当前位置:文档之家› 彩电实用开关电源电路分析

彩电实用开关电源电路分析

彩电实用开关电源电路分析
彩电实用开关电源电路分析

彩电实用开关电源电路分析

一、 电路基本结构

图1 东芝四片机开关电路的原理方框图

图1所示是该开关电源的原理方框图。这是一个并联型自激振荡式开关电源。

220V 交流电经D801~D804四个整流二极管组成的桥式整流器整流,负极端通过一个限流电阻R801接地。正极通过C802、C807(由电容组成П型滤波电路)滤波后。输出300V 左右的直流电压(该电压为波动的直流电压)。

Q801是开关管(NPN 型三极管)。Np 是开关变压器的初级绕组。一端与输入回路,另一端与Q801的集电极相连。Ns 是开关变压器的次级绕组(有三个抽头的次级绕组,第③脚接地),D815、C818和D816、C820分别组成两个半波整流滤波电路,为负载(电视机的其它电路)提供114V 和24V 两种稳定的直流电压。

R803、R804和L801、R807、R809组成启动电路,在电源开启时给开关管提供启动电流。 开关变压器的正反馈绕组Nd (次级绕组)和D807~D809、R808、C811组成一个激励电路。Nd 绕组的同名端与激励电路相连,为开关管提供正反馈。另一端通过R805(限流电阻)接地。 Q802、Q803组成一个脉冲宽度调制器,控制开关管饱和、截止工作时间。

开关变压器的负反馈绕组Ng (同名端接地)、R812、D812和Q805、D822组成保护电路,为开关电源提供过压和过流保护功能。

负反馈绕组(取样绕组)Ng 、稳压二极管D814(提供基准电压)和取样电位器R851、Q804组成误差放大电路。去控制Q802和Q803组成的脉冲宽度调制器的工作状态。间接地控制开关管的饱和、截止工作时间。起到稳定输出电压的作用。

二、 分电路及工作原理

东芝Ⅱ型机芯的开关稳压电源的电路图由输入回路、开关振荡电路、脉宽调制电路、误差

D801~D804C802C807R803R804R801R R807R805L801Ns Ns Np C809D815D810D816D805Q801C826R810R811Nd C821C818C820Ng

R812D812

Z814D811C813R851保护电路Q805、D822激励电路D807~D809R808、C811脉宽调制器Q803、Q802误差放大器Q804~220V +114V +24V

放大电路、保护电路、输出回路等六个功能电路组成。

1、 输入回路

P801是电源插头,S801是电视机开关。P580的①、②端是接插件。

F801是交流保险丝,作用:保护因开关电源内某个元件损坏而造成的短路。

T803、和C830、C831组成第一级馈线低通滤波器,T801和C802组成第二级馈线低通滤波器。平衡L 型,把开关电源与交流电网隔离开来,目的:一是滤除掉低频交流电中的高频干扰脉冲;二是防止开关电源中的高频脉冲干扰交流电网。

图3 输入回路

901是消磁线圈,R890是正温度系数热敏电阻,组成开机自动消磁电路。用于消除显像管金属部件的剩磁,以免造成电视图像的彩色失真。

由D801~D804四个二极管组成桥式整流器,C803~C806组成高频旁路电容。

C802和C807组成一个П型滤波电路。C802还是交直流地之间构成回路的电容,接地端与馈线低通滤波器的电容接地端连在一起。220V 的交流电经整流滤波后,变成300V 左右的直流电压。电视机开机后,C802两端电压为300V 左右。C807是一个容量120uF 、耐压400V 的电解电容(体积较大)。电阻R801是限流电阻,阻值较小但瓦数较大,当电流超过额定功率时,电阻会损坏而造成电路的断路。起到一定的过流保护作用。

2、 开关管振荡电路

300V 的直流电压一方面通过开关变压器T802的初级绕组?-⑿端给开关管Q801集电极供电,另一方面又通过启动电阻R803、R804,流经L801和R807并联端并与R809分压,为Q801基极提供一个正向偏置电压。使其导通并进入放大状态。

当开关管Q801的集电极电流流过T802的初级绕组Np 时,产生自感电动势,其极性为?端为正、⑿端为负。因此在次级绕组(激励绕组)Nd 也产生互感电动势,极性为⑩(同名端)端为正、⑨端为负。⑩端的电压经D809、C811、R808、R807送至Q801的基极形成正反馈。该正反馈过程如下所示:

T803T802F801 3.15A P 801P 801D801D804 1N4007C 803 4.7n C 804 4.7n C 805 4.7n C 806 4.7n L901 1.0m N TC R 890C 802 2.2n R801 6.2C807 120.0u C830 220.0p C831 220.0p

C801 100.0n

Q801的基极电位上升→基极电流增加→集电极电流增加→初级绕组的自感电动势上升

激励绕组的互感电动势上升

结果使Q801迅速进入饱和状态。集电极电流不再增加,T802的初级绕组电流变化率为零,初级绕组的自感电动势降为零。激励绕组的互感电动势也降为零。给Q801提供的正反馈就消失了。经一段时间后,Q801退出饱和状态进入放大状态。此时流经变压器初级绕组的电流开始减小,各绕组产生的感应电动势极性翻转,极性为?端为负、⑿端为正、⑩(同名端)端为负、⑨端为正。基极电流减小又导致集电极电流减小。从而形成一个反向的正反馈。该正反馈如下所示:

Q801的基极电流减小→集电极电流减小→初级绕组的自感电动势反向上升

激励绕组的互感电动势反向上升

结果使Q801迅速进入截止状态。Q801进入截止状态后,流过开关变压器绕组的电流降为零。变压器绕组产生的感应电动势也逐渐降为零。

1 6

C807

12 4

R803

L801 R804 D809 3

C809 Q801 10

L807 R807 R808

L806 R809 C811 9

R802 R805

D805

图4 开关管自激振荡电路

Q801的集电极与地之间接有电容C827,发射极与地之间接的电感L806(高频阻流圈),是用来抑制开关管振荡过程中产生的高次谐波干扰。

由C809、L807和R802、D805构成一个削波电路。避免开关管从饱和到截止时,开关变压器初级绕组中产生的过高反峰脉冲电压击穿开关管。

开关管在启动电路提供电流的情况下,又从截止状态重新进入放大状态。开关变压器的感应电动势的极性,变成?端为正、⑿端为负。因此在次级绕组(激励绕组)Nd也产生感应电动势,极性为⑩(同名端)端为正、⑨端为负。⑩端正电压又通过C811、D809和R808正反馈网络,以及L804、R807、R809重新使Q801导通。如此周而复始。开关管这种振荡工作方式,是间歇振荡器(为自激式)。正反馈回路由开关变压器次级绕组和电容C811、R808和D809组成。

3、输出回路

(1)114V直流输出电路:增加了L802和L803两个电感,与C818组成一个T型滤波电路。 L805和C817组成一个串联谐振电路,目的是为了抑制掉直流电压中的高频分量。

(2)24V直流输出电路:增加了L804和R607、R606,它们组成一个L型的RL滤波电路。

C819并联在D816两端。抑制掉来自开关电源的高频振荡干扰。

图5 输出回路

4、 脉冲宽度控制电路

1 6

C807

R808 D809 12 4

C811 10

C821

R810 D807 D808

R808 D810

R811 R805

Q802 8

Q803 R812

7

C813 R814

图6 脉冲宽度调制电路

开关电源的开关管振荡频率,是由正反馈网络的元件数值决定的。基本上是固定不变的。为能保持输出电压不变,需要一个控制电路,来控制开关管振荡过程。当振荡频率不变时,就只有对开关管的饱和和截止时间进行控制。即对脉冲宽度进行控制。

由R806、Q802和Q803组成复合管工作电路,工作在开关工作状态。当Q803基极和Q802的发射极为高电位时,两个三极管同时导通并进入饱和状态。如果不满足上述两条件,两个三极管处于截止状态。这个电路与C821、D810、D807、D808和R810、R811构成了脉冲宽度控制电路。

当开机时,300V 直流电压经R810、R811、C813、R812、R814到地(Ng 绕组的⑧、⑦端),对C813充电,使C813的极性为左正、右负。C813左端的正电压加到Q803的基极。使Q803基极为高电位。

