相互作用。[1]

糖生物学论文 糖基转移酶与糖基转移酶抑制剂

糖基转移酶与糖基转移酶抑制剂 摘要:糖基转移酶在生物体内催化活化的糖连接到不同的受体分子,如蛋白、核酸、寡糖、脂和小分子上,糖基化的产物具有很多生物学功能。其是糖蛋白、糖脂中糖链生物合成的关键酶之一。与此同时,对糖基化抑制剂的研究也是必要的。两者在治疗一些因为糖基转移酶非正常表达引起的疾病有很大作用。 关键词:糖基转移酶;糖基化;糖基化抑制剂 前言:糖基转移酶是广泛存在于内质网和高尔基体内的一大类酶,参与体内重要生物活性物质如糖蛋白和糖脂中糖链的合成,其作用是把相应的活性供体(通常是二磷酸核苷NDP-糖)的单糖部分转移至糖、蛋白质、脂类和核酸等,完成后者的糖基化加工,实现其生物学功能。因此糖基转移酶的表达和活性的变化与许多疾病联系在一起,并可作为某些疾病的诊断标志,如α-1,3-半乳糖基转移酶活性在体内的再现会引发自身免疫反应,导致类风湿,并在器官异体移植中引起排斥反应;N-乙酰氨基葡萄糖基转移酶、岩藻糖基转移酶等在成熟细胞中活性的明显升高被视为肿瘤发生的重要标志,并且被认为是肿瘤迁移恶化的重要原因。因此设计合成糖基转移酶抑制剂,对于寻找抗肿瘤、抗免疫系统等新药研究有重要意义。 1 糖基转移酶的存在 糖蛋白是通过蛋白质的糖基化组装实现的,而糖基化过程则通过多种糖基转移酶完成——在肽链合成的同时或合成后,在糖基转移酶的催化下,糖链被连接到肽链的特定糖基化位点上。糖基转移酶具有高度的底物专一性,即同时对糖基的供体和受体具有专一性。对糖基转移酶进行研究,是糖基化研究的第1步。目前已对多种糖基转移酶的结构以及编码它们的基因研究清楚,并认为糖链的合成没有特定的模板,而是通过糖基转移酶将糖基由其供体转移到受体上。糖链可以认为是基因的次级产物,一个基因编码一个糖基转移酶,一个糖基转移酶专一地催化一个糖苷键的合成;这样一条糖链的合成就需要一个多酶系统,也就对应了一个基因组。下文简要介绍几类重要的糖基转移酶。 1.1 N-乙酰氨基葡萄糖转移酶(N-acetylglucosa-minyl-transferase,Gnt) 糖蛋白中糖链通过还原端的N-乙酰氨基葡萄糖以β-1,4糖苷键与蛋白质肽链上Asn-XXX-Ser/Thr序列(XXX为除脯氨酸以外的氨基酸)中Asn残基上的氨基(-NH2)相连,被称为N-糖链。真核细胞中N-糖链的合成途径高度保守,其第1步合成由GnT完成。1999年, Strasser等依据动物GnT保守区序列设计简并引物,从烟草文库中分离到编码GnT的基因GnTI,这也是植物中第1个被鉴定的GnT基因。随后利用同样的方法从拟南芥、马铃薯中分离和鉴定出一系列GnT基因, 这些基因与动物GnT基因均有较高的序列相似性。后续研究发现

常见的细胞凋亡诱导剂和抑制剂

表1 常见的细胞凋亡诱导剂和抑制剂 诱导剂与抑制剂靶细胞诱导剂 激素地塞米松T细胞 细胞因子IL—2 胸腺细胞 TGF—β肝细胞、上皮细胞、慢性B淋巴瘤细胞 IL—10 髓样白血病细胞 IFN—Υ前B细胞、T细胞抗体抗IgM抗体B细胞 抗IgD抗体B细胞 抗HLA—II抗体静止B细胞 超抗原SPE CD4+T细胞 胞内信号分子调节 剂 放线菌酮T细胞 PKC激活剂胸腺细胞 其他DNA拓扑异构酶抑制 剂 白血病细胞放射线淋巴样细胞 抑制剂 细胞因子IL—2 T H1细胞 IL—4 T H2细胞 IL—10 B、T细胞 IFN—ΥT细胞 IL—4 B细胞 黏附分子LFA—1、ICAM—1 B细胞 VLA—4、VCAM—1 B细胞 胞内信号分子调节 剂 PKC激活剂T、B细胞 细胞凋亡(apoptosis)是一种由基因控制的细胞自主死亡方式。1972年,英国教授Kerr首先提出凋亡的概念。近十余年来,细胞凋亡现象引起了广泛重视,有关的研究工作取得重要进展,并成为医学生物学各学科共同关注的极为活跃的研究领域。 细胞凋亡与组织器官的发育、肌体正常生理活动的维持、某些疾病的发生以及细胞恶变等过程均有密切的关系。

