当前位置:文档之家› ANSYS拓扑优化命令流解释

ANSYS拓扑优化命令流解释

ANSYS拓扑优化命令流解释
ANSYS拓扑优化命令流解释

如何利用ANSYS进行拓扑优化

就目前而言,利用有限元进行优化主要分成两个阶段:

(1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向;

(2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。

在ANSYS中,利用拓扑优化,可以完成以下两个目的:

(1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量);(2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。

1.ANSYS进行拓扑优化的进行拓扑优化的过程

在ANSYS中,执行优化,通常分为以下6个步骤:

1.1定义需要求解的结构问题

对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在0.1~0.4之间)、密度等相关的结构特性方面定义需要求解的结构问题,选择合理的优化单元类型,设定优化和非优化的区域定义载荷步或者需要提取的频率对优化过程进行定义和控制,计算并查看结果的信息,以供结构计算能够正常执行下去。

1.2选择合理的优化单元类型,在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定:

(1)2D平面单元:PLANE82单元和PLANE183单元;

(2)3D实体单元:SOLID92单元和SOLID95单元;

(3)壳单元:SHELL93单元。上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。

1.3指定优化和非优化的区域

在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:

Et,1,solid92

Et,2,solid92 ……

Type,1

Vsel,s,num,,1,2

Vmesh,all ……

Type,2

Vsel,s,num,,3

Vmesh,all ……

说明:上述代码片段定义相同的单元类型(solid92),但编号分别为1和2,并将单元类型编号1利用网格划分分配给了1#体和2#体,从而对其进行优化计算;而单元编号为2利用网格划分分配给了3#体,从而不执行优化计算。

1.4 定义载荷步或者需要提取的频率

4.1 线性结构静态分析

对于结构优化而言,其总是在特定的载荷(或者载荷步),约束和目标下进行的,在优化分析的过程中,必须执行线性结构静态分析,才能获得需要的优化之后的形状。在ANSYS 中,可以对单步载荷或者多步载荷执行优化分析,当然,单步载荷是最简单的了。然而,对于某个特定载荷步,必须使用LSWRITE载荷步存储命令将载荷步预存起来,再用LSSOLVE 命令进行求解。先看看下面的代码片段:

D,10,all,0,,20,1

Nsel,s,loc,y,0

Sf,

Allsel

Lswrite,1

Ddel,

Sfdel,

Nsel,s,loc,x,0,1

D,all,all,0

F,212,fx,

Lswrite,2

……

Lswrite,3

……

Finish

……

Tocomp,mcomp,multiple,3

Tovar,mcomp,obj

Tovar,volume,con,,10

Todef

Toloop,20

说明:该代码片段首先定义了3个载荷步,并利用LSWRITE命令将载荷步预存;之后利用Tocomp命令定义优化任务目标名称mcomp,并将体积减少10%作为优化的约束条件,之后用Todef初始化优化过程,最后利用Toloop命令执行优化计算,最大计算次数20次。

相关命令:TOCOMP、TOVAR、TODEF、TOEXE、TOLOOP和简要说明。

(1)TOCOMP:定义结构优化任务目标。(如何理解COMPLIANCE:Compliance本意是一致性,统一性,在结构优化分析中,特别是对于多个载荷步,需要在多个载荷步之间取得一致性的结果,才能满足结构优化分析的目标)

(2)TOVAR:定义优化变量,可以是目标变量,也可以是约束变量等;

(3)TODEF:定义优化的初始化条件或者收敛准则;

(4)TOEXE:执行单次优化计算;

(5)TOLOOP:批量执行多次优化分析计算。

说说TOEXE和TOLOOP之间的区别:TOEXE执行单次优化分析计算,其本身不执行结构分析过程,因此,在利用TOEXE命令执行优化计算之前,需要利用SOLVE或者LSSOLVE命令先执行结构静态分析计算;而TOLOOP是一个执行优化计算的宏命令,其中包含了SOLVE和LSSOLVE等命令,因此在上述代码片段中没有出现SOLVE或者LSSOLVE命令。就使用的便利性而言,利用TOLOOP命令可能更方便,但是利用TOEXE命令用户可以创建自己的优化宏命令,各有所长,主要是看用户如何使用这两个命令了。

.4.2 模态优化分析

在执行模态优化分析之前,需要使用TOFREQ和TOVAR定义模态分析任务名称和优化分析变量,这点和上述的结构优化分析过程类似。值得注意的是,在利用MXPAND指定模态频率分析计算中,需要将单元计算设定为“YES”,这样才能利用TOEXE命令正常执行优化计算过程,当然在MXPAND之前还要使用modopt命令设定模态计算的选项;而利用TOLOOP命令执行模态优化分析计算过程中,由于TOLOOP是编制好的宏命令,不需要使用MXPAND等命令,

请见下面的代码片段:

/solution

Antype,modal

Finish

Tofreq,mfreq,reciprocal,3

Tovar,mfreq,obj

Tovar,volume,con,,50

Todef,1.0d-4

Toloop,20

说明:首先定义模态求解作为分析类型,之后利用tofreq设定频率优化作为优化任务,名称为mfreq(其中reciprocal表示多阶模态频率,本例中为前3阶模态),并利用命令tovar 设定了体积减少50%作为优化的约束条件,之后设定优化的收敛准则,最后利用toloop命令执行最多20次优化迭代计算。在本例中,因为toloop是一个宏命令,所以并没有显式的使用modopt和mxpand命令,如果使用toexe命令,则用户必须显式的使用modopt和mxpand 命令。

