当前位置:文档之家› R410A制冷剂

R410A制冷剂

R410A制冷剂
R410A制冷剂

R410A制冷剂

R410A:是一种新型环保制冷剂,不破坏臭氧层,工作压力为普通R22空调的1.6倍左右,制冷(暖)效率更高。提高空调性能,不破坏臭氧层。R410A新冷媒由两种准共沸的混合物而成,主要有氢,氟和碳元素组成(表示为hfc),具有稳定,无毒,性能优越等特点。同时由于不含氯元素,故不会与臭氧发生反应,既不会破坏臭氧层。另外,采用新冷媒的空调在性能方面也会又一定的提高。R410A是目前为止国际公认的用来替代R22最合适的的冷媒,并在欧美,日本等国家得到普及。

目录

1简介

2主要用途

3特点

4用油参考

5存储与运输

6包装

1简介

R-410A制冷剂

R-410A制冷剂,别名R410A,商品名称有SUVA 410A、SUVA 9100、Genetron AZ-20、Genetron 410A、Puron410A等。由于R-410A属于HFC型近共沸环保制冷剂(完全不含破坏臭氧层的CFC、HCFC),得到世界绝大多数国家的认可并推荐的主流中高温环保制冷剂,广泛用于新冷冻设备上的初装和维修过程中的再添加。符合美国环保组织EPA、SNAP和UL的标准,符合美国采暖、制冷空调工程师协会(ASHRAE)的A1安全等级类别(这是最高的级别,对人身体无害)。

2主要用途

R-410A作为当今广泛使用的中高温制冷剂,主要应用于家用空调、中小型商用

空调(中小型单元式空调、户式中央空调、多联机)、移动空调、除湿机、冷冻式干燥器、船用制冷设备、工业制冷等制冷设备。

R410A制冷剂是新装制冷设备上替代氟利昂R22的最佳和最终选择(通常为空调系统);但是由于R410A与R22压力不同(R410A压力比R22要高得多)以及压缩机用油等均不相同,因此对于初装为R22制冷剂的制冷设备的售后维修,如果需要再添加或更换制冷剂,仍然只能添加R22,通常不能直接以R410A来替代R22(也就是说通常不可以进行换血式的替换;但是对于初装使用R410A的制冷设备,维修或替换时可以以R22直接替换R410A)。

3特点

R410A替换在主要国际市场的全球趋势及展望的使用状况和进入国际市场的动

态物理性质资料R410A,是一种混合制冷剂,它是由R32(二氟甲烷)和R125(五氟乙烷)组成的混合物,其优点在于可以根据具体的使用要求,对各种性质,如易燃性、容量、排气温度和效能加以考虑,量身合成一种制冷剂。R410A外观无色,不浑浊,易挥发,沸点-51.6℃,凝固点-155℃;其主要特点有:

(1)不破坏臭氧层。其分子式中不含氯元素,故其臭氧层破坏潜能值(ODP)为0。全球变暖潜能值(GWP)小于0.2。

(2)毒性极低。容许浓度和R22同样,都是1000ppm。

(3)不可燃。空气中的可燃极性为0。

(4)化学和热稳定性高

(5)水分溶解性与R22几乎相同。

(6)是混合制冷剂,由两种制冷剂组成

(7)不与矿物油或烷基苯油相溶。(与POE[酯润滑油]、PVE[醚润滑油]相溶)分子量72.58

沸点,℃-51.6

冰点℃-

临界温度,℃72.5

临界压力,Mpa 4.95

饱和液体密度30℃,(g/cm3) 1.038

液体比热30℃,[KJ/(Kg·℃)] 1.78

等压蒸气比热(Cp),30℃及101.3kPa[KJ/(Kg·℃)]0.85

破坏臭氧潜能值(ODP)0.000

全球变暖系数值(GWP)-

临界密度,g/cm3 0.500

沸点下蒸发潜能,KJ/Kg 256.7

纯度%≥99.5

水份,PPm≤0.001

酸度,PPm≤0.0001

蒸发残留物,PPm≤0.01

外观不浑浊

气味-

R410A制冷剂是一款由HFC类物质组成的混配制冷剂,不含任何破坏臭氧层的物质,其ODP值为零。与R22相比,R410A的制冷量显著提高,因此为设计更小更紧凑的空调设备提供了可能。并且由于R410A具有近共沸的物性,在整个运行范围内,制冷剂温度滑移小于0.2℃,R410A在制冷空调系统中不会发生显著的分离,即不会由于泄漏而改变制冷剂的成分,因此在售后维修再补充过程中,无需排放掉系统中剩余的制冷剂。R410A是世界公认的家用空调R22制冷剂的中长期替代品。