1.形态学变化: 细胞凋亡的形态变化大致可分为三个阶段: 1)胞体缩小,与周围细胞失去联系,细胞器变致密,核体积缩小,核仁消失,染色质浓集于核膜内表面下,形成新月形致密小斑块。 2)染色体断裂,核膜与细胞膜均内陷,包裹胞内成分(胞浆、细胞器、碎裂的染色质及核膜)形成“泡”样结构,此为“凋亡小体”。最后,整个细胞均裂解成这种“小体”。 3)凋亡小体被邻近的巨噬细胞、上皮细胞等识别、吞噬、消化。 上述三个阶段维持时间很短,通常在几分钟、十几分钟内即可完成。 2.细胞凋亡的生化改变: 1)胞内Ca2+浓度增高 所有细胞凋亡过程中均出现胞内Ca2+浓度增高,这可能是Ca2+内流所致。 2)内源性核酸内切酶激活 细胞发生凋亡时,由于内源性核酸内切酶被激活,DNA被从核小体连接处水解,形成180—200bp 或其整倍数的片段。 3)生物大分子的合成 凋亡过程的发生一般依赖于新的RNA和蛋白质的合成,如在激素、射线作用下,或由于去除生长因子等所引起的细胞凋亡中,情况均为如此。 常用的检测方法: 1.形态学方法 借助普通光学显微镜、荧光显微镜或透射电镜可对组织切片、切片涂片或细胞悬液进行形态学观察,凋亡细胞在组织中散在分布,表现为核致密浓染、核碎裂等。该方法简便、经济,可定性、定位。但在组织成分及细胞死亡类型复杂的情况下,难以判断结果,也无法定量。 2.电泳法 对凋亡细胞的基因组DNA进行琼脂凝胶电泳,由于存在180—200bp或其整倍数的片段,故电泳结果可见“梯状”(ladder)DNA条带。该法简便,可定性及定量,但无法显示组织细胞形态结构,也不能反映凋亡细胞与周围组织的关系。

酶的EC编号

酶的EC编号 EC1:氧化还原酶EC2:转移酶EC3:水解酶 EC4:裂合酶EC5:异构酶EC6:连接酶 EC1:氧化还原酶 EC1.1:作用在给体的CH-OH上 EC1.1.1:以NAD+或NADP+为受体 EC1.1.1.1:醇脱氢酶 EC1.2:作用在给体的醛基或氧桥上 EC1.2.1:以NAD+或NADP+为受体 EC1.2.1.1:(已删除,以EC1.1.1.284和EC4.4.1.22 代替)EC1.3:作用在给体的CH-CH上 EC1.3.1:以NAD+或NADP+为受体 EC1.3.1.1:二氢尿嘧啶脱氢酶(NAD+) EC1.4:作用在给体的CH-NH2上 EC1.4.1:以NAD+或NADP+为受体 EC1.4.1.1:丙氨酸脱氢酶 EC1.5:作用在给体的CH-NH上 EC1.5.1:以NAD+或NADP+为受体 EC1.5.1.1:吡咯啉-2-羧酸还原酶 EC1.6:作用在NADH或NADPH上 EC1.6.1:以NAD+或NADP+为受体 EC1.6.1.1:NAD(P)+转氢酶(B) EC1.6.1.2:NAD(P)+转氢酶(AB) EC1.7:以其他含氮化合物为给体 EC1.7.1:以NAD+或NADP+为受体 EC1.7.1.1:硝酸还原酶(NADH+) EC1.8:作用在给体的硫族上 EC1.8.1:以NAD+或NADP+为受体 EC1.8.1.1:半胱胺脱氢酶(已删除。) EC1.9:作用在给体的血红素上 EC1.9.3:以氧为受体 EC1.9.3.1:细胞色素C氧化酶 EC1.10:以联苯酚及其相关化合物为给体 EC1.10.1:以NAD+或NADP+为受体 EC1.10.1.1:顺-苊-1,2-二醇脱氢酶