1.5对优化过程进行定义和控制

在ANSYS中执行优化过程有2种方式:

(1)采用solve和toexe 命令相结合的机制,一步一步的执行优化计算,直到满足用户的优化目标和约束条件为止。

(2)采用toloop宏命令执行优化计算,可执行多次优化分析计算。说明:采用第二种方式操作更简单,推荐采用。

总体上来说,执行优化计算过程大致上分为4个步骤:

(1)定义优化函数(或者方式和任务);

(2)定义优化目标或者约束条件;

(3)初始化优化过程;

(4)执行优化计算(可以是单次计算,也可以自动批量计算)。

以下分别进行描述:

.5.1定义优化函数

在ANSYS中,主要采用以下两种方式定义优化函数:

(1)利用TOCOMP定义结构优化;

(2)利用TOFREQ定义频率优化。

说明:可以利用TOLIST命令例举出所有定义了的优化函数。

.5.2定义优化目标或者约束条件

定义优化目标或者约束条件主要是利用TOVAR命令设定,看看下面的代码片段:

Tocomp,comp,single,1

Tovar,comp,obj

Tovar,Volume,con,,25

Todef,1.0d-4

Toloop,10,1

说明:首先利用tocomp命令定义了一个单步(single)的结果优化分析任务,并将任务名称(comp)作为优化任务,并设定体积减少25%作为优化约束条件,之后初始化优化过程,并利用toloop命令批量执行优化计算,当然,可以使用tostat命令查询tovar、todef 和totype命令的设定状态(totype命令设定优化类型,具体说明可以参见帮助文件)。同样,也可以利用如下的命令格式删除已经定义好的优化任务名称或者约束条件:

Tovar,Reference_Name,DEL

可以定义的优化目标和约束条件的组合方式见下表:

序号优化类型优化目标约束条件

1 结构优化(TOCOMP)单步优化(single)体积(VOLUME)

2 多步优化 Multiple)体积(VOLUME)

3 频率优化(TOFREQ)单阶频率优化(Single)体积(VOLUME)

4 加权平均频率优化(Weighted Mean)体积(VOLUME)

5 一致平均频率优化(Reciprocal Mean)体积(VOLUME)

6 欧几里德范数频率优化(Euclidean norm)体积(VOLUME)

7 体积(VOLUME)单步结构载荷

8 体积(VOLUME)多部结构载荷

.5.3初始化优化过程

初始化优化过程主要是利用TOTYPE和TODEF命令分别设定优化计算执行的方式和终止计算(或者计算收敛的精度),具体说明如下:

(1)TOTYPE:设定优化计算执行方式,主要有优化准则方式(Optimality Criteria)和顺序凸状程序方式(Sequential Convex Programming),OC方式可以定义仅将体积作为约束条件,而SCP方式必须定义优化计算的目标。

(2)TODEF:设定优化计算的终止方式或者收敛精度。说明:优化计算的设定参数并不保存到数据库中,如果用户利用RESUME恢复数据库,则需要重新利用TOCOMP、TOFREQ、TOVAR、TOTYPE、TODEF等命令进行重新设定。

.5.4执行优化计算

执行优化计算分为单次优化计算和批量多次自动优化计算两种方式,以下分别说明:(1)利用SOLVE TOEXE方式,看看下面的代码片段:

TOCOMP,COMP,Single,1

TOVAR,COMP,OBJ

TOVAR,VOLUME,CON,,25

TOTYPE,OC

TODEF,1.0d-4

/SOLUTION

SOLVE

TOEXE

FINISH

/POST1

PLNSOL,TOPO

*GET,TOPSTAT,TOPO,,CONV

*STAT,TOPSTAT

/SOLUTION

SOLVE

TOEXE

FINISH

/POST1

说明:首先利用TOCOMP、TOVAR等命令设定好优化定义,之后进入求解模块,利用SOLVE TOEXE命令组合求解单次优化计算,之后进入后处理模块,显示拓扑优化的结果;再进入求解模块,再一次执行优化计算,直到满足用户的计算目标为止。再看看一个利用单步优化计

算进行频率优化的代码片段:

TOFREQ,FREQ1,SINGLE,1

TOVAR,FREQ1,OBJ

TOVAR,VOLUME,CON,,25

TOTYPE,SCP

TODEF,1.0d-4

/SOLUTION

ANTYPE,MODAL

MODOPT,LANB,1

MXPAND,1,,,YES

SOLVE

TOEXE

FINISH

TOPLOT,0

*GET,TOPSTAT,TOPO,,CONV

*STAT,TOPSTAT

/SOLUTION

SOLVE

TOEXE

FINISH

TOPLOT,0

说明:采用单步优化频率计算过程类似于单步结构优化计算过程,不再赘述。

(2)自动批量多次优化计算该方式是ANSYS中推荐采用的优化计算方式,主要命令是TOLOOP,其本身是一个宏命令,看看下面的代码片段,并要注意和SOLVE TOEXE方式的区别:

LSWRITE

……

LSWRITE

……

LSWRITE

……

TOCOMP,MCOMP,MULTIPLE,3

TOVAR,MCOMP,OBJ

TOVAR,VOLUME,CON,,30

TODEF,0.001

TOLOOP,20,1

……

说明:本段程序代码首先定义3个载荷步,之后定义了优化分析的设定等,最后利用TOLOOP命令执行最多20次的优化计算迭代。

1.6查看优化计算的结果当优化计算完毕,优化的结果存放在结果文件中(*.RST),用户可以使用如下的命令格式查看优化计算的结果:

(1)对于节点计算的结果,用PLNSOL,TOPO或者PRNSOL,TOPO显示虚密度(虚密度是指去除和保留部分的指标,是一个0~1之间的值,虚密度为0,表示可以去除;虚密度为1,表示应该保留),当然也可以使用TOPLOT,0命令显示节点计算结果。

(2)对于单元计算的结果,用PLESOL,TOPO或者PRESOL,TOPO显示虚密度,当然也可以使用TOPLOT,1命令显示单元计算结果。

(3)另外,也可以使用TOGRAPH和TOPRINT显示优化计算过程,看看下面的代码片段:/POST1

TOPLOT,1

PLNSOL,TOPO

TOGRAPH,OBJ

TOGRAPH,CON,VOLUME

TOPRINT,OBJ

TOPRINT,CON

(4)也可以利用ANSYS中的单元表格功能进行结果显示,看看下面的代码片段:

ETABLE,EDENS,TOPO

PLETAB,EDENS

PRETAB,EDENS

ESEL,S,ETAB,EDENS,0.9,1.0

EPLOT

(5)如何查看优化计算过程是否收敛和迭代的次数?看看下面的代码片段:

*GET,TOPCV,TOPO,,CONV

*GET,TITER,TOPO,,ITER

*GET,TOBJ,TOPO,ITER-1,TOHO

*GET,TCON,TOPO,ITER-1,TOHC,1

*STAT,……

说明:变量TOPCV=1表示优化计算收敛,TITER变量表示优化计算的次数,TOBJ变量表示优化计算最终的目标值,TCON变量表示约束条件值。

(6)对于频率优化计算,特别是对于加权平均、一致性平均和欧几里德范数,可以通过如下的代码片段命令获得优化计算后的频率:

*GET,FREQ1,MODE,1,FREQ

*GET,FREQ2,MODE,2,FREQ

*GET,FREQ3,MODE,3,FREQ

说明:可以进入后处理模块(/POST1)和利用SET和PLDISP命令获得对应的振形。

2拓扑优化有关的命令简要说明

总体说明:拓扑优化的命令均以TO开头,共计~12个,现简单说明如下:

(1)TOCOMP,REFName,Type,NUMLC,LCARR 命令功能:定义单步或者多部一致性结果拓扑优化任务。参数解释:

REFName:优化任务名称,最多8个字符;

Type:优化载荷步类型,可以是Single(单步)或者Multiply(多步);

NUMLC:对于单步载荷,指定对哪个载荷步进行优化计算;对于多步载荷,指定需要考虑的载荷步总数;

LCARR:对于多步载荷,利用该参数可以定义多个载荷步之间权重,需要将各个载荷步的权重先定义在一个数组中,再用%权重数组%的方式加以引用。

(2)TOFREQ,REFName,Type,NFreq,Frqarr,TargVal

命令功能:定义单个或者多个频率拓扑优化任务。参数解释:

REFName:优化任务名称,最多8个字符;

Type:可以是Single、Weighted、Reciprocal、Euclidean四种优化形式;

NFreq:对于Type=Single,该参数表示频率的标志值;对于Weighted、Reciprocal、Euclidean这三种方式,该参数表示频率的总体阶数;

Frqarr:对于Type=Weighted、Reciprocal,该参数表示加权数组,用%权重数组%的方式加以引用;对于Type=Euclidean,该参数表示目标频率;

TargVal:对于Type=Reciprocal,该参数用于定义目标频率。

(3)TOVAR,REFName,Type,Lower,Upper,Boundtype

命令功能:定义优化变量和类型。参数解释:

REFName:优化任务名称,最多8个字符,它是利用TOCOMP或者TOFREQ命令定义的;

Type:优化变量类型,可以是OBJ、CON和DEL;

Lower:当Type=CON时,优化变量的下限;

Upper:当Type=CON时,优化变量的上限;

Boundtype:当Type=CON时,表示优化变量的类型,可以是PERCENT(百分数)或者ACTUAL(实际值)。

命令缺省: TOVAR,VOLUME,OBJ

(4)TOTYPE,Type 命令功能:定义拓扑优化求解类型。参数解释:

Type:可以是OC(优化准则方式,默认值),或者SCP(顺序凸度程序方式)。在使用OC方式时,只能将VOLUME作为限制条件,而SCP方式可以对于任何优化方式进行采用。

(5)TODEF,ACCUR 命令功能:定义拓扑优化初始化精度控制或者收敛准则。参数解释:ACCUR:精度控制或者收敛精度,默认值=0.0005。

(6)TOEXE 命令功能:执行单次拓扑优化,无参数。

(7)TOLOOP,Niter,Plot 命令功能:批量执行多次拓扑优化计算。参数解释:

Niter:优化计算执行次数,最大100次,默认值1次;

Plot:Plot=0表示每次计算完成后不显示计算结果;Plot=1表示每次计算完成后显示计算结果。

(8)TOPLOT,Aver 命令功能:显示拓扑优化计算的结果。参数解释:

Aver:Aver=0表示显示的节点结果进行平滑处理(默认值);Aver=1表示显示的节点不进行平滑处理。

(9)TOSTAT 命令功能:显示拓扑优化的状态和计算结果信息,无参数。

(10)TOPRINT,Type,RefName 命令功能:打印拓扑优化迭代计算的历史过程信息。

参数解释: Type:Type=OBJ表示打印目标优化变量的求解过程VS迭代步数;Type=CON表示打印约束优化变量的求解过程VS迭代步数;

RefName:当使用多步约束的参考名称,缺省是第一个约束名称。

(11)TOGRAPH,Type,RefName 命令功能:打印拓扑优化迭代计算的历史过程信息。

参数解释: Type:Type=OBJ表示打印目标优化变量的求解过程VS迭代步数;Type=CON表示打印约束优化变量的求解过程VS迭代步数;

RefName:当使用多个约束的参考名称,缺省是第一个约束变量名称。

(12) TOLIST 命令功能:打印已定义的所有优化计算任务,无参数。

ANSYS拓扑优化

[ANSYS拓扑优化]注意点 结果对载荷情况十分敏感。很小的载荷变化将导致很大的优化结果差异。 结果对网格划分密度敏感。一般来说,很细的网格可以产生“清晰”的拓扑结果,而较粗的网格会生成“混乱”的结果。但是,较大的有限元模型需要更多的收敛时间。λ 在一些情况下会得到珩架形状的拓扑结果。这通常在用户指定很大的体积减少值和较细的网格划分时出现。很大的体积减少值如80%或更大(TOPDEF命令)。λ 如果有多个载荷工况时,有多种方式将其联合进行拓扑优化求解。例如,考虑有五个载荷工况的情况。可以选择使用五个单独的拓扑优化分析过程,也可以使用包括这五个工况的一次拓扑优化分析。还有,也可以将这五个工况合成为一个工况,然后做一次优化。综合起来,可以有七个不同的拓扑优化求解:λ 5 独立的拓扑优化求解(每个工况一次) 1 拓扑优化求解针对五个工况 1 拓扑优化求解针对一个联合工况 附加的结果或结果的组合都是可用的。 结果对泊松比敏感但对杨氏模量不敏感。但是,随泊松比变化的效果不明显。λ TOPDEF和TOPITER命令中的指定值并不存储在ANSYS数据库中;因此,用户必须在每次拓扑优化时重新指定优化目标和定义。 [ANSYS拓扑优化]二维多载荷优化设计示例 在本例中,对承受两个载荷工况的梁进行拓扑优化。 问题描述 图2表示一个承载的弹性梁。梁两端固定,承受两个载荷工况。梁的一个面是用一号单元划分的,用于拓扑优化,另一个面是用二号单元划分的,不作优化。最后的形状是单元1的体积减少50%。

图片2 承受两个载荷工况的梁 图片3 拓扑优化结果——50%体积减少 本问题是用下列的ANSYS命令流求解的。两个载荷工况定义并用LSWRITE命令写入文件。使用ANSYS选择功能,单元SOLID82通过类型号1和2分别指定优化和不优化的部分。TOPDEF命令定义问题有两个载荷工况并要求50%体积减少。TOPEXE命令在本例中没有使用,代之以用TOPITER宏命令指定最大迭代次数为12次。 /TITLE,A 2-d,multiple-load example of topological optimization /PREP7 BLC4,0,0,3,1 !生成实体模型(3X1矩形) ET,1,82 !二维实体单元,1号为优化 ET,2,82 !2号不优化 MP,EX,1,118E9 !线性各项同性材料 MP,NUXY,1,0.3

ANSYS命令流中文说明

ANSYS命令流中文说明(2) 默认分类 2009-10-02 10:28 阅读106 评论0 字号:大大中中小小 KB、KE: 待划分线的定向关键点起始、终止号 SECNUM: 截面类型号 u SECPLOT,SECID,MESHKEY 画梁截面的几何形状及网格划分 SECID:由SECTYPE命令分配的截面编号 MESHKEY:0:不显示网格划分 1:显示网格划分 u /ESHAPE, SCALE 按看似固体化分的形式显示线、面单元 SCALE: 0:简单显示线、面单元 1:使用实常数显示单元形状 u esurf, xnode, tlab, shape 在已存在的选中单元的自由表面覆盖产生单元 xnode: 仅为产生surf151 或surf152单元时使用 tlab: 仅用来生成接触元或目标元 top 产生单元且法线方向与所覆盖的单元相同,仅对梁或壳有效,对实体单元无效 Bottom产生单元且法线方向与所覆盖的单元相反,仅对梁或壳有效,对实体单元无效Reverse 将已产生单元反向 Shape: 空与所覆盖单元形状相同 Tri 产生三角形表面的目标元 注意:选中的单元是由所选节点决定的,而不是选单元,如同将压力加在节点上而不是单元上 u Nummrg,label,toler, Gtoler,action,switch 合并相同位置的item label: 要合并的项目 node: 节点,Elem,单元,kp: 关键点(也合并线,面及点) mat: 材料,type: 单元类型,Real: 实常数 cp:耦合项,CE:约束项,CE: 约束方程,All:所有项 toler: 公差 Gtoler:实体公差 Action: sele 仅选择不合并 空合并 switch: 较低号还是较高号被保留(low, high) 注意:可以先选择一部分项目,再执行合并。如果多次发生合并命令,一定要先合并节点,再合并关键点。合并节点后,实体荷载不能转化到单元,此时可合并关键点解决问题。 u Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线 type: s 从全部线中选一组线 r 从当前选中线中选一组线 a 再选一部线附加给当前选中组 au none u(unselect) inve: 反向选择 item: line 线号 loc 坐标

