当前位置:文档之家› 课程设计:差速器的设计

课程设计:差速器的设计

课程设计:差速器的设计
课程设计:差速器的设计

课程设计说明书

设计名称差速器的设计

设计时间 2009年4-6月

系别机电工程系

专业汽车服务工程

班级 07级14班

姓名罗毅鉴

指导教师宋玉林

2010 年4 月 20日

目录

一、设计任务书........................................................................ - 2 -

二. 传动方案的拟定................................................................ - 3 -

三、总体设计............................................................................ - 4 -

(一)传动比的分配 ........................................................................

(二)传动装置的运动和动力参数计算........................................

四、传动零件的设计计算........................................................ - 5 -

(一)主减速器齿轮设计 ............................ 错误!未定义书签。

(二)差速器齿轮的设计 ........................... 错误!未定义书签。

五、半轴的计算与校核.......................................................... - 19 -(一)半轴计算转矩

T及杆部直径..... 错误!未定义书签。

(二)全浮式半轴强度校核计算 ............... 错误!未定义书签。

六、滚动轴承的选择...................................错误!未定义书签。

七、差速器壳体设计.......................................................................

一、设计任务书

(2)发动机到主传动主动齿轮的传动效率96.0=w η;

(3)车速度允许误差为±3%;

(4)工作情况:每天工作16小时,连续运转,载荷较平稳; (5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为

C 030

(6)要求齿轮使用寿命为17年(每年按300天计); (7)生产批量:中等。 (8)车轮半径mm R 380=

(9)半轴齿轮、行星齿轮齿数,可参考同类车型选定,可自己设计。

9)差速器转矩比S=1.15-----1.4之间选取。 (10)安全系数为n=1.2-------1.35之间选取 (11)其余参数查相关手册。 (12)车重1.8吨

传动方案:如参考图例 设计工作量:(1)差速器设计计算说明书1份。 (2)差速器装配图1张(A0图纸); (3)零件工作图2张(同一设计小组的各个同学的零件图不得重

复,须由指导教师指导选定);

二.传动方案的拟定

普通的对称式圆锥行星齿轮差速器

1,12-轴承;2-螺母;3,14-锁止垫片;4-差速器左壳;5,13-螺栓;6-半轴齿轮垫片;

7-半轴齿轮;8-行星齿轮轴;9-行星齿轮;10-行星齿轮垫片;11-差速器右壳

三、总体设计 (1)传动比的分配

一档变比64.31=i :主传动比:55.30

=i

总传动比:

922.1255.364.3i i 01=?=?=i

(2)传动装置的运动和动力参数计算

主减速器主动锥齿轮所传递的扭矩

m .216.48996.064.314010

M

N M i =??==η

主减速器从动锥齿轮所传递的扭矩:

m .717.173696.0922.12140M

N M i =??==η总

差速器转矩比为24.1=S

24.1==S M M S

B

(1) m N M M M S B .717.17360==+(2)

联立两式得m N M s .32.775=,m N M B .40.961= 取m N M B .40.961=为半轴齿轮所接收的转矩

主减速器主动锥齿轮转速min /26.123664

.34500

/1r i n n ==

=主 半轴齿轮转速rmp i n n 24.348922.12/4500/0===总 由差速器原理知0212n n n =+

当车辆转向时其极限情况为内侧车轮不转,则另一侧车轮转速为rmp n 48.69620= 则当车辆转向时,半轴齿轮最大转速rmp n 48.696max =,最大转矩m N M .40.961max =

表1 传动装置和动力参数

四、传动零件的设计

注: 注:本计算采用西北工业大学编《机械设计》(第八版)讲述的计算方法。有关设计计算公式、图表、数据引自此书。

(一)、主减速器齿轮的基本参数选择、设计与计算

螺旋锥齿轮传动(图a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。本次课程设计采用螺旋锥齿轮传动a)

图a 主减速器齿轮传动形式

a)螺旋锥齿轮传动 b)双曲面齿轮传动 c)圆柱齿轮传动 d)蜗杆传动

驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其它齿轮相比,具有载荷大、作用时

间长、变化多、有冲击等特点。它是传动系中的薄弱环节。锥齿轮材料应满足如下要求:

1)具有高的弯曲疲劳强度和表面接触疲劳强度,齿面具有高的硬度以保证有高的耐磨 性。

2)轮齿芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下齿根折断。

3)锻造性能、切削加工性能及热处理性能良好,热处理后变形小或变形规律易控制。 4)选择合金材料时,尽量少用含镍、铬元素的材料,而选用含锰、钒、硼、钛、钼、 硅等元素的合金钢。

(二)、选择齿轮类型、材料和热处理、精度等级、齿轮齿数

1)按传动方案选用直齿轮圆锥直齿轮传动

2)主减速器受轻微冲击,速度不高,故选用7级精度(GB 10095-88)。

3)材料选择 由所引用教材表110-选择直齿锥轮材料为20CrMnTi (调质),硬度为300HBS(齿芯部).60HRC(齿面)

4)选小齿轮齿数161=z ,则:,8.561655.312=?=?=z i z 主,取572=z 。 1、按齿面接触强度设计

由教材式(a 910-)进行试算,即321

2

1)5.01(][92.2u KT ZE d R

R H t φφσ-????? ??=

(1)确定公式中各计算数值:

1)初选载荷系数3.1=t K

齿轮7级精度,由图810-查得动载系数25.1=V K 直齿轮,1==ααF H K K

由表910-查得7级精度、小齿轮相对支承非对称布置时,15.1===be H F H K K K βββ 故载荷系数438.115.1125.11=???==βαH H V A K K K K K 2) 计算小齿轮传递的转矩

m .216.48996.064.3140100M N M T i =??===η

3)由表710-选取齿宽系数33.0=R φ 4)由表610-查得材料的弹性影响系数

5)由图e 2110-按齿面硬度查得小齿轮的接触a E MP Z 8.189=疲劳强度极限

a H MP 16001lim =σ;大齿轮的接触疲劳强度极限a H MP 16002lim =σ

6)由式1310-计算应力循环次数。

123664

.34500

1==

n 9111003.3173008112366060?=?????==h jL n N , ;1052.855

.31003.389

212?=?==i N N

7)由图1910-取接触疲劳寿命系数系数91.01=HN K ,93.02=HN K 8)计算接触疲劳许用应力。

取失效率为 1%,安全系数2.1=S 由式(10-12)得

[]MPa MPa S

H H 33.12132

.11600

91.0K 1

lim HN11=?=

?=σσ

[]a a H H MP MP S

12402

.11600

93.0K 2

lim HN22=?=

?=σσ

MPa H H H 67.12262

][][][2

1=+=

σσσ

(2)计算

1)计算小齿轮分度圆直径t d 1,带入[]H σ中较小的值。

321

2

1)5.01(][92.2u KT ZE d R

R H t φφσ-????? ??=

m m d t 25.726.3)33.05.01(33.01089216.4438.167.1226

8.18992.232

5

2

1=??-???????

???= 2)计算齿宽b 及模数nt m

mm d b t d 84.2396.7033.01=?=?=φ

mm mm z d m t nt 51.416

25

.7211===

h=2.25nt m =2.25?4.51=10.14mm ,

35.2=h

b

3)按实际的载荷系数校正所算的分度圆直径1d

mm K K d d t t 72.743

.1438.125.7233

11=?== 计算模数n m

5.416

72.7411===

z d m n 3.按齿根弯曲强度设计

由式(2410-)得弯曲强度的设计公式为

3

22

121

][1)5.01(4F

Sa

Fa R R Y Y u Z KT m σφφ?

+-≥

(1)确定公式内的各计算数值

1)由图d 2010-查得小齿轮的弯曲疲劳强度极限a FE MP 10001=σ;大齿轮的弯曲强度极限a FE MP 10002=σ

2)由图1810-取弯曲疲劳寿命系数,86.01=FN K ,89.02=FN K 3)计算弯曲疲劳许用应力。

取弯曲疲劳安全系数1=S ,由(1210-)得

[]MPa MPa S

K FE FN F 86011000

86.01

11=?=

?=σσ

[]MPa MPa S

K FE FN F 8901

1000

89.02

22=?=

?=σσ

4)计算载荷系数K 。

438.115.1125.11=???==βαF F V A K K K K K

5)查取齿形系数。

56.3tan cot 1

2

1221===

==d d z z u δδ, 31.7456.3arctan 2==δ 77.21027

.057

cos )5.01(22222===-==

δφz m d m d z R v m v v 取整2112=v z ,6.1656

.3211

2221===

u z z v v ,171=v z 由表510-查得97.21=Fa y ; 06.22=Fa y 6)查取应力校正系数。

由表510-查得52.11=Sa y 97.12=Sa y 。 7)计算半轴齿轮的1t F ,行星齿轮的2t F

[]00525.086052

.197.21

1

1=?=

F Sa Fa Y Y σ

[]00456.0890

97

.106.22

2

2=?=

F Sa Fa Y Y σ

大齿轮的数值大。 (2)设计计算

322253

22

121

00525.01

56.316)33.05.01(33.01045312.3438.14][1)5.01(4?+??-????=?+-≥F Sa Fa R R Y Y u Z KT m σφφ=3.63mm

对比计算结果,由齿面接触疲劳强度计算的模数m 大于齿根弯曲疲劳计算的模数,由于齿轮模数的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数3.63并就近圆整为标准值4=m ,

所以这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。 所以,直齿锥齿轮的模数为4=m 取分度圆直径mm d 72.741=,修正齿数

68.184

72

.7411===

m d Z ,取191=Z 则671955.32=?=Z 计算中心距

mm m

Z Z a 1722

)(21=+=

计算大、小齿轮分度圆直径

计算齿轮宽度

mm d b d 28.241=?=φ

圆整后取mm B 242=,mm B 221=

(三)、主减速器主动齿轮与从动齿轮的强度校核

由式(2310-)得弯曲强度的校核公式为:

][)

5.01(F F R Sa

Fa t bm Y Y KF σφσ≤-=

1) 因为其他参数都已知所以,只需计算主动齿轮的1t F ,从动齿轮的2t F ,齿宽1b 和2b

93.4321211=+=u mz b R φ,19.1562

1

222=+=u mz b R φ, mm N m N z m T d T F R m t .10487.11.487.1133.05.01418312.3452)5.01(22311111?==?-???=-==

)(φ32222210469.11.33.05.01464858

.12252)5.01(22?==?-???=-==

m N z m T d T F R m t )

(φ 8)分别代入各参数

MPa m b Y Y KF R Sa Fa t 23.50833.05.01493.4352.197.210487.11438.1)5.01(31111F1

=?-??????=-=)

(φσ, MPa MPa F 860][23.5081F1=≤=σσ,所以主动锥齿轮强度合格。

mm

m Z d mm m Z d 268762211====

MPa m b Y Y KF R Sa Fa t 30.12833.05.01419.15697.106.210469.11438.1)5.01(32222F2

=?-??????=-=)

(φσ, MPa MPa F 890][30.1281F2=≤=σσ,所以从动锥齿轮强度合格。

由式(10-25)得接触疲劳强度的校核公式为:

][)5.01(53121

H R R E

H u

d KT Z σφφσ≤-=

把上式求的参数带入得

强度合格

][44.120956.372)33.05.01(33.010312.345438.18.1895323

1

H H MPa σσ≤=???-????=强度合格][89.33956

.3256)33.05.01(33.010858.1225438.18.18953

23

2

H H MPa σσ≤=???-????=(四)、主、从动直齿锥齿轮的具体参数

表2主减速器主、从动直齿锥齿轮的几何尺寸计算用表

五、差速器的基本参数选择、设计与计算

注:本计算采用化学工业出版社《汽车工程手册》讲述的计算方法。有关设计计算公式、图表、数据引自书。

1.行星齿轮差速器的确定

1)选择齿轮类型、精度等级、材料及齿数

选择直齿圆锥齿轮,选用7级精度,材料为20CrMnTi(调质),硬度为58~62HRC,行星齿

轮数目的选择101=Z ,半轴齿轮齿数202=Z 2)按齿根弯曲疲劳强度计算

3

2

2

221

]

[1)5.01(4F Sa

Fa R R Y Y u Z KT m σφφ?

+-≥

确定计算参数

由图(10-20d )查得齿轮弯曲疲劳强度极限MPa FE FE 110021==σσ,由图(10-18)取弯曲疲劳寿命系数86.01=FN K ,89.02=FN K

2tan cot 1

2

1221===

==d d z z u δδ,43.632arctan 2==δ 44.4445

.020

cos )5.01(22222===-==

δφz m d m d z R v m v v 取整452=v z ,25.112

45

2221===

u z z v v ,121=v z (1v z 在表10-5中无法查到,因此按比例的方法同时把齿数1z ,2z 增大,161=z ,322=z ),按同样的方法算得1v z =18,

2v z =70。

由表510-查得91.21=Fa y ,24.22=Fa y 3)查取应力校正系数。

由表510-查得53.11=Sa y ,75.12=Sa y 取弯曲疲劳安全系数1=S ,由(1210-)得

[]MPa MPa S

K FE FN F 9461

1100

86.01

11=?=

?=σσ

[]MPa MPa S

K FE FN F 9791

1000

89.02

22=?=

?=σσ

MPa F F F 5.9622

][][][2

1=+=

σσσ

[]00471

.094653

.191.21

1

1=?=

F Sa Fa Y Y σ []00400.0979

75

.124.22

2

2=?=

F Sa Fa Y Y σ

计算13.300471.01

220

)33.05.01(33.0103414.3143

2

2

2

5

=?+?-???≥m ,圆整3.5

按齿面接触疲劳强度计算

321

2

1)5.01(][92.2u KT ZE d R

R H t φφσ-????? ??=

按齿面硬度查得小齿轮的接触疲劳强度极限a H MP 15001lim =σ;大齿轮的接触疲劳强度极限a H MP 15002lim =σ

[]MPa MPa S

H H 135011500

9.0K 1

lim HN11=?=

?=σσ []a a H H MP MP S

13951

1500

93.0K 2

lim HN22=?=

?=σσ

MPa H H H 5.13722

][][][2

1=+=

σσσ

计算小齿轮分度圆直径

mm d t 92.712)33.05.01(33.01078.415.13728.18992.232

5

2

1=??-??????

?

??=

为了能同时满足弯曲疲劳强度和接触疲劳强度,取最佳半轴齿轮的齿数

55.2012==

m d Z t ,圆整为21,5.102211==Z ,圆整为11 计算中心距mm m

Z Z a 562

)(21

=+= 计算大、小齿轮的分度圆直径

mm

m z d mm m z d 74392211====

计算齿轮宽度

mm d b d 55.111==φ

圆整后取mm B 121=,mm B 172=

差速器直齿锥齿轮的强度计算

差速器齿轮主要进行弯曲强度计算,对疲劳寿命则不予考虑,这是因为行星齿轮在工作中经常只起等臂推力杆的作用,仅在左、右驱动车轮有转速差时行星齿轮与半轴齿轮之间才有相对滚动的缘故。

越野汽车的差速器齿轮的弯曲应力校核如下 由式(2310-)得弯曲强度的校核公式为;

][)

5.01(F F R Sa

Fa t bm Y Y KF σφσ≤-=

其中,

50.30155

.327.33500

1=?=

n ,8111038.717300815.3016060?=?????==h jL n N

;1069.32

1038.788212?=?==i N N 21020

122==

=z z i (1)确定公式内的各计算数值

1)由图d 2010-查得小齿轮的弯曲疲劳强度极限a FE MP 11001=σ;大齿轮的弯曲强度极限a FE MP 11002=σ

2)由图1810-取弯曲疲劳寿命系数,86.01=FN K ,89.02=FN K 3)计算弯曲疲劳许用应力。

取弯曲疲劳安全系数2.1=S ,由(1210-)得

[]MPa MPa S

K FE FN F 33.7882.11100

86.01

11=?=

?=σσ

[]MPa MPa S

K FE FN F 83.8152

.11100

89.02

22=?=

?=σσ

4)计算载荷系数K 。

438.115.1125.11=???==βαF F V A K K K K K

5)查取齿形系数。

2tan cot 1

2

1221===

==d d z z u δδ, 43.632arctan 2==δ 44.4445

.020

cos )5.01(22222===-==

δφz m d m d z R v m v v ,取452=v z 25.112

44

2221===

u z z v v ,121=v z (1v z 在表10-5中无法查到,因此按比例的方法同时把齿数1z ,2z 增大,161=z ,322=z ),按同样的方法算得1v z =18, 2v z =70。