Q801处于从截止到饱和状态期间→开关变压器的正反馈绕组的⑨端为负电位→Q802、Q803处于截止工作状态。

D815D816C817 560p C818 100u C819 100p

C820 470u L802L805L803L804R607 820R606 8206433+114V +24V

Q801处于从饱和到截止状态期间→开关变压器的正反馈绕组⑨端为正电位→使D810导通,→对C821充电,C821极性为下正上负→充电后的C821下端正电压通过电阻R806加到Q803的集电极,Q803导通并饱和(Q803饱和后造成Q802基极电位被箝位在0.3V左右,低于其发射极电位)→Q802导通并饱和(Q802导通后其发射极电位接近集电极的零电位,将C821下端的正电位箝位到地电位)→C821上端形成负电压→负电压使D808、D807导通→流向Q801基极的基极电流被分流(使用两个二极管的目的:使Q801基极电位到⑩端电位有一个1.4V的压降,可防止Q801截止过深)。

Q802、Q803的饱和导通加速Q801进入截止状态,使Q801继续保持截止状态。取样绕组Ng 的⑧电压为正、⑦端为负,这个正电压经R812、R814分压,对C813充电,使C813的极性变为右正、左负。C813左端电压的下降到一定程度,使Q802、Q803又重新进入截止状态。Q801又重新导通并进入饱和状态。

开关管Q801和Q802、Q803组成的复合管的开关工作状态是相反的。只要控制Q802和Q803的饱和和截止时间,就可控制Q801的截止和饱和工作持续时间。达到控制脉冲宽度的目的。5、误差放大电路

去Q803基极

8

D814

R817 O5Z7.5Y 7

C815 R820 D811

C814

Q804 R815

R851 C813

R818 R816

图7 误差放大电路

误差放大电路由取样绕组Ng(⑧、⑦端)和D811、R820、C815、Q804(误差放大管)、R817、R818、R851(可调电位器)、R815、R816组成。

取样绕组Ng上的感应电动势与初级绕组上的感应电动势成正比,感应电压经D811整流、R820和C815滤波后,成为直流电压,电压大小与114V输出电压成正比,正常值21V左右。

D814和R815组成基准电压电路,D814工作在击穿状态,压降为7.5V。提供给Q804发射极的电压正常值为21-7.5=13.5V。

R817、R851和R818组成取样电路,21V直流电压经三个电阻分压得到的误差电压加到Q804的基极。调节R851使Q804基极电位也为13.5V左右。使Q804截止,误差放大电路不起作用。

C814是防止Q804自激的中和电容。

输出电压升高→取样绕组Ng上的感应电压升高→Ng上感应电压经整流滤波后形成的直流电压升高→D814上的电压降基本上是固定不变的→升高的电压都转移到R815上→Q804发射极电压升高→经取样电路取出的电压升高(但升高的幅度不会超过射极电压的升高幅度)→Q804因射极反偏、集电极正偏而导通(有电流流经Q804射极、集电极、R816到Q803基极和C813。且感应电压越高,Q804导通程度加大,射极电流也相应增大)→C813的左端电位升高,→Q803

基极电压升高,基极电流增大,导通时间加长→Q802的导通时间加长→开关管Q801截止时间加长→输出电压下降,保持电压稳定。

输出电压下降时→整流滤波后的直流电压下降→Q804导通程度下降→发射极电流减小,集电极电压下降→Q803基极电压下降→Q803、Q802导通时间缩短→开关管Q801截止时间缩短,输出升高,保持输出电压稳定。

6、保护电路

开关电源的保护电路主要有过压保护电路和过流保护电路两种。下面分别进行说明

(1)过流保护

主要是利用开关变压器激励绕组进行。由于负载短路,造成电流过大时,开关变压器激励绕组产生的正反馈电压会急剧下降,从而使开关管和开关变压器激励绕组形成的正反馈不能正常进行,开关管处于截止状态,达到过流保护目的。

(2)过压保护

图8所示为东芝Ⅱ型机芯的开关稳压电源的过压保护电路。由反馈绕组Nd、取样绕组Ng、R812、R814(这两个电阻组成分压电路)、D812、D820、Q805(可控硅)、D822(稳压二极管)、R825等元件组成。

在正常状态下,可控硅Q805和齐纳二极管D822均处于截止状态。当误差放大器Q804或脉宽调整管Q803、Q802等电路发生故障只要电压超过175V,保护电路就会动作。