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 5.1.2优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0,,0min ,g x x v g x x v f x v ?=??≤???? 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数;v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 5.2基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

ANSYS命令流解释大全

A N S Y S命令流解释大 全 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=,C=27,ψ=45的命令如下:

MP,EX,1,1E8 MP,NUXY,1, TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点 ESEL,ALL !选择所有单元

ANSYS命令流使用方法(中文)修改

Finish(退出四大模块,回到BEGIN层) /clear (清空存,开始新的计算) 1.定义参数、数组,并赋值. 2./prep7(进入前处理) 定义几何图形:关键点、线、面、体 定义几个所关心的节点,以备后处理时调用节点号。 设材料线弹性、非线性特性 设置单元类型及相应KEYOPT 设置实常数 设置网格划分,划分网格 根据需要耦合某些节点自由度 定义单元表 3./solu 加边界条件 设置求解选项 定义载荷步 求解载荷步 4./post1(通用后处理) 5./post26 (时间历程后处理) 6.PLOTCONTROL菜单命令 7.参数化设计语言 8.理论手册 Finish(退出四大模块,回到BEGIN层) /clear (清空存,开始新的计算) 1.定义参数、数组,并赋值. dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组 par: 数组名 type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符) table imax,jmax, kmax 各维的最大下标号 var1,var2,var3 各维变量名,缺省为row,column,plane(当type为table时) 2./prep7(进入前处理) 2.1 设置单元类型及相应KEYOPT ET, itype, ename, kop1……kop6, inopr 设定当前单元类型 Itype:单元号 Ename:单元名设置实常数 Keyopt, itype, knum, value itype: 已定义的单元类型号 knum: 单元的关键字号

如何利用ANSYS进行拓扑优化(转)

如何利用ANSYS进行拓扑优化 前言 就目前而言,利用有限元进行优化主要分成两个阶段: (1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向; (2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。 在ANSYS中,利用拓扑优化,可以完成以下两个目的: (1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量); (2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。 本文主要就在ANSYS环境中如何执行拓扑优化进行说明。

1、利用ANSYS进行拓扑优化的过程 在ANSYS中,执行优化,通常分为以下6个步骤: 1.1、定义需要求解的结构问题 对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在0.1~0.4之间)、密度等相关的结构特性方面

的信息,以供结构计算能够正常执行下去。 1.2、选择合理的优化单元类型 在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定: (1)2D平面单元:PLANE82单元和PLANE183单元; (2)3D实体单元:SOLID92单元和SOLID95单元; (3)壳单元:SHELL93单元。 上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。 1.3、指定优化和非优化的区域 在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…… …… Et,1,solid92 Et,2,solid92 …… Type,1 Vsel,s,num,,1,2

拓扑优化技术

拓扑优化技术 第1节基本知识 一、拓扑优化的概念 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标—目标函数—是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。 ANSYS提供的拓扑优化技术主要用于确定系统的最佳几何形状,其原理是系统材料发挥最大利用率,同时确保系统的整体刚度(静力分析)、自振频率(模态分析)在满足工程要求的条件下获得极大或极小值。 拓扑优化应用场合:线性静力分析和模态分析。 拓扑优化原理:满足结构体积缩减量的条件下使目标函数结构柔量能量(the enery of structure compliance—SCOMP)的极小化。结构柔量能量极小化就是要求结构刚度的最大化。 例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图19-1表示满足约束和载荷要求的拓扑优化结果。图19-1a表示载荷和边界条件,图19-b 表示以密度云图形式绘制的拓扑结果。 图19-1 体积减少60%的拓扑优化示例 二、拓扑优化的基本过程 拓扑优化的基本步骤如下:

1.定义结构问题定义材料弹性模量、泊松系数、材料密度。 2.选择单元类型拓扑优化功能中的模型只能采用下列单元类型: ● 二维实体单元:Plane2和Plane82,用于平面应力问题和轴对称问题。 ● 三维实体单元:Solid92、Solid95。 ● 壳单元:SHELL93。 3.指定优化和不优化区域ANSYS只对单元类型编号为1的单元网格部分进行拓扑优 化,而对单元类型编号大于1的单元网格部分不进行拓扑优化,因此,拓扑优化时要确保进行拓扑优化区域单元类型编号为1,而不进行拓扑优化区域单元类型编号大于1即可。 4.定义并控制载荷工况或频率提取可以在单个载荷工况和多个载荷工况下做拓扑优化,单载荷工况是最简便的。 要在几个独立的载荷工况中得到优化结果时,必须用到写载荷工况和求解功能。在定义完每个载荷工况后,要用LSWRITE命令将数据写入文件,然后用LSSOLVE命令求解载荷工况的集合。 5.定义和控制优化过程拓扑优化过程包括定义优化参数和进行拓扑优化两个部分。用户可以用两种方式运行拓扑优化:控制并执行每一次迭代或自动进行多次迭代。 ANSYS有三个命令定义和执行拓扑优化:TOPDEF,TOPEXE和TOPITER。TOPDEF 命令定义要省去材料的量,要处理载荷工况的数目,收敛的公差;TOPEXE命令执行一次优化迭代;TOPITER命令执行多次优化迭代。 (1)定义优化参数首先要定义优化参数。用户要定义要省去材料的百分比,要处理载荷工况的数目,收敛的公差。 命令:TOPDEF GUI:Main Menu>Solution>Solve>Topological opt 注:本步所定义的内容并不存入ANSYS数据库中,因此在下一个拓扑优化中要重新使用TOPDEF命令。 (2)执行单次迭代定义好优化参数以后,可以执行一次迭代。迭代后用户可以查看收敛情况并绘出或列出当前的拓扑优化结果。可以继续做迭代直到满足要求为止。如果是在GUI方式下执行,在Topological Optimization 对话框(ITER域)中选择一次迭代。 命令:TOPEXE GUI:Main Menu>Solution>Solve>Topological opt TOPEXE的主要优点是用户可以设计自己的迭代宏进行自动优化循环和绘图。在下一节,可以看到TOPITER命令是一个ANSYS的宏,用来执行多次优化迭代。 (3)自动执行多次迭代 在定义好优化参数以后,用户可以自动执行多次迭代。在迭代完成以后,可以查看收敛情况并绘出或列出当前拓扑形状。如果需要的话,可以继续执行求解和迭代。TOPITER 命令实际是一个ANSYS的宏,可以拷贝和定制。