由表510-查得91.21=Fa y ,24.22=Fa y 3)查取应力校正系数。

由表510-查得53.11=Sa y ,75.12=Sa y 4)计算半轴齿轮的1t F ,行星齿轮的2t F 。

mm N m N d T d T F R m t .1088.22.88.2233.05.013534

.3342)5.01(2231111?==?-??=-==

)(φ mm N m N d T d T F R m t .1053.9.53.933.05.017061

.2782)5.01(22322222?==?-??=-==

(φ 91.1221

211=+=u mz b R

φ,39.902

1

222=+=u mz b R

φ, 5)分别代入各参数

MPa m b Y Y KF R Sa Fa t 23.48833.05.015.339.9075.124.21088.22438.1)5.01(32221F1

=?-??????=-=)

(φσ, ][23.4881F1F MPa σσ≤=,所以半轴齿轮强度合格。

MPa m b Y Y KF R Sa Fa t =?-??????=-=)

(33.05.015.391.1253.191.21053.9438.1)5.01(31112F2

φσ, ][59.2621F2F MPa σσ≤=,所以行星齿轮强度合格。

六、半轴的设计

(一) 半轴计算转矩及杆部直径

根据工作条件,初选轴的材料为45钢,调质处理。

全浮式半轴只承受转矩,全浮式半轴的计算载荷可按主减速器从动锥齿轮计算转矩进一步计算得到。即 21.1476717.173685.0T T =?==j ξ?

汽车差速器与主减速器设计毕业设计

摘要 本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。 关键词:建模,差速器,主减速器,分析

Abstract This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing. Keywords: Modeling, Differential,Final drive,Analysis

目录 摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1) 1.1课题来源 (1) 1.2课题研究现状 (1) 1.2.1国内外汽车行业CAD研究与应用情况 (1) 1.3主减速器的研究现状 (1) 1.4 差速器的研究现状 (2) 1.5 课题研究的主要内容 (3) 2QY7180概念轿车主减速器与差速器总体设计 (4) 2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4) 2.1.1QY7180概念轿车的主要参数 (4) 2.1.2QY7180概念轿车主减速器与差速器结构选型 (4) 2.2主减速器与差速器的结构与工作原理 (5) 2.3QY7180概念轿车主减速器主减速比i0的确定 (6) 3主减速器和差速器主要参数选择与计算 (7) 3.1主减速器齿轮计算载荷的确定 (7) 3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转 矩Tce (7) 3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7) 3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8) 3.2主减速器齿轮传动设计 (8) 3.2.1按齿面接触强度设计 (8)

汽车差速器的设计与分析

摘要 本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

目录 1.引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (3) 1.4毕业设计初始数据的来源与依据 (4) 1.5本章小结 (5) 2.差速器的设计方案 (6) 2.1差速器的方案选择及结构分析 (6) 2.2差速器的工作原理 (7) 2.3本章小结 (9) 3.差速器非标准零件的设计 (10) 3.1对称式行星齿轮的设计计算 (10) 3.1.1对称式差速器齿轮参数的确定 (10) 3.1.2差速器齿轮的几何计算图表 (15) 3.1.3差速器齿轮的强度计算 (17) 3.1.4差速器齿轮材料的选择 (18) 3.1.5差速器齿轮的设计方案 (19) 3.2差速器行星齿轮轴的设计计算 (19) 3.2.1行星齿轮轴的分类及选用 (19) 3.2.2行星齿轮轴的尺寸设计 (20) 3.2.3行星齿轮轴材料的选择 (20) 3.3差速器垫圈的设计计算 (20) 3.3.1半轴齿轮平垫圈的尺寸设计 (21) 3.3.2行星齿轮球面垫圈的尺寸设计 (21) 3.4本章小结 (21) 4.差速器标准零件的选用 (22)

差速器建模装配仿真

湖南农业大学东方科技学院 课程设计说明书 课程名称:现代设计方法 题目名称:差速器建模装配仿真 班级: 2008 级机制专业二班姓名:李攀 学号:200841914213 指导教师陶栋材 评定成绩: 教师评语: 指导老师签名: 20 年月日

第一章建模分析 在菜单栏选取【文件】下拉菜单,选取【新建】选项,系统将弹出如图1-1所示的【新增】对话框,选中其中的【零件】单选按钮,在【名字】编辑框中输 入“zwp”。单击对话框下部的按钮,进入三维实体建模 这是建立三维实体模型的第一步:其中需要注意的是在左图片中一定要把使用缺省模板前方框中选择的默认项去掉,这是欧美标准。在右图中我们需要选择mans_part_solid这个是表示在公尺下建模。默认选择是英尺这点也要注意不要回给自己带来很多麻烦。 第二章建模过程 本课程设计是针对减速器装配和仿真,建模过程只是大概叙述一下。 (1)建立装配基准JIZHUN.PAT 根据安装要求,通过点·线·面建立安装基准图

(2)建立CHILUN60.PRT 斜齿轮这是个斜齿轮盘建模过程有些简单,平时在建立模型时,会用到族表和关系,利用齿轮特有的关系建立驱动尺寸的齿轮。这次我采用的建模过程,通过建立几条相关的尺寸线,利用边界混合·合并·实体化,生成齿形,再通过阵列完成齿轮的外形轮廓。最后通过旋转和拉伸,完成最后模型。重要建模过程如下些图所示: 边界混合