糖基转移酶酶活测定方法

Analysis of glk 12,15 葡萄糖通过葡萄糖激酶的ATP依赖的磷酸化是由通过根据弗兰克尔和Horecker 的使用过量的葡萄糖-6-磷酸脱氢酶监测细胞提取物中NADPH的形成。反应体系为 2 ml,50 mM Tris buffer pH7.65;10 mM MgCl2;50mM甘露糖;加入0.1mL酶。在反应中,NADP+被还原生成NADPH,其产量与样品GLK活性呈正相关,NADPH在340nm处有一吸收峰,因此测吸光度,每分钟记录一次直至吸光度不再变化,测出每分钟光密度的增加值。根据以下公式计算:酶活性=吸光度变化(min)/6.22(NADPH吸光系数) Analysis of manB 中文 酶的测定原理是根D-甘露糖-l-磷酸作底物,反应后经酸水解无机磷的减少而测定。标准的反应溶液中,含有D-甘露糖-1-磷酸(0.5m mol/l) 、D-葡萄糖-2,6-二磷酸 ( 0.0 1mmo l/L),醋酸镁 (2.5m mol /L),组氨酸(5m mol /L),Tris -Hcl(10 mmol/ l,pH8.0 )的缓冲液和微克量的酶液。反应总体积为 50μL,在30 ℃下反应10分钟,然后加4.25 mL 0.74 mol /L H2SO4 .消化20 分钟,再加125 m1 钼酸铵和25 μL F -S试剂 ,在100℃水浴下煮沸7 -10分钟,冷却,在670 nm波长下测光密度。以酶液先消化后加底物经同样处理的样品作对照测光密度。以两者的光密度正差显示酶活性。 Analysis of gmd and wcaG 17 利用分光和色谱测定试验系统进行测量GDP-D-甘露糖4,6-脱水酶和GDP-4-酮-6-脱氧-D-甘露糖3,5-差向异构酶-4-还原酶的活性。GDP-D-甘露糖4,6-脱水酶标准测定体系含有50mM的Tris/盐酸缓冲液pH7.5,10mM的氯化镁,4mM的GDP-D-甘露糖,50μMNADPH+和GMD含粗提物终体积为100μL。该反应在37℃进行60分钟,每隔一段时间测量一次。最后加入1900μL 100mM NaOH终止反应并在37℃下孵育20min,然后在320nm下测吸光度。GDP-4-酮-6-脱氧-D-甘露糖3,5-差向异构酶-4-还原酶活性测量依靠加入在第一步骤中的反应,然后通过在340 nm和37℃下测量NADPH的消耗量测定。 Analysis of fuct 1-。。 标准测定混合物含有38nM寡糖受体,20mM的MnCl2,1%的Triton X-100,50mM的二甲胂-HCl缓冲液(pH值 5.8),0.37 μM GDP-岩藻糖(270.0 mCi/mmol),和酶(0.4 mg protein),100μL的终体积。温育在37℃,1h。终止反应用300μL氯仿/甲醇(2/1,v/v),然后将产物通过TLC,乙醇/吡啶/ 1-丁醇/水/乙酸(100/10/10/30/3, by vol)在下层相分离。掺入糖脂的放射性活度是用图像分析仪和并用液体闪烁计数器测定。

(完整word版)蛋白质糖基化类型与点

1.2蛋白质糖基化类型与特点 蛋白质的糖基化是一种最常见的蛋白翻译后修饰,是在糖基转移酶作用下将糖类转移至蛋白质,和蛋白质上特殊的氨基酸残基形成糖苷键的过程。研究表明,70%人类蛋白包含一个或多个糖链,1%的人类基因组参与了糖链的合成和修饰。哺乳动物中蛋白质的糖基化类型可分为三种:N-糖基化、0-糖基化和GPI糖基磷脂酰肌醇锚。大多数糖蛋白质只含有一种糖基化类型,但是有些蛋白多肽同时连有N-糖链、O-糖链或糖氨聚糖。 (l) N-糖基化:糖链通过与蛋白质的天冬氨酸的自由NH 基共价连接,将这种 2 糖基化称为N-糖基化。N-连接的糖链合成起始于内质网(ER),完成于高尔基体。N-糖链合成的第一步是将一个14糖的核心寡聚糖添加到新形成多肽链的特征序列为Asn-X-Ser/Thr(X代表任何一种氨基酸)的天冬酰胺上,天冬酰胺作为糖链受体。核心寡聚糖是由两分子N-乙酰葡萄糖胺、九分子甘露糖和三分子葡萄糖依次组成,第一位N-乙酰葡萄糖胺与ER双脂层膜上的磷酸多萜醇的磷酸基结合,当ER膜上有新多肽合成时,整个糖链一起转移。寡聚糖转移到新生肽以后,在ER 中进一步加工,依次切除三分子葡萄糖和一分子甘露糖。在ER形成的糖蛋白具有相似的糖链,由Cis面进入高尔基体后,在各膜囊之间的转运过程中,原来糖链上的大部分甘露糖被切除,但又由多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。血浆等体液中蛋白质多发生N-糖基化,因此N-糖蛋白又称为血浆型糖蛋白。 (2) O-糖基化:糖链与蛋白质的丝氨酸或苏氨酸的自由OH基共价连接。0-糖基化位点没有保守序列,糖链也没有固定的核心结构,组成既可是一个单糖,也可以是巨大的磺酸化多糖,因此与糖基化相比,0-糖基化分析会更加复杂。0-连接的糖基化在高尔基体中进行,通常第一个连接上去的糖单元是N-乙酰半乳糖,连