ansys初学者基本命令流

为方便大家的交流和学习,特推出"跟我学命令流"课程本课程分为三部分:前处理,加载求解,后处理 每部分的学习时间:10天,共计30天 每天学习大约10个命令 希望本课程对大家能有所帮助 第一天 目标:熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> Volumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface load on nodes 表面载荷 bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 第二天 目标:了解命令流的整体结构,掌握每个模块的标识 !文件说明段 /BATCH /TITILE,test analysis !定义工作标题 /FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识 !定义单元,材料属性,实常数段 ET,1,SHELL63 !指定单元类型 ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度

R,1,0.001 !指定壳单元实常数-厚度 ...... !建立模型 K,1,0,0,, !定义关键点 K,2,50,0,, K,3,50,10,, K,4,10,10,, K,5,10,50,, K,6,0,50,, A,1,2,3,4,5,6, !由关键点生成面 ...... !划分网格 ESIZE,1,0, AMESH,1 ...... FINISH !前处理结束标识 /SOLU !进入求解模块标识 !施加约束和载荷 DL,5,,ALL SFL,3,PRES,1000 SFL,2,PRES,1000 ...... SOLVE !求解标识 FINISH !求解模块结束标识 /POST1 !进入通用后处理器标识 ...... /POST26 !进入时间历程后处理器 …… /EXIT,SAVE !退出并存盘 以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助 /ANGLE !指定绕轴旋转视图 /DIST !说明对视图进行缩放

Ansys常见命令流

Ansys命令流 第一天 目标:熟悉ANSYS基本关键字的含义 k --> Keypoints 关键点 l --> Lines 线 a --> Area 面 v --> Volumes 体 e --> Elements 单元 n --> Nodes 节点 cm --> component 组元 et --> element type 单元类型 mp --> material property 材料属性 r --> real constant 实常数 d --> DOF constraint 约束 f --> Force Load 集中力 sf --> Surface load on nodes 表面载荷 bf --> Body Force on Nodes 体载荷 ic --> Initial Conditions 初始条件 第二天 目标:了解命令流的整体结构,掌握每个模块的标识 !文件说明段 /BATCH /TITILE,test analysis !定义工作标题 /FILENAME,test !定义工作文件名 /PREP7 !进入前处理模块标识 !定义单元,材料属性,实常数段 ET,1,SHELL63 !指定单元类型 ET,2,SOLID45 !指定体单元 MP,EX,1,2E8 !指定弹性模量 MP,PRXY,1,0.3 !输入泊松比 MP,DENS,1,7.8E3 !输入材料密度 R,1,0.001 !指定壳单元实常数-厚度...... !建立模型 K,1,0,0,, !定义关键点

K,2,50,0,, K,3,50,10,, K,4,10,10,, K,5,10,50,, K,6,0,50,, A,1,2,3,4,5,6, !由关键点生成面 ...... !划分网格 ESIZE,1,0, AMESH,1 ...... FINISH !前处理结束标识 /SOLU !进入求解模块标识 !施加约束和载荷 DL,5,,ALL SFL,3,PRES,1000 SFL,2,PRES,1000 ...... SOLVE !求解标识 FINISH !求解模块结束标识 /POST1 !进入通用后处理器标识 ...... /POST26 !进入时间历程后处理器 …… /EXIT,SAVE !退出并存盘 以下是日志文件中常出现的一些命令的标识说明,希望能给大家在整理LOG文件时有所帮助 /ANGLE !指定绕轴旋转视图 /DIST !说明对视图进行缩放 /DEVICE !设置图例的显示,如:风格,字体等 /REPLOT !重新显示当前图例 /RESET !恢复缺省的图形设置 /VIEW !设置观察方向