红色部分模型阵列前单个齿形 阵列后

完成后的模型图 (3)建立ZHOU_4.PRT 旋转和倒角完成建模

(4)建立XIGAN.PRT 建模过程如下图中 (5)建立模型ZHUICHILUN2O_PRT 建模过程跟CHILUN60_PRT,在此不再重述。

驱动桥差速器设计说明书

摘要 汽车驱动桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能。汽车差速器位于驱动桥内部,为满足汽车转弯时内外侧车轮或两驱动桥直接以不同角度旋转,并传递扭矩的需求,在传递扭矩时应能够根据行驶的环境自动分配扭矩,提高了汽车通过性。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。 随着汽车技术的成熟,轻型车的不断普及,人们根据差速器使用目的的不同,设计出多种类型差速器。与国外相比,我国的车用差速器开发设计不论在技术上,还是在成本控制上都存在不小的差距,尤其是目前兴起的三维软件设计方面,缺乏独立开发与创新能力,这样就造成设计手段落后,新产品上市周期慢,材料品质和工艺加工水平也存在很多弱点。 本文认真地分析了国内外驱动桥中差速器设计的现状及发展趋势,在论述汽车驱动桥的基本原理和运行机理的基础上,提炼出了在差速器设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等关键技术;阐述了汽车差速器的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了轻型车差速器总成及半轴的结构型式;轻型车差速器的结构设计强度计算运用了理论分析成果;最后运用CATIA软件对汽车差速器进行建模设计,提升了设计水平,缩短了开发周期,提高了产品质量,设计完全合理,达到了预期的目标。 关键词:驱动桥;差速器;半轴;结构设计;

Automobile driving axle is one of the main components of cars, its basic function is increased by the transmission shaft or directly by coming from torque, again will torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function. Auto differential drive to meet internal, located in car wheel or when turning inside and outside two axles directly with different point of view, and transfer the rotating torque transmission torque in demand, according to the environment should be driving torque, improve the automatic assignment car through sex. Its quality, performance will have a direct impact on the security of the vehicle, economy, comfort and reliability. As car technology maturity, the increasing popularity of small, people of different purposes according to differential, the design gives a variety of types differential. Compared with foreign countries, China's automotive differential development design whether in technology, or in the cost control there are large gap, especially at present the rise of 3d software design, lack of independent development and innovation ability, thus causing design means backward, new products listed cycle slow, materials quality and craft processing level also has many weaknesses. This paper conscientiously analyzes the differential drive axle design at home and abroad in the present situation and development trend of automobile driven axle, this basic principle and operation mechanism, carry on the basis of the differential practiced a meet the design should be mastered in smooth and automobile driving through sexual, noise reduction technology application and parts of standardization, parts of generalization, serialization of products, and other key technology; Expounds the basic principle and automotive differential system analysis; According to economic, applicable, comfortable, safe and reliable design principles and analysis comparison, determine the small differential assembly and half shaft structure type; Small differential structure design strength calculation using theoretical analysis results; Finally using CATIA software modeling design of automotive differential, promoted design level, shorten the development cycle, improve the product quality, design completely reasonable, can achieve the desired goals. Key words:Differential mechanism;Differential gear;Planetary gear;Semiaxis;

普通锥齿轮差速器设计

第一章绪论 汽车行驶时,左、右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎符合、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行程不等。如果驱动桥的左、右、车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 本次设计选择的是对称锥齿轮式差速器中的普通锥齿轮式差速器。

第二章 普通锥齿轮差速器基本原理 普通锥齿轮差速器由于结构简单、工作平稳可靠,一直广泛用于一般使用条件下的汽车驱动桥中。图2-1为其示意图,图中ω0为差速器壳的角速度; ω1、ω2分别为左、右两半轴的角速 度;To 为差速器壳接受的转矩;T r 为 差速器的内摩擦力矩;T 1、T 2分别为左、右两半轴对差速器的 反转矩。 图2-1 普通锥齿轮式差速器示意图 根据运动分析可得 ω1+ω2=2ω0 (2 - 1) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。 根据力矩平衡可得 T0 T2T1T0T1-T2{ =+= (2 - 2) 差速器性能常以锁紧系数k 是来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定 K=r T /0T (2 - 3) 结合式(5—24)可得 k ) -0.5T0(1T1k ) 0.5T0(1T2{ =+= (2 - 4) 定义快慢转半轴的转矩比kb=T2/T1,则kb 与k 之间有

货车汽车后桥差速器的设计计算说明书

货车汽车后桥差速器的设计计算说明书

第一章驱动桥结构方案分析 由于要求设计的是货车的后驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。 驱动桥的结构形式有多种,基本形式有三种如下: 1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。 2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高,桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有2个规格。 由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。 3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。 ①圆锥行星齿轮式轮边减速桥。由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边

文献综述-汽车差速器的设计

汽车差速器的设计 摘要:本文阐述了汽车差速器的历史、现状以及未来的发展趋势,通过对差速器的结构、作用和工作原理进行分析,最后确定研究课题使用差速器类型为对称式圆锥行星齿轮差速器。 关键词:汽车; 差速器; 对称式圆锥行星齿轮

引言 当汽车转弯时,由于外侧轮有滑脱现象,内侧轮有滑转现象,两个驱动轮就会产生两个方向相反的附加力,由于“最小能耗原理”,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星齿轮自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异,这就是差速器的原理。这里涉及到“最小耗能原理”,也就是地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放进一个完内,豆子就会自动停留在这个碗的碗底,它自动选择静止(动能最小)而不会不断运动[1]。同样的,车轮在转弯时也会自动趋向最低耗能状态,自动地按照转弯半径调整左右轮的转速。 1汽车差速器的发展历史 汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。从卡尔本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。在我国,随着长春第一生产汽车厂的建成投产,1955年生产了61辆汽车,才结束了我国一直不能生产汽车的历史。经过几十年的努力,目前我国建立了自己的汽车工业[2]。在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,它作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。 汽车行驶时,左右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;即使在平直路面上行驶,由于轮胎气压、轮胎负载、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行程不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等等[3]。基于以上事实,