糖苷酶及其抑制剂的研究

糖苷酶及其抑制剂的研 究 Document number:PBGCG-0857-BTDO-0089-PTT1998

糖苷酶及其抑制剂的研究 摘要:糖苷酶是生命体正常运转的关键性酶,糖苷酶抑制剂 可抑制糖苷酶的活性,阻断碳水化合物的分解,因此对一些 糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值。本 文研究了糖苷酶中的β-半乳糖苷酶、β-葡萄糖苷酶以及蔗 糖酶的抑制剂。重点研究了β-半乳糖苷酶的分子结构和活性 基团,并从结构出发筛选其抑制剂,发现此酶的抑制剂种类 较少且抑制活性较低。本实验采用混合交叉筛选法筛选了多 种金属离子和氨基酸对β-半乳糖苷酶的抑制作用,同时也筛 选了天然产物和合成化合物。 关键词:糖苷酶β-半乳糖苷酶β-葡萄糖苷酶蔗糖酶抑制剂的筛选混合交叉法 1、前言 糖苷酶和糖基转移酶不仅参与了体内碳水化合物的消化,而且是糖脂、糖蛋白生物合成中寡糖链的修剪酶,它对糖蛋白中寡糖链的形成极为重要;糖链的组成与结构是糖蛋白特异生物功能的识别

部位,因此糖苷酶活性对糖蛋白生物合成有关键作用,而后者又涉 及到免疫反应、神经细胞的分化、肿瘤的转移以及病毒和细菌的感染. 因此, 糖苷酶不仅是生命体正常运转的关键性酶,同时又是许多疾病的相关酶. 与病毒感染、癌症及一系列新陈代谢紊乱性疾病如 糖尿病、肥胖病有关。由于糖苷酶重要的生物学意义,糖苷酶抑制 剂的研究也引起了人们的极大兴趣。 糖苷酶抑制剂即是可抑制糖苷酶的活性,阻断碳水化合物的分解,抑制淀粉、麦芽糖、蔗糖转变成单糖;影响糖脂、糖蛋白生物合成中寡糖链的修剪;所以糖苷酶抑制剂不但对一些糖代谢紊乱性 疾病如糖尿病、肥胖病等有临床应用价值[1] ,而且可作为抗AIDS病毒[2]、抗鼠白血病毒[3]的潜在治疗试剂。 本论文重点研究了糖苷酶中的β-半乳糖苷酶 β-半乳糖苷酶(β-galactosidase)又称β-D-半乳糖苷水解酶,(β-D-galactosid- -e galacto-hydrolase ,EC.3.2.1.23),商品名为乳糖酶(Lactase),它广泛存在于豆类及其他各种动植物体内和微生物中。它能够催化β-半乳糖苷化合物中的β-半乳糖苷键发生水解,还具有转半乳糖苷的作用。由于它具有糖苷键结构特 异性,可作为乳糖降解和双糖合成催化剂[4,5],并有水解生物体内储存的多糖和半乳糖残基.引起血型转化等生理功能[6,7]而受到人们广 泛关注,成为生物化学和酶催化化学的重要研究课题。

第六章-3 糖代谢A

多糖和低聚糖的酶促降解? A.胞外降解 细胞外 多糖和低聚糖 胞外水解酶(淀粉酶、寡糖酶) ? B.胞内降解 细胞内储备的糖原或淀粉磷酸化酶 活化、水解 转移酶 去分枝酶 断支链 磷酸化酶 活化、水解 单糖 主要是葡萄糖 第三节 多糖的酶水解(Hydrolysis of Polysaccharides)