拓扑优化简介

拓扑优化 什么是拓扑优化? 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标——目标函数——是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。 例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图2-1表示满足约束和载荷要求的拓扑优化结果。图2-1a表示载荷和边界条件,图2-2b表示以密度云图形式绘制的拓扑结果。 图2-1 体积减少60%的拓扑优化示例 如何做拓扑优化 拓扑优化包括如下主要步骤: 1.定义拓扑优化问题。 2.选择单元类型。 3.指定要优化和不优化的区域。 4.定义和控制载荷工况。 5.定义和控制优化过程。 6.查看结果。 拓扑优化的细节在下面给出。关于批处理方式和图形菜单方式 不同的做法也同样提及。 定义拓扑优化问题 定义拓扑优化问题同定义其他线性,弹性结构问题做法一样。用户需要定义材料特性(杨氏模量和泊松比),选择合适的单元类型生成有限元模型,施加载

荷和边界条件做单载荷步或多载荷步分析。参见“ANSYS Analysis Procedures Guides”第一、二章。 选择单元类型 拓扑优化功能可以使用二维平面单元,三维块单元和壳单元。要使用这个功能,模型中只能有下列单元类型: 二维实体单元:SOLID2和SOLID82 三维实体单元:SOLID92和SOLID95 壳单元:SHELL93 二维单元用于平面应力问题。 指定要优化和不优化的区域 只有单元类型号为1的单元才能做拓扑优化。可以使用这种限制控制模型优化和不优化的部分。例如,如果要保留接近圆孔部分或支架部分的材料,将这部分单元类型号指定为2或更大即可: … ET,1,SOLID92 ET,2,SOLID92 … TYPE,1 VSEL,S,NUM,,1,,2 !用这些单元划分的实体将被优化 VMESH,ALL TYPE,2 VSEL,S,NUM,,3 !用这些单元划分的实体将保持原状 VMESH,ALL … 用户可以使用ANSYS的选择和修改命令控制单元划分和类型号定义。 定义和控制载荷工况 可以在单个载荷工况和多个载荷工况下做拓扑优化。单载荷工况是最简便的。 要在几个独立的载荷工况中得到优化结果时,必须用到写载荷工况和求解功能。在定义完每个载荷工况后,要用LSWRITE命令将数据写入文件,然后用LSSOLVE命令求解载荷工况的集合。 例如,下面的输入演示如何将三个载荷工况联合做一个拓扑优化分析。 … D,10,ALL,0,,20,1 !定义第一个载荷工况的约束和载荷 NSEL,S,LOC,Y,0 SF, ALLSEL LSWRITE,1 !写第一个载荷工况 DDEL, SFDEL, NSEL,S,LOC,X,0,1 D,ALL,ALL,0

ANSYS命令流及注释详解

ANSYS最常用命令流+中文注释 VSBV, NV1, NV2, SEPO, KEEP1, KEEP2 —Subtracts volumes from volumes,用于2个solid相减操作,最终目的是要nv1-nv2=?通过后面的参数设置,可以得到很多种情况:sepo项是2个体的边界情况,当缺省的时候,是表示2个体相减后,其边界是公用的,当为sepo的时候,表示相减后,2个体有各自的独立边界。keep1与keep2是询问相减后,保留哪个体?当第一个为keep时,保留nv1,都缺省的时候,操作结果最终只有一个体,比如:vsbv,1,2,sepo,,keep,表示执行1-2的操作,结果是保留体2,体1被删除,还有一个1-2的结果体,现在一共是2个体(即1-2与2),且都各自有自己的边界。如vsbv,1,2,,keep,,则为1-2后,剩下体1和体1-2,且2个体在边界处公用。同理,将v换成a 及l是对面和线进行减操作! mp,lab, mat, co, c1,…….c4 定义材料号及特性 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) co: 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数 定义DP材料: 首先要定义EX和泊松比:MP,EX,MA T,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MA T 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,…… 如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8 MP,NUXY,1,0.3 TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg VSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWP Type,是选择的方式,有选择(s),补选(a),不选(u),全选(all)、反选(inv)等,其余方式不常用 Item, Comp 是选取的原则以及下面的子项 如volu 就是根据实体编号选择, loc 就是根据坐标选取,它的comp就可以是实体的某方向坐标! 其余还有材料类型、实常数等 MIN, VMAX, VINC,这个就不必说了吧! ,例:vsel,s,volu,,14 vsel,a,volu,,17,23,2 上面的命令选中了实体编号为14,17,19,21,23的五个实体 VDELE, NV1, NV2, NINC, KSWP: 删除未分网格的体 nv1:初始体号 nv2:最终的体号 ninc:体号之间的间隔 kswp=0:只删除体 kswp=1:删除体及组成关键点,线面 如果nv1=all,则nv2,ninc不起作用 其后面常常跟着一条显示命令VPLO,或aplo,nplo,这个湿没有参数的命令,输入后直接回车,就可以显示刚刚选择了的体、面或节点,很实用的哦! Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点为下一步做准备 Type: S: 选择一组新节点(缺省) R: 在当前组中再选择 A: 再选一组附加于当前组 U: 在当前组中不选一部分 All: 恢复为选中所有 None: 全不选 Inve: 反向选择 Stat: 显示当前选择状态 Item: loc: 坐标 node: 节点号

ANSYS拓扑优化原理讲解以及实例操作

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 5.1.2优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0,,0 min ,g x x v g x x v f x v ?=??≤???? 式中,x -系统的状态变量;12 g g 、-一等式和不等式的结束方程;(),f x v -目标函数;v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