差速器设计3.31分析

差速器设计 在车辆行驶过程中,会碰到多种情形的车况,导致左右车轮的行走的里程不同,即左右车轮会以不同的速度行驶,即会有左右车轮的转速不同。例如: (1)汽车在进行转弯时,外侧的车轮要经过更多的路程,速度要比内侧车轮速度大; (2)当车辆上的货物装的左右不均匀时,两侧车轮也会产生速度差; (3)当两侧车轮的气压不相等时,会导致车轮外径大小不同,导致速度差; (4)当一侧车轮碰到有阻碍,另一侧没有阻碍或是两侧车轮都碰到阻碍,但阻碍的情况不同时,也会有速度差; (5)当两侧车轮的磨损状况不同时,也会导致车轮大小不同,或者是受到的摩檫力矩大小不同,产生速度差; 所以从上述列出的几种情况中可以得出这样一个结论,即使是在直线道路上行驶,左右车轮也会不可避免地出现速度差。如果此时两侧车轮是由一根驱动轴驱动,那么传给两侧车轮的转速一样,那么无论是在什么路况下行驶,必然会发生车轮的滑移或者滑转现象。在这种情况下,轮胎的损耗将比正常情况下的损耗剧烈,同时也使得发动机的功率得不到充分的发挥。另一方面也会使得车辆不能按照预订的要求行驶,可能造成危险。为了使车轮相对地面的滑磨尽量减少,因此在驱动桥中安装有差速器,并通过两侧半轴驱动车轮,使得两侧的车轮可以以不同的速度行驶,使车轮接近纯滚动。 差速器按结构可分为齿轮式、凸轮式、涡轮式和牙嵌式等多种型式。在一般用途的汽车上,差速器常选择对称锥齿轮式差速器。它的特点是,左右两个半轴齿轮大小相同,然后将转矩分配给左右两个驱动轮。因此此次设计选用对称式锥齿轮式差速器。 差速器结构: P147图 差速器壳由左右两半组成,用螺栓固定在一起整个壳体的两端以锥形滚柱轴承支承在主传动壳体的支座内,上面用螺钉固定着轴承盖。两轴承的外端装有调整圈,用以调整轴承的紧度。并能配合主动齿轮轴轴承壳与壳体之间的调整垫片,调整主动,从动锥齿轮的啮合间隙和啮合印痕。为了防止松动,在调整圈外缘齿间装有锁片,锁片用螺钉固定在轴承盖上。 十字轴的4个轴颈分别装在差速器壳的轴孔内,其中心线与差速器的分界面重合。从动齿轮固定在差速器壳体上,当从动齿轮转动时,便带动差速器壳体和十字轴一起转动。 4个行星齿轮分别活动地装在十字轴轴颈上,两个半轴齿轮分别装在十字轴的左右两侧,与4个行星齿轮常啮合,半轴齿轮的延长套内表面制有花键,与半轴内端部用花键连接,这样就把十字轴传来的动力经4个行星齿轮和2个半轴齿轮分别传给两个半轴。行星齿轮背面做成球面,以保证更好地使半轴齿轮正确啮和以及定中心。 行星齿轮和半轴齿轮在转动时,其背面和差速器壳体会造成相互磨损,为减少磨损,在它们之间要装有止推垫片,那么就可用垫片的磨损来减少差速器和半轴的磨损,当磨损到一定程度时,只需更换垫片即可,这样既延长了主要零件的使用寿命,又便于维修。另外,差速器工作时,齿轮又和各轴颈及支座之间有相对的转动,为保证它们之间的润滑,在十字轴上铣有平面,并在齿轮的齿间钻有小孔,供润滑油循环进行润滑。在差速器壳上还制有窗孔,以确保壳中的润滑油能进出差速器。 差速器工作原理 P148

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

汽车差速器三维建模设计

差速器设计 汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯时内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左、右车轮间都装有轮间差速器。在多桥驱动的汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 一、差速器结构形式选择 (一)齿轮式差速器 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。他又可分为普通 锥齿轮式差速器、摩擦片式差速器 和强制锁止式差速器等 1.普通锥齿轮式差速器 由于普通锥齿轮式差速器结 构简单、工作平稳可靠,所以广泛 应用于一般使用条件的汽车驱动 桥中。图5—19为其示意图,图中 ω0为差速器壳的角速度;ω1、ω 2分别为左、右两半轴的角速度; To为差速器壳接受的转矩;T r为差速器的内摩擦力矩;T1、T2分别为左、右两半轴对差速器的反转矩。 根据运动分析可得 ω1+ω2=2ω0 (5—23) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当

差速器设计说明书

学号成绩 汽车专业综合实践说明书 设计名称:汽车差速器设计 设计时间 2012年 6月 系别机电工程系 专业汽车服务工程 班级 姓名 指导教师 2012 年 06 月 18日

目 录 任务设计书 已知条件:(1)假设地面的附着系数足够大; (2)发动机到主传动主动齿轮的传动效率96.0=w η; (3)车速度允许误差为±3%; (4)工作情况:每天工作16小时,连续运转,载荷较平稳; (5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为30 度; (6)要求齿轮使用寿命为17年(每年按300天计,每天平均10小时); (7)生产批量:中等。 (8)半轴齿轮、行星齿轮齿数,可参考同类车型选定,也可自己设计。 (9)主传动比、转矩比参数选择不得雷同。 差速器的功用类型及组成 差速器——能使同一驱动桥的左右车轮或两驱动桥之间以不同角速度旋转,并传递转矩的机构。起轮间差速作用的称为轮间差速器,起桥间作用的称桥间(轴间)差速器。轮间差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动车轮作纯滚动。 1.齿轮式差速器 齿轮式差速器有圆锥齿轮式和圆柱齿轮式两种。 按两侧的输出转矩是否相等,齿轮差速器有对称式(等转矩式)和不对称式(不等转矩式)。目前汽车上广泛采用的是对称式锥齿轮差速器,具有结构简单、质量较小等优点,应用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。其结构见下图:

2.滑块凸轮式差速器 图二—2为双排径向滑块凸轮式差速器。 差速器的主动件是与差速器壳1连接在一起的套,套上有两排径向孔,滑块2装于孔中并可作径向滑动。滑块两端分别与差速器的从动元件内凸轮4和外凸轮3接触。内、外凸轮分别与左、右半轴用花键连接。当差速器传递动力时,主动套带动滑块并通过滑块带动内、外凸轮旋转,同时允许内、外凸轮转速不等。理论上凸轮形线应是阿基米德螺线,为加工简单起见,可用圆弧曲线代替。

差速器间隙调整

差速器间隙调整 这是要看具体情况而调了!下面告诉你方法!当啮合印记偏向大端时,将从动齿轮向主动齿轮靠近,若侧隙过小将主动齿轮向外移开;当啮合印记偏向小端时,将从动齿轮远离主动齿轮,此时若侧隙过大,将主动齿轮内移近;当啮合印记偏向齿顶时,主动齿轮向从动齿轮移近,若此时间隙过小,则将从动齿轮向外移开;当啮合印记偏向齿根时,主动齿轮向从动齿轮移开,若此时间隙过大,则将从动吃乱向内移近。归纳了一句顺口溜,齿轮移动方向:大进从,根出主;小出从,顶进主;顶进主,小出从;根出主,大进从。图上印泥看就行了,主要就是看从动齿轮与主动齿轮的接触面来调整的,调整不好的话磨损得会很厉害的。轴承调间隙不了,都是靠主动齿轮和从动齿轮来回纵向移动来调整差速器的。这在修车里面也是一项重要的技术哦!呵呵!~~ 首先要先调整好轴承预紧度,就是你所说的轴承间隙。调整到转动灵活,无卡滞现象,无间隙感。主动锥齿轮轴承间隙用两轴承之间的垫片调整,加垫片轴承间隙大,反之间隙减小。从动锥齿轮(盆齿)用调整螺母调整。用印泥是调整齿轮的接触面积是否正确,齿轮间隙是否合适。当啮合印记偏向大端时,将从动齿轮向主动齿轮靠近,若侧隙过小将主动齿轮向外移动当啮合印记偏向小端时,将从动齿轮远离主动齿轮,此时若侧隙过大,将主动齿轮内移近;移动从动齿轮时,当一边的调整螺母退出多少,另一边要相应拧紧多少,以保证轴承的预紧度和间隙保持不变。当啮合印记偏向齿顶时,主动齿轮向从动齿轮移动若此时间隙过小,则将从动齿轮向外移动当啮合印记偏向齿根时,主动齿轮向从动齿轮移动,若此时间隙过大,则将从动齿轮向内移动这个是靠主动锥齿轮和轴承之间的垫片来调整。或减速器壳体和主动锥齿轮壳体之间的垫片调整。 答:差速器轴承属圆锥止推轴承,左右两只轴承止推面相对设置,轴承锥面(即滚棒锥面)朝外,设置在减速器壳上的差速器轴承外套以两侧相对朝向中间与轴承配套,其间隙由轴承座孔上的差速器轴承调整螺母调整。在半浮式后桥壳中设置的差速器,其轴承间隙是以增减轴承止推面垫圈和两段后桥壳装配而调整的。 在主双级式减速器中的差速器,也就是二道减速的减速器里设置的差速器,其轴承间隙调整的方法是:先调整好二道减速的圆柱主动齿轮的圆锥止推轴承,然后将减速器外壳侧盖、垫片等拆掉,将齿轮移位,再将差速器装配,进行轴承间隙调整。差速器轴承间隙调整合格后,再将拆掉的二道减速部件复原装配,这样实际上是进 行部件单体调整,它可以防止两套部件相互影响而造成错觉。如果先调整差速器轴承间隙,后调整二道减速圆柱主动齿轮轴承间隙,必然要将先调整好的轴承拆掉,再调整二道减速主动齿轮轴承,这就造成了二次装配差速器轴承间隙的误差,使轴承间隙不 合适。 半浮式后桥壳差速器轴承间隙的调整仍然按照上述方法,不允许在调整差速器轴

托森差速器的设计说明书(可编辑)

托森差速器的设计说明书(可编辑)本科毕业设计(论文)通过答辩 目录 一 . 托森差速器的简介 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 二 . 托森差速器的工作原理 - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 三 . 蜗轮、蜗杆设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 四 . 蜗杆前、后轴的设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 五 . 空心轴的设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 六 . 直齿圆柱齿轮设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 七 . 蜗轮轴设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 4 八 . 差速器外壳的设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 6 九 . 参考车型相关数据 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 7 十 . 设计心得 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 7

推荐-差速器课程设计说明书 精品

本次设计主要是对安装在驱动桥的两个半轴之间的差速器进行 设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也对整车的参数、结构做了简单的选择计算。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CAD软件对差速器进行作图,也让我在学习方面得到了提高。关键字:差速器半轴设计校核

1.引言 1.1差速器的功用和分类 差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动车轮与地面间作纯滚动运动。 现在差速器的种类趋于多元化,功用趋于完整化。目前汽车上最常用的是对称式锥齿轮差速器,还有各种各样的功能多样的差速器,如:防滑差速器、强制锁止式差速器、高摩擦自锁式差速器、托森差速器、行星圆柱齿轮差速器。 1.2原始数据及设计要求 1.2.1原始数据 1.2.2设计要求 (1)根据已知数据,确定轴数,驱动形式,布置形式,注意国家道路交通法规规定和汽车设计规范。 (2)确定汽车主要参数。 1)主要尺寸,可从参考资料中获取。 2)进行汽车轴荷分配。 (3)选定发动机功率、转速、扭矩,可参考已有车型。