主要介绍食物中的主要多糖------淀粉的水解与淀粉水解酶。 淀粉酶∶凡是能够催化淀粉(或糖原)分子及其片段中的α-葡萄糖苷键水解的酶,称为淀粉酶。 淀粉水解酶的种类∶α-淀粉酶 β-淀粉酶 γ-淀粉酶(糖化酶) 异淀粉酶

1、α-淀粉酶(α-amylase) ∶ 又称液化酶、淀粉-1,4-糊精酶。 系统名称∶α-1,4-葡聚糖葡聚糖水解酶 (编号∶EC3.2.1.1) 作用机制∶它是一个内切酶,从淀粉分子内部随机切断α-1,4-糖苷键,不能水解α-1,6-糖苷键和与非还原性末端相连的α-1,4-糖苷键。 产物∶主要是含有α-1,6-糖苷键的各种分支糊精和少量的α-型的麦芽糖和葡萄糖。 底物分子越大,水解效率越高。

酶的性质∶是一个钙金属酶,每分子中含有一个钙离子。 哺乳动物的α-淀粉酶需要Cl-激活; 植物和微生物的α-淀粉酶需要Cl-激活。 Ca+2、Na+、Cl-和淀粉底物都能提高该酶的稳定性。

2、β-淀粉酶(β-amylase) ∶ 又叫淀粉-1,4-麦芽糖苷酶。 系统名称∶α-1,4-葡聚糖麦芽糖苷酶 (编号∶EC3.2.1.2) 作用机制∶它是一个外切酶。从淀粉分子的非还原性末端,依次切割α-1,4-麦芽糖苷键,生成β-型的麦芽糖;该酶不能水解和越过α-1,6-糖苷键。当其作用于支链淀粉时,遇到分支点即停止作用,剩下的大分子糊精称为β-极限糊精。

环状糊精葡萄糖基转移酶的研究

α-环状糊精生成酶的研究 材料和方法 环状糊精是由葡萄糖经α-1,4键首尾相连成环状结构的一组化合物。通常由6、7和8个葡萄糖残基组成,分别命名为α-、β-和γ-环状糊精。其环状分子结构可以包接其它化合物分子,形成包接化合物,使被包接的物质与外界环境隔绝,具有抗氧化、抗挥发、抗光分解、掩盖异味等作用,因此环状糊精广泛应用于食品、医药、化妆品等行业。β-环状糊精在水中的溶解度较低,应用受到一定的限制;α-和γ-环状糊精在水中的溶解度较高,更便于使用。我国目前仅有β-环状糊精实现工业化生产,α-环状糊精曾有人进行过一些研究,尚未投入生产。我们通过紫外线照射,使一株主要生产β-环状糊精的嗜碱芽孢杆菌发生变异,获得一株产α-环状糊精在50%以上的突变株。并对该突变株所产生的环状糊精生成酶(Cyclomaltodexdrin glucanotransferase,,简称CGTase)。的性质进行了研究,本文将报道研究结果。 一. 材料 菌种: α-CD、β-CD:购自Sigma公司。其余试剂均为国产市售分析纯 二.方法: (一)酶活力的测定 在10mL比色管,加0.3%可溶性淀粉0.2mL,0.2mol/L,pH10.0的硼酸缓冲液0.2ml,置40℃水浴中预热10分钟,加适当稀释的酶液0.1mL,准确反应10分钟。加4%的醋酸溶液0.5mL,然后加入0.0004mol/L的I2液3mL,摇匀,用蒸馏水定容至10mL。立即在700nm 处用光程1cm的比色杯测定吸光度A,以蒸馏水代替酶液作空白对照,测定淀粉液的吸光度A0。 酶活力的定义:在上述条件下,以使淀粉吸光度降低10%所需的酶量定义为一个酶的活力单位。 (A0-A) 酶活力u/mL == ————-×100×稀释倍数 A0 (二)环状糊精的测定: 1.纸层析定性测定 展开剂:65%正丙醇 显色剂:0.2%碘丙酮溶液 上行法,展开两次。显色后α-CD呈紫色,β-呈黄色,γ-呈褐黄色。 2. 比色法定量测定 ⑴试剂 ①3.75×10-3mol/L酚酞溶液 精确称取105℃烘干的酚酞0.0597克,溶解于95%的乙醇中,定溶至50mL。置4℃左右冰箱保存。使用前用蒸馏水稀释10倍。 ②4×10-2mol/L碳酸钠溶液 精确称取105℃烘干的无水碳酸钠1.0599g,用新煮沸冷却后的蒸馏水溶解并定容至250mL。 ③α-CD标准溶液 精确称取105℃烘干的α-CD20mg,用新煮沸并冷却的蒸馏水溶解并定容至25mL。