动作过程如下:取样绕组的感应电动势急剧加大→⑧端正电压经R812、R814分压,通过R825加到D822的负端的电压升高→升高到超过D822的击穿电压6.2V时,D822导通→电压加到可控硅的控制极,使可控硅Q805导通→Q805的正端电位被箝位到地电位→取样绕组的⑧端正电压经D820整流后对C826充电,(Q805导通之前已充有6V左右的电压,极性为左负右正)→Q805导通→C826开始经Q805到地放电,本来流向Q801基极的电流全部流向R823、C826、Q805到地。致使Q801无基极电流。→可控硅导通后将其正端箝位到地时,二极管D820正偏导通→将Q802射极也箝位到地→C821上的负电压加到开关管基极使开关管截止,初级绕组无电流流过,无感应电动势→次级输出绕组也无感应电压,输出电压为零→完成过压保护任务。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

(整理)常用彩电开关电源原理

彩电开关电源原理 A3电源: A3机芯电源最早出现在采用三洋公司的LA7680机芯上,故而得名,因其电路简洁、效率高、易扩展、易维修,现在已被各厂家广泛使用。 R520、R521、R522为起动电阻,R519、C514、R524、V513、T501的(1)、(2)绕组组成正反馈回路,C514为振荡电容。 V553 及周边元件、VD515、V511、V512组成稳压控制电路。R552为取样电阻,VD561为V553的发射极提供基准电压,当电源输出电压过高时, V553、VD515、V511、V512均导通程度增加,使开关管V513的基极被分流,输出电压随之下降;反之,若电源输出电压降低时,V553、 VD515、V511、V512均导通程度减少,使开关管V513的基极分流减少,输出电压随之上升。 VD518、VD519、R523组成过压保护电路。另外VD563也为过压保护。 C515的作用: 我们来看如果没有C515会怎样?当某一时刻开关变压器的(1)脚相对(2)脚为正时,一方面(1)脚的电压经R519、C514加到V513的基极,欲使V513饱和,但同时,该电压也经R526加到V512的基极,这样一来,V512饱和导通,而V512饱和导通将迫使V513截止,这就有矛盾了。 再来看加入C515的情况:同样当某一时刻开关变压器的(1)脚相对(2)脚为正,欲使V513饱和,这时该电压也经R526加到V512的基极,但由于有C515的存在,C515两端的电压不能突变,需经一定时间的延迟,或者说C515有一个充电过程,才会使V512饱和,这样就不会干扰V513的饱和了。显然,C515容量的大小决定了延迟的时间,这样也会影响V513基极脉冲的占空比,同样也会影响输出电压的大小,根据这一点,有人误认为C515 是振荡电容,这显然是不对的。 IX0689电源: IX0689电源被广泛运用于国内各种品牌的TA两片机中,是国产机用得最多的电源之一。 振荡电路 300V直流电压经R707、R724分压后,再由C735、L701加到N701的(12)脚,IX0689的(12)脚是内部开关管的B极,于是开关管开始导通,电流从(15)脚C极流入,从(13)脚E极流出,经R714、R710到热地。 T701的(3)、(5)脚为正反馈绕组,在开关管导通时,正反馈电压的极性是(5)正(3)负,(5)脚电压经V735、R713、L701加到N701的(12)脚,使开关管的电流进一步增大,如此循环使开关管很快饱和。 开关管饱和期间,电能转为T701中的磁能。随着N701(13)脚流出的电流不断增大,R710两端的压降也不断增大,当R710上的压降达到1V左右时,开关管开始退出饱和状态。 开关管一旦退出饱和,T701各绕组的感应电压极性全部翻转,正反馈绕组(3)、(5)脚的极性为(3)正(5)负,(5)脚的负电压经C713、R713、L701加到IX0689的(12)脚,使内部开关管的电流进一步减小,如此循环,使开关管迅速截止。 开关管截止期间,开关变压器次级各绕组的整流二极管全部导通,将储存在开关变压器中的磁场能转变为电能,供整机各路负载,同时,T701的(1)、(6)绕组与C717、C718、R710和C706构成振荡回路,当振荡半个周期后,重新使T701的(6)脚为正(1)脚为负,