ANSYS 命令流解释大全

一、定义材料号及特性 mp,lab, mat, co, c1,…….c4 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) c 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数二、定义DP材料: 首先要定义EX和泊松比:MP,EX,MAT,…… MP,NUXY,MAT,…… 定义DP材料单元表(这里不考虑温度):TB,DP,MAT 进入单元表并编辑添加单元表:TBDATA,1,C TBDATA,2,ψ TBDATA,3,……

如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下: MP,EX,1,1E8 MP,NUXY,1,0.3 TB,DP,1 TBDATA,1,27 TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg 三、单元生死载荷步 !第一个载荷步 TIME,... !设定时间值(静力分析选项) NLGEOM,ON !打开大位移效果 NROPT,FULL !设定牛顿-拉夫森选项 ESTIF,... !设定非缺省缩减因子(可选) ESEL,... !选择在本载荷步中将不激活的单元 EKILL,... !不激活选择的单元 ESEL,S,LIVE !选择所有活动单元 NSLE,S !选择所有活动结点 NSEL,INVE !选择所有非活动结点(不与活动单 元相连的结点) D,ALL,ALL,0 !约束所有不活动的结点自由度(可 选) NSEL,ALL !选择所有结点

【ANSYS分析】拓扑优化

第二章拓扑优化 什么是拓扑优化? 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标——目标函数——是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。 例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图2-1表示满足约束和载荷要求的拓扑优化结果。图2-1a表示载荷和边界条件,图2-2b表示以密度云图形式绘制的拓扑结果。 图2-1 体积减少60%的拓扑优化示例 1

如何做拓扑优化 拓扑优化包括如下主要步骤: 1.定义拓扑优化问题。 2.选择单元类型。 3.指定要优化和不优化的区域。 4.定义和控制载荷工况。 5.定义和控制优化过程。 6.查看结果。 拓扑优化的细节在下面给出。关于批处理方式和图形菜单方式 不同的做法也同样提及。 定义拓扑优化问题 定义拓扑优化问题同定义其他线性,弹性结构问题做法一样。用户需要定义材料特性(杨氏模量和泊松比),选择合适的单元类型生成有限元模型,施加载荷和边界条件做单载荷步或多载荷步分析。参见“ANSYS Analysis Procedures Guides”第一、二章。 1

基于拓扑优化的车身结构研究

基于拓扑优化的车身结构研究 瞿元王洪斌张林波吴沈荣 奇瑞汽车股份有限公司,安徽芜湖,241009 摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。 关键词:车身,前期工程,拓扑优化 1、引言 随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。 2、研究方法概述 合理化的车身结构,是满足整车基本性能的重要保障。为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。其基本过程如下图所示: 3.2 工况 车身在实际使用过程中承受非常复杂的载荷,这些载荷对车身的影响各不相同,有的影响局部,有的影响整个车身。在实际研发过程中,不可能对所有可能的工况进行考察,而且,不同的设计阶段,考察的指标也不相同。在概念设计阶段,更重要的是保证车身的总体结构刚度,避免后期产生较大变更,导致项目延期或者增加较多的开发成本。本文主要考察某SUV车型结构布置特点,因此,主要考虑NVH以及碰撞两个方面的工况。其具体考察工况如下表1所示,4个NVH工况,主要考察整体刚度以及前后端的弯曲性能;4个碰撞方面的工况,主要考察车身承受不同方向的撞击。 表1 主要考察工况[1]

关于ANSYS和Tosca中关于结构优化功能比较 - caedacomcn

关于ANSYS和Tosca中结构优化功能比较 ANSYS: 功能模块:Design Space DesignXplorer? DesignXplorer VT 各模块的功能: ANSYS DesignSpace完成结构的初始有限元分析功能 DesignXplorer?读取DesignSpace分析结果,实现了结构的优化功能,DesignSpace 合用。 DesignXplorer VT DesignXplorer?的扩展功能,主要体现在多目标优化上。而DesignXplorer?为单一目标优化,从算法上看,由传统的DOE算法向VT变分算法扩展。 小结ANSYS的该项功能:优点,成统一体系,从分析到优化,在封闭的环境内完成。分析面广,不仅涉及到了结构的优化,而且可以进行数据优化。缺点,是网格划分功能不强,自适应能力差。优化选择空间范围广,但操作复杂,需要有一定的背景知识。 宣传的商用案例:无 Tosca: 功能模块:TOSCA.gui TOSCA.topology TOSCA.shape TOSCA.smooth 各模块的功能:TOSCA.gui 实现前后处理功能,同ANSYS,Nastran,Abaqus,I-Deas 的前后处理器相连接,将CAD几何建模数据调用有限元求解器ANSYS,Nastran,Abaqus,I-Deas,进行求解,求解结果在TOSCA.topology中进行优化设计,优化结果还可以重新传回TOSCA.gui进行结构分析,来反复优化。 优点:主要进行结构拓扑分析和形状优化设计,目标确定。网格自动划分功能强大,因此可以保证较高的求解精度。优化采用无参优化方法。算法稳定快速(但具体算法不详)。具有优化-光滑细化-分析-结构优化的多流程作业,因此,应用程度相对较高,而实际操作难度可能很小(因为目标明确) 缺点:自己本身没有结构分析功能(有限元求解器),需要同其他的有限元软件配合使用。可用的软件有ANSYS,Nastran,Abaqus,I-Deas,集成程度高,可能不利于进行高级操作。主要应用面为结构空间优化设计。 宣传案例:奥迪汽车

相关主题
文本预览
相关文档 最新文档