糖苷酶及抑制剂的深入研究(doc 9页)

糖苷酶及抑制剂的深入研究(doc 9 页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

糖苷酶及其抑制剂的研究 摘要:糖苷酶是生命体正常运转的关键性酶,糖苷酶抑制剂可抑制糖苷酶的活性,阻断碳水化合物的分解,因此对一些糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值。本文研究了糖苷酶中的β-半乳糖苷酶、β-葡萄糖苷酶以及蔗糖酶的抑制剂。重点研究了β-半乳糖苷酶的分子结构和活性基团,并从结构出发筛选其抑制剂,发现此酶的抑制剂种类较少且抑制活性较低。本实验采用混合交叉筛选法筛选了多种金属离子和氨基酸对β-半乳糖苷酶的抑制作用,同时也筛选了天然产物和合成化合物。 关键词:糖苷酶β-半乳糖苷酶β-葡萄糖苷酶蔗糖酶抑制剂的筛选混合交叉法 1、前言 糖苷酶和糖基转移酶不仅参与了体内碳水化合物的消化,而且是糖脂、糖蛋白生物合成中寡糖链的修剪酶,它对糖蛋白中寡糖链的形成极为重要;糖链的组成与结构是糖蛋白特异生物功能的识别部位,因此糖苷酶

活性对糖蛋白生物合成有关键作用,而后者又涉及到免疫反应、神经细胞的分化、肿瘤的转移以及病毒和细菌的感染. 因此, 糖苷酶不仅是生命体正常运转的关键性酶,同时又是许多疾病的相关酶. 与病毒感染、癌症及一系列新陈代谢紊乱性疾病如糖尿病、肥胖病有关。由于糖苷酶重要的生物学意义,糖苷酶抑制剂的研究也引起了人们的极大兴趣。 糖苷酶抑制剂即是可抑制糖苷酶的活性,阻断碳水化合物的分解,抑制淀粉、麦芽糖、蔗糖转变成单糖;影响糖脂、糖蛋白生物合成中寡糖链的修剪;所以糖苷酶抑制剂不但对一些糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值[1] ,而且可作为抗AIDS病毒[2]、抗鼠白血病毒[3]的潜在治疗试剂。 本论文重点研究了糖苷酶中的β-半乳糖苷酶 β-半乳糖苷酶(β-galactosidase)又称β-D-半乳糖苷水解酶,(β-D-galactosid- -e galacto-hydrolase ,EC.3.2.1.23),商品名为乳糖酶(Lactase),它广泛存在于豆类及其他各种动植物体内和微生物中。它能够催化β-半乳糖苷化合物中的β-半乳糖苷键发生水解,还具有转半乳糖苷的作用。由于它具有糖苷键结构特异性,可作为乳糖降解和双糖合成催化剂[4,5],并有水解生物体内储存的多糖和半乳糖残基.引起血型转化等生理功能[6,7]而受到人们广泛关注,成为生物化学和酶催化化学的重要研究课题。 β-半乳糖苷酶的应用有着长远的历史,最初在食品工业中用来降解乳

细胞生物学选择题(含答案)