电脑开关电源电路大全及PC开关电源标准详解

PC开关电源标准详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; ATX12V_1.1:2000年8月颁布, 在前一版本的基础上,加强了+3.3V电流输出能力,以适应AGP显卡功率增长的需求 ATX12V_1.2:2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定; ATX12V_1.3:2003年4月颁布,在前版的基础上,提高了电源效率,增加了对SATA的支持,增加了+12V的输出能力。

高频开关电源电路原理分析

高频开关电源电路原理分析 开关电源微介绍开关电源具有体积小、效率高的一系列优点。已广泛应用于各种电子产品中。然而,由于控制电路复杂,输出纹波电压高,开关电源的应用也受到限制。它 电源小型化的关键是电源的小型化,因此必须尽可能地减少电源电路的损耗。当开关电源工作在开关状态时,开关电源的开关损耗不可避免地存在,损耗随着开关频率的增加而增大。另一方面,开关电源中的变压器和电抗器等磁性元件和电容元件的损耗随着频率的增加而增加。它 在目前市场上,开关电源中的功率晶体管大多是双极型晶体管,开关频率可以达到几十kHz,MOSFET开关电源的开关频率可以达到几百kHz。必须使用高速开关器件来提高开关频率。对于开关频率高于MHz的电源,可以使用谐振电路,这被称为谐振开关模式。它可以大大提高开关速度。原则上,开关损耗为零,噪声非常小。这是一种提高开关电源工作频率的方法。采用谐振开关模式的兆赫变换器。开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的开关电源其实是高频开关电源的缩写形式,和电源本身的关闭和开启式没有任何关系的。 开关电源分类介绍开关电源具有多种电路结构:(1)根据驱动方式,存在自激和自激。它2)根据DC/DC变换器的工作方式:(1)单端正激和反激、推挽式、半桥式、全桥式等;2)降压式、升压式和升压式。它 (3)根据电路的组成,有谐振和非谐振。它 (4)根据控制方式分为:脉宽调制(PWM)、脉冲频率调制(PFM)、PWM和PFM混合。(5)根据电源隔离和反馈控制信号耦合方式,存在隔离、非隔离和变压器耦合、光电耦合等问题。这些组合可以形成各种开关模式电源。因此,设计者需要根据各种模式的特点,

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

开关电源各种保护电路实例详细解剖

输入欠压保护电路 输入欠压保护电路一 1、概述(电路类别、实现主要功能描述): 该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。 2、电路组成(原理图): 3、工作原理分析(主要功能、性能指标及实现原理): 当电源输入电压高于欠压保护设定点时,A点电压高于U4的Vref,U4导通,B点电压为低电平,Q4导通,Vcc供电正常;当输入电压低于保护电压时,A 点电压低于U4的Vref,U4截止,B点电压为高电平,Q4截止,从而Vcc没 有电压,此时Vref也为低电平,当输入电压逐渐升高时,A点电压也逐渐升高,当高于U4的Vref,模块又正常工作。R4可以设定欠压保护点的回差。4、电路的优缺点 该电路的优点:电路简单,保护点精确 缺点:成本较高。 5、应用的注意事项: 使用时注意R1,R2的取值,有时候需要两个电阻并联才能得到需要的保护点。还需要注意R1,R2的温度系数,否则高低温时,欠压保护点相差较大。输入欠压保护电路二 1、概述(电路类别、实现主要功能描述): 输入欠压保护电路。当输入电压低于设定欠压值时,关闭输出;当输入电压 升高到设定恢复值时,输出自动恢复正常。 2、电路组成(原理图):

3、工作原理分析(主要功能、性能指标及实现原理): 输入电压在正常工作范围内时, Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功 能。 R21、VT6、R23组成欠压关断、恢复时的回差电路。当欠压关断时,VT6导通,将R21与R2并联,;恢复时,VT6截止, ,回差电压即为(Vin’-Vin)。 4、电路的优缺点 优点:电路形式简单,成本较低。 缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。 5、应用的注意事项: VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。 输出过压保护电路 输出过压保护电路一 1、概述(电路类别、实现主要功能描述):