4用油参考

通常与制冷剂R410A配用的冷冻机油有:EMKARATE RL68H、RL170H、ICEMATIC SW68、SW220等;在不同设备、不同应用场所最终使用何种冷冻油,应遵照冷冻压缩机和制冷(空调)设备厂商的建议、或根据该制冷压缩机、制冷设备使用的具体情

况来确定使用同等设计和技术员要求的冷冻机润滑油,即选用对等的冷冻机油。绝大多数压缩机生产商建议使用多元醇酯POE(Polyol Ester)冷冻机油。

5存储与运输

制冷剂R410A钢瓶为带压容器,储存时应远离火种、热源、避免阳光直接曝晒,通常储放于阴凉、干燥和通风的仓库内;搬运时应轻装、轻卸,防止钢瓶以及阀门等附件破损。

6包装

包装:净重11.35kg/瓶(Net Weight 25lb);850kg/瓶(要回收包装钢瓶)。表 1 提供了R-407C(Genetron 407C)和R-410A(Genetron AZ-20)的主要物化性质

物理性质单位R-407C R-410A R-22

分子量g/mol 86.2 72.58 86.47

25℃下的蒸气压力Kpa.abs

Psia

1174.1

170.29

1652.9

239.73

1043.1

151.40

沸点(1atm)℃

-43.56

-46.40

-51.53

-60.76

-40.80

-41.40

临界温度℃

86.74

188.13

72.13

161.83

96.24

205.24

临界压力Kpa.abs

Psia

4619.10

669.95

4926.10

714.5

4980.71

722.39

临界密度kg/m

1b/ft

527.30

32.92

488.90

30.52

524.21

32.73

25℃下的液体密度kg/m

1b/ft

1134.0

70.80

1062.4

66.32

1194.68

74.53

25℃下饱和气体密度kg/m

1b/ft

41.98

2.62

65.92

4.12

44.21

2.76

表 2 列出了R-407C、R-410A、R-22的理论循环性能

制冷剂R-22 R-407C R-410A 制冷容量 1.00 1.00 1.45

有效系数 6.43 6.27 6.07

压缩比(率) 2.66 2.83 2.62

压缩机释放温度℃(℉)77.3(171.2) 75.1(167.1) (166.37) 压缩机释放压力 kpa (Psia)1662(241.0) 1763(255.6)

温度滑移0(0) 4.9(8.9) 0(0)

注:温度如下——冷凝器:43.3℃,蒸发器:7.2℃,低温冷却:2.8℃,过热:8.3℃。

R410A制冷剂特性+及安装维修

R410A制冷剂特性及安装维修作为最传统的空调器用制冷剂—R22由于存在对臭氧层的破坏作用,将根据蒙特利尔条约在我们的地球上逐渐被其它的制冷剂所替换。 目前R22替代的制冷剂比较理想的有R407C(HFC32、HFC125、HFC134)和R410A(HFC32、HFC125)两种。 比较而言,R407C冷媒为三种非共沸点混合制冷剂,其热力学性质与单一冷媒相比在蒸发冷凝时有约6度的温度梯度,给热交换器的设计带来困难;同时由于它的成分组成比不同,为我们的日常维修、制冷剂的加注填注带来一定困难;另外,它的压力虽与R22相同,但系统性能却又大大降低。相比之下,R410A冷媒虽然也是两种冷媒混合而成的非共沸点混合制冷剂,但有它具有单一制冷剂的近似共沸点,在我们的日常维修和制冷剂的携带、加注时使用起来比R407C简单、方便,而且它比R407C的物理性能和化学稳定性要好的多,就目前来说是最好的替代制冷剂冷媒 R-22 R-407C R-410A 分子式 CHCLF2 CH2F2/CHF2CF3/CF3CH2F CH2F2/CHF2CF3 分子量 86.5 86.2 72.6 沸点(℃) -40.8 -43.7 -52.7 临界温度(℃) 96 87.3 72.5 临界压力(kPa) 4974 4816 4949.6 临界密度(kg/m3) 512.82 515.78 500.0 液体密度(kg/m3) 1208 1171 1107 气体密度(kg/m3) 38.28 37.68 53.84 液体比热(kj/kg·K) 1.212 1.483 1.637 气体比热(kj/kg·K) 0.7604 0.9328 1.027 潜热(kj/kg) 233.7 249.73 256.68 液体导热系数(W/m·K ) 0.08725 0.09214 0.1025 气体导热系数(W/m·K ) 0.01122 0.01280 0.01266 液体粘度(μpoise) 1808 1696 1314 气体粘度(μpoise) 126.5 123.5 128.8 ODP 0.05 0 0 GWP 0.37 0.38 0.46 R22 R407C R410A 压缩机专用压机、POE\PVE油专用压缩机、 POE\PVE油 冷凝器设计压力2.94MPa 设计压力3.3MPa 设计压力4.15MPa 蒸发器 节流装置毛细管内径大毛细管内径大 四通阀专用专用 截止阀专用专用 铜管确认耐压,和壁厚,1.1倍确认耐压,和壁厚,1.6倍 干燥过滤器分子筛XH-9 分子筛XH-10或XH-11C 分子筛XH-10或XH-11C 高分子材料 CR合成橡胶 HNBR合成橡胶 HNBR合成橡胶 两器加工水分残留少,POE挥发油水分残留少,POE挥发油 焊接工艺无氯离子助焊剂无氯离子助焊剂 检漏专业设备专业设备 冷媒充注方式液态充入、压力变更液态充入、压力变更 蒸发压力(0℃) 498KPa(绝对压力) 499KPa(绝对压力) 804KPa(绝对压力) 冷凝压力(50℃) 1943KPa(绝对压力) 2112KPa(绝对压力) 3061KPa(绝对压力) 冷媒充注设备专业设备专业设备