?细胞生物学选择题(含答案) 细胞生物学试题(选择题) 1、对细胞的概念,近年来比较普遍的提法是:有机体的( D ) A、形态结构的基本单位 B、形态与生理的基本单位 C、结构与功能的基本单位 D、生命活动的基本单位 2、支持线粒体来源于细胞内共生细菌的下列论据中哪一条是不正确的( C ) A、线粒体具有环状DNA分子 B、能独立进行复制和转录 C、具有80S的核糖体 D、增殖分裂方式与细菌增殖方式相同 3、流式细胞术可用于测定( D ) A、细胞的大小和特定细胞类群的数量 B、细胞中DNA,RNA或某种蛋白的含量 C、分选出特定的细胞类群 D、以上三种功能都有 4、SARS病毒是( B ) A、DNA病毒 B、RNA病毒 C、类病毒 D、朊病毒 5、在caspase家族中,起细胞凋亡执行者作用的是( C ) A、caspase 1,4,11 B、caspase 2,8,9 C、caspase 3,6,7 D、caspase 3,5,10 6、不能用于研究膜蛋白流动性的方法是( B ) A、荧光抗体免疫标记 B、荧光能量共振转移 C、光脱色荧光恢复 D、荧光标记细胞融合 7、不是细胞膜上结构( D ) A、内吞小泡 B、有被小窝 C、脂质筏 D、微囊 8、受体的跨膜区通常是( A ) A、α-螺旋结构 B、β-折叠结构 C、U-形转折结构 D、不规则结构 9、现在( D )不被当成第二信使 A、cAMP B、cGMP C、二酰基甘油 D、Ca++ 10、( B )的受体通常不是细胞膜受体 A、生长因子 B、糖皮质激素 C、肾上腺素 D、胰岛素 11、酶偶联受体中的酶不包括( C ) A、丝氨酸/苏氨酸激酶 B、酪氨酸激酶 C、丝氨酸/苏氨酸磷酸酯酶 D、酪氨酸磷酸酯酶 12、在蛋白质分选过程中,如果一种多肽只有N端信号序列而没有停止转移序列,那么它合成后一般进入到( A ) A、内质网腔中 B、细胞核中 C、成为跨膜蛋白 D、成为线粒体蛋白 13、线粒体是细胞能量的提供者,它在( D ) A、同种细胞中数目大致不变 B、同种细胞中数目变化很大 C、不同种细胞中数目大致不变 D、同种细胞中大小基本不变 14、线粒体通过( A )参与细胞凋亡 A、释放细胞色素C B、释放Ach E C、ATP合成酶 D、SOD 15、哺乳动物从受精到成体过程中DNA甲基化水平的变化是( D ) A、去甲基化 B、去甲基化-重新甲基化

糖苷酶及其抑制剂的研究

糖苷酶及其抑制剂的研究 摘要:糖苷酶是生命体正常运转的关键性酶,糖苷酶抑制剂可抑制糖苷酶的活性,阻断碳水化合物的分解,因此对一些糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值。本文研究了糖苷酶中的β-半乳糖苷酶、β-葡萄糖苷酶以及蔗糖酶的抑制剂。重点研究了β-半乳糖苷酶的分子结构和活性基团,并从结构出发筛选其抑制剂,发现此酶的抑制剂种类较少且抑制活性较低。本实验采用混合交叉筛选法筛选了多种金属离子和氨基酸对β-半乳糖苷酶的抑制作用,同时也筛选了天然产物和合成化合物。 关键词:糖苷酶β-半乳糖苷酶β-葡萄糖苷酶蔗糖酶抑制剂的筛选混合交叉法 1、前言 糖苷酶和糖基转移酶不仅参与了体内碳水化合物的消化,而且是糖脂、糖蛋白生物合成中寡糖链的修剪酶,它对糖蛋白中寡糖链的形成极为重要;糖链的组成与结构是糖蛋白特异生物功能的识别部位,

因此糖苷酶活性对糖蛋白生物合成有关键作用,而后者又涉及到免疫反应、神经细胞的分化、肿瘤的转移以及病毒和细菌的感染. 因此, 糖苷酶不仅是生命体正常运转的关键性酶,同时又是许多疾病的相关酶. 与病毒感染、癌症及一系列新陈代谢紊乱性疾病如糖尿病、肥胖病有关。由于糖苷酶重要的生物学意义,糖苷酶抑制剂的研究也引起了人们的极大兴趣。 糖苷酶抑制剂即是可抑制糖苷酶的活性,阻断碳水化合物的分解,抑制淀粉、麦芽糖、蔗糖转变成单糖;影响糖脂、糖蛋白生物合成中寡糖链的修剪;所以糖苷酶抑制剂不但对一些糖代谢紊乱性疾病如糖尿病、肥胖病等有临床应用价值[1] ,而且可作为抗AIDS病毒[2]、抗鼠白血病毒[3]的潜在治疗试剂。 本论文重点研究了糖苷酶中的β-半乳糖苷酶 β-半乳糖苷酶(β-galactosidase)又称β-D-半乳糖苷水解酶,(β-D-galactosid- -e galacto-hydrolase ,EC.3.2.1.23),商品名为乳糖酶(Lactase),它广泛存在于豆类及其他各种动植物体内和微生物中。它能够催化β-半乳糖苷化合物中的β-半乳糖苷键发生水解,还具有转半乳糖苷的作用。由于它具有糖苷键结构特异性,可作为乳糖降解和双糖合成催化剂[4,5],并有水解生物体内储存的多糖和半乳糖残基.引起血型转化等生理功能[6,7]而受到人们广泛关注,成为生物化学和酶催化化学的重要研究课题。 β-半乳糖苷酶的应用有着长远的历史,最初在食品工业中用来降解乳糖含量以满足乳糖不适症患者的需要,然而随着生物技术的发