开关电源电路分析

开关电源电路分析 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,电路复杂不易维修等。 开关电源一般包括四要素:整流滤波、起动电路、正反馈电路和稳压电路。 开关式稳压电源具有转换效率高、耗电省、稳压范围宽、体积小和重量轻等特点。为此,在彩色电视机电路中得到广泛应用。电视机的开关电源有多种形式,但串联式脉冲宽度调制型开关稳压电源应用较为广泛。 下面以此种电路为例来分析。 一、工作原理及主要参数 1.电路组成及工作原理 串联型开关稳压电源的基本形式如图1所示。图中,V为开关管,VD为续流二极管,L为储能电感线圈,CL为滤波电容,RL为负载电阻。 图1 串联型开关电源原理图 其稳态工作过程可作如下分析:

设开关管V 在T1期间导通,T2期间截止,周期性地变化,则其工作周期为T=T1+T2,见图4―57(a)。由于负载RL 端电压为Uo,所以负载功率为Po=U2o/RL,负载电流为Io=Uo/RL 。 2. 主要参数及其计算 (1)占空比δ的确定。当开关电源达到稳态工作时,电路处于平衡状态。开关管V 导通期间的电流增量ΔiL1和截止期间的电流减小量ΔiL2应相等,即有: 1()()i o o o i i o U U T U T L L U U TU U T --= = = δδδ (2)平均电流IL 及L 的确定。由于负载与电感L 是串联的,因此电感中的平均电流即为负载电流Io,故有 o I I = 当Ui 和Uo 确定后,由式(4―28)和式(4―30)δ、Io 也随之确定。 L 的最小 值以Lmin 表示,则 (3)滤波电容CL 的确定。L 中的电流iL 是包含有三角波的脉动电流,因此应在负载RL 两端并联CL,以滤除纹波。 一般选取RLCL >> T 即可满足要求。因一般彩电开关电源中选取T=64μs,负载端滤波电容一般选200μF 左右即可。

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

常用直流开关电源的保护电路设计

常用直流开关电源的保护电路设计 概述 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3]。同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间。但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。 3.1过电流保护电路

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用 SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端 (Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用 Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz, Conduction 可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。 LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管): 将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。 C1(滤波电容): 由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。 D2(辅助电源二极管): 整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异: 耐压不同(在此处使用差异无所谓) VF不同(FR105=1.2V,BYT42M=1.4V) R10(辅助电源电阻): 主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。 C7(滤波电容): 辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

开关电源维修步骤及常见故障分析-电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

开关电源保护电路实例详细分析

开关电源保护电路实例详细分析 输入欠压保护电路 1、输入欠压保护电路一 概述(电路类别、实现主要功能描述): 该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。 电路组成(原理图): 工作原理分析(主要功能、性能指标及实现原理): 当电源输入电压高于欠压保护设定点时,A点电压高于U4的Vref,U4导通,B点电压为低电平,Q4导通,Vcc供电正常;当输入电压低于保护电压时,A点电压低于U4的Vref,U4截止,B点电压为高电平,Q4截止,从而Vcc没有电压,此时Vref也为低电平,当输入电压逐渐升高时,A点电压也逐渐升高,当高于U4的Vref,模块又正常工作。R4可以设定欠压保护点的回差。 电路的优缺点 该电路的优点:电路简单,保护点精确 缺点:成本较高。 应用的注意事项: 使用时注意R1,R2的取值,有时候需要两个电阻并联才能得到需要的保护点。还需要注意R1,R2的温度系数,否则高低温时,欠压保护点相差较大。 2、输入欠压保护电路二 概述(电路类别、实现主要功能描述): 输入欠压保护电路。当输入电压低于设定欠压值时,关闭输出;当输入电压升高到设定恢复值时,输出自动恢复正常。

电路组成(原理图): 工作原理分析(主要功能、性能指标及实现原理): 输入电压在正常工作范围内时, Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功能。 R21、VT6、R23组成欠压关断、恢复时的回差电路。当欠压关断时,VT6导通,将R21与R2并联, ;恢复时,VT6截止,, 回差电压即为(Vin’-Vin)。 电路的优缺点 优点:电路形式简单,成本较低。 缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。 应用的注意事项: VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试 输出过压保护电路 1、输出过压保护电路一 概述(电路类别、实现主要功能描述): 输出过压保护电路。当有高于正常输出电压范围的外加电压加到输出端或电路本身故障(开环或其他)导致输出电压高于稳压值时,此电路会将输出电压钳位在设定值。 电路组成(原理图):

相关主题
文本预览
相关文档 最新文档