(4)离合器的结构形式选择,主要参数计算。 (5)确定传动系最小传动比,即主减速器传动比。 (6)确定传动系最大传动比,从而计算出变速器最大传动比。 (7)机械式变速器型式选择,主要参数计算,设置合理的档位数,计算出各档的速比。 (8)驱动桥结构型式,根据主减速器的速比,确定采用单级或双级主减速器。 2.总布置设计 2.1轴数确定 因为汽车最大总质量为2100kg,小于19t,所以采用结构简单、制造成本低廉的两轴方案。 2.2驱动形式 因为总质量较小,所以采用结构简单、制造成本低的4×2驱动形式。 2.3布置形式 为充分发挥前置发动机后桥驱动的优势:便于发动机的维修,离合器、变速器操纵机构简单,前、后车桥载荷分配合理,牵引性能比前置前驱型式优越,转向轮是从动轮,转向机构结构简单、便于维修等,选择前置发动机后桥驱动。

汽车差速器设计(1)

1 绪论 1.1 课题国内外研究背景 汽车行业发展初期,汽车差速器作为汽车必不可少的部件之一被汽车专家誉为“小零件大功用”。当汽车转弯行驶时,内、外两侧车轮在同一时间内要移动不同的距离,外轮移动的距离比内轮大。差速器的功用就是把主减速器传过来的动力再传给左、右两个半轴,并且在转弯过程中允许左、右两个半轴以不同转速来旋转。在本世纪六七十年代,当世界经济进入一个高速增长期,但是2008年爆发的全球金融危机又让汽车产业在危机过程中有了发展的机遇。 当前我们国家的重型汽车的差速器产品技术基本上都是来自美国、德国、日本等几个传统的工业强国,目前我国现有技术几乎是在引进国外技术的基础上发展起来的,并且已经具备了一定的规模。然而目前我国的差速器没有自己的核心技术产品,创新能力仍然很弱,影响了整个汽车行业的发展。在差速器的发展上还有很长的路要走。 1.1.1 差速器目前发展态势 当前汽车基本上是在朝着经济性和动力性的方向发展,但是怎样能够使尽可能提高自己产品燃油经济性以及动力性是每个汽车厂家一直在攻克的课题。具体说来,汽车身上的每个零件都在不停地变化。差速器也是一样的。国外有些差速器生产企业的研究水平已经很高。伊顿公司汽车集团是全球化的汽车零部件制造供应商之一,在牵引力控制、安全排放控制、发动机以及变速箱等领域居全球领先地位。当前国内差速器起步算是较晚,所以目前发展最主要是靠引进国外产品来满足自身的需求。 当然了,我们还是要努力抓住市场机遇,在保证现有差速器生产和改进的基础上,还是要充分认识到发展与改革的关系,特别是要认识到创新对发展的巨大推动作用。我们要紧随世界潮流,才能让我们的产品向高技术含量,智能化等方向发展,才能开发出适合我国自身国情,具有自主知识产权的新型的差速器。 当前国内外主要差速器典型结构类型

汽车差速器的设计与分析毕业论文

本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了 差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

1. 引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (4) 1.4毕业设计初始数据的来源与依据 (5) 1.5本章小结 (6) 2. 差速器的设计方案 (7) 2.1差速器的方案选择及结构分析 (7) 2.2差速器的工作原理 (8) 2.3本章小结 (11) 3. 差速器非标准零件的设计 (12) 3.1 对称式行星齿轮的设计计算 (12) 3.1.1对称式差速器齿轮参数的确定 (12) 3.1.2差速器齿轮的几何计算图表 (17) 3.1.3差速器齿轮的强度计算 (19) 3.1.4差速器齿轮材料的选择 (20) 3.1.5差速器齿轮的设计方案 (21) 3.2差速器行星齿轮轴的设计计算 (21) 3.2.1行星齿轮轴的分类及选用 (21)

322行星齿轮轴的尺寸设计 (22) 323行星齿轮轴材料的选择 (22) 3.3差速器垫圈的设计计算 (22) 3.3.1半轴齿轮平垫圈的尺寸设计 (23) 3.3.2行星齿轮球面垫圈的尺寸设计 (23) 3.4本章小结 (24) 4. 差速器标准零件的选用 (25) 4.1螺栓的选用和螺栓的材料 (25) 4.2螺母的选用和螺母的材料 (25) 4.3差速器轴承的选用 (26) 4.4十字轴键的选用 (26) 4.5本章小结 (26) 5. 差速器总成的装配和调整 (27) 5.1差速器总成的装配 (27) 5.2差速器零部件的调整 (27) 5.3本章小结 (27) 附图 (29) 参考文献 (30) 致谢 (32)

最新差速器设计

差速器设计

第四节差速器设计 汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯} 内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷 不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这 样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面 上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过 性和操纵稳定性变坏。为此,在驱动桥的左、右车轮间都装有轮间差速器。在多桥驱动的汽 车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的 附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。差速器 按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 一、差速器结构形式选择 (一)对称锥齿轮式差速器

汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应 用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。 1.普通锥齿轮式差速器 由于普通锥齿轮式差速器结构简单、工作平 稳可靠,所以广泛应用于一般使用条件的汽车驱 动桥中。图5-19为其示意图,图中0w 为差速 器壳的角速度;1w 、2w 分别为左、右两半轴的 角速度;0T 为差速器壳接受的转矩;r T 为差速 器的内摩擦力矩;1T 、2T 分别为左、右两半轴 对差速器的反转矩。 根据运动分析可得 0212w w w =+ (5-23) 显然,当一侧半轴不转时,另一侧半轴将以 图5—19 普通锥齿轮式差速器示意图 两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。

相关主题
文本预览
相关文档 最新文档