微生物糖苷酶的新型突变酶_硫代糖苷酶的产生及应用

微生物糖苷酶的新型突变酶———硫代糖苷酶的产生及应用 3 卢丽丽 肖 敏33  赵 晗 (山东大学微生物技术国家重点实验室 济南 250100) 摘要:微生物糖苷酶的酸碱功能氨基酸突变酶能催化硫代糖苷的合成,这类酶被称为硫代糖苷酶。目前发展的硫代糖苷酶有β2硫代葡糖苷酶、β2硫代甘露糖苷酶、β2硫代半乳糖苷酶、α2硫代木糖苷酶和α2硫代葡糖苷酶,来源于细菌和古细菌,能合成多种硫代糖苷。最近,硫代糖苷酶被应用于糖蛋白的糖基化修饰,首次人工合成硫代糖蛋白。微生物糖苷酶合成功能的新延伸,对糖生物学、生物技术和制药业的发展将有着重要意义。关键词:糖苷酶,硫代糖苷酶,合成 中图分类号:Q5,Q81 文献标识码:A 文章编号:025322654(2007)0420769204 N ovel Mutants of Microbial G lycosidases ———G eneration and Application of Thioglycoligases 3 LU Li 2Li XI AO M in 3 3  ZH AO Han (State K ey Laboratory o f Microbial Technology ,Shandong Univer sity ,Jinan 250100) Abstract :Acid Πbase mutants of glycosidases ,namely thioglycoligases ,are able to catalyze thioglycosides synthesis.N ow ,many thioglycoligases ,including β2thioglucoligase ,β2thiomannoligase ,β2thiogalactoligase ,α2thioxyloligase and α2thioglucoligase ,have been developed from bacteria and archaebacteria ,and applied in synthesizing various thioglycoligases.Recently ,thioglycoligases have been used to glycosylate the glycoprotein and firstly generate the thioglycoprotein.The novel extended synthetic function of glycosidases w ould prom ote the development of glycobiology ,biotechnology and pharmacy. K ey w ords :G lycosidases ,Thioglycoligases ,Synthesis 3国家“863”高技术研究发展计划项目(N o.2006AA10Z 338) 国家十五攻关计划项目(N o.2004BA713B04206) 33通讯作者 T el :0531288365128,E 2mail :m inxiao @https://www.doczj.com/doc/7917827967.html, 收稿日期:2006209227,修回日期:2006211222 微生物糖苷酶来源广泛,种类繁多。有些糖苷酶除具有水解活性外,还具有转基活性,该性质使其成为糖类合成的重要工具,被用于大规模合成多种O 2糖苷。近三年研究发现,微生物糖苷酶的一类新型突变酶即硫代糖苷酶(thioglycoligases )能催化硫代糖苷(thioglycosides )的合成,这一发现引起了科学家的极大兴趣。 硫代糖苷是O 2糖苷类似物,糖单位组成和空间结构与O 2糖苷类似,不同之处仅在于糖苷键通过硫原子起连接作用,不易被糖苷酶水解,具有重要的研究价值:①由于化学水解和酶解速率低,可以解决O 2糖苷易被内源糖苷酶水解的问题,从而作为O 2糖苷替代品,应用于药物疗法 [1~3] ;②作为糖苷酶的 竞争性抑制剂,与糖苷酶形成稳定的复合物用于X 2 射线晶体结构分析 [4,5] ,研究糖苷酶特异性和作用 机制,探索其突变或缺陷引起人类疾病的分子机理;③用于制备亲和树脂纯化糖苷酶蛋白[6] ;④作为 非降解性配体用于凝集素研究等等 [7,8] 。由于硫代 糖苷在生物技术和制药业方面的潜在价值越来越受到关注,相应地,其大量获得也成为当今研究的热点。传统的化学法合成步骤繁琐,糖基转移酶法合成供体昂贵且酶来源有限。而硫代糖苷酶作为一类新型催化剂,其微生物来源十分广泛,合成方法简单,合成产物种类丰富,甚至还能合成硫代糖蛋白,用于药用糖蛋白的生产,因而显示出极大的优点,具有很好的应用前景。

相关主题
文本预览
相关文档 最新文档