常用制冷剂R22、134a、R404A、R407C、R410A的特性(技术分享)

常用制冷剂R22、134a、R404A、R407C、R410A的特性(技 术分享) 常用制冷剂R22、134a、R404A、R407C、R410A 的特性 1. R22R22是一种中温制冷剂,它的标准沸点为-40.8°C; 水在R22中的溶解度很小,与矿物油互相溶解; R22不燃烧,也不爆炸,毒性很小; R22参透能力很强,并且泄漏难以发现.R22的ODP和GWP比R12小的多,属于HCFC类物质,对臭氧层仍有破坏作用.由于R12已逐步禁用,R22正作为某些CFC制冷剂的过渡替代物在使用。 2. 134a R134a是一种新型制冷剂,它的标准沸点为-26.5°C; R134a 安全性好、无色、无味、不燃烧、不爆炸、基本无毒性、化学性质稳定; R134a气化潜热大、比定压热容大、具有较好制冷能力;饱和气体积大,相同排气量压缩机的制冷剂的质量流量小;热导率较高、热传导性能好;粘度低、流动性好;对臭氧层没有破坏作用、温室效应比R22小。R134a对金属的腐蚀作用比较小,稳定性好,也不溶于水,但R134a不溶于矿物油,需用POE或PAG润滑油。R134a属HFC类制冷剂,按当前的国际协议可长期使用。值得指出的是R134a的GWP(全球变暖潜能值)为1600,仍比较头。注:环境性能及指标解释。ODP表示制冷剂消耗大气层臭氧分子潜能的程度。GWP表示制冷剂对气候变暖影响的潜能指标值。

TEWI总体温室效应值,它由两项构成:a 直接使用制冷剂产 生的温室效应;b制冷机使用期内电厂发电产生的间接温室效应。 3. 混合制冷剂常用的混合制冷剂有R404A、 R407C、R410A等。其物理性质均不可燃,属HFC类制冷剂,压缩机须充注聚酯类(POE)润滑油。R404A是由R125、R134a和R143a三种工质按44%、52%和52%和4%的质量分数混合而成,可作为R22和R502的替代工质。美国杜邦公司和英国ICI公司产品的商品名分别为SUV A-HP62、FX-70。R404A的标准压力下泡点温度为-46.6°C,相变温度滑移较小,约为0.8°C,气化潜热为143.48KJ/(Kg.K),液体的比热容为1.64KJ/(Kg.K),气体的比定压热容为1.03KJ/(Kg.K)。该制冷剂的ODP为0,GWP为4540。R407C是由R32、R125和R134a三种工质按23%、25%和52%的质量分数混合而成。标准压力下泡点温度为-43.8°C,相变温度滑移为7.2°C。该制冷剂的ODP为0, GWP为1980。美国杜邦公司和英国ICI 公司产品的商品名分别为SUV A9000和KLEA66。R407C的热力性质与R22最为相似,两者的工作压力范围,制冷量都十分相近。原有R22机器设备改用R407C后,需要更换润滑油、调整制冷剂的充注量及节流元件。R407C机器的制冷量和能效比比R22机器稍有下降。R407C的缺点可能是温度滑移较大,在发生泄漏、部分室内机不工作的多联系统,以及使用满液式蒸发器的场合时,混合物的配比就可能发生变化而达不

制冷剂 基础知识(DOC)

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。 3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。 (3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁

R22a、R407c R410a三种冷媒使用综合性能分析

R22a、R407c R410a三种冷媒使用综合性能分析

制冷剂R22与R134a的应用比较 (时间:2008-4-9 9:00:23 共有933人次浏览) 摘要:目前全社会越来越重视环保问题,部分地区政府相关职能部门也发出了全面禁氟的政策法令,但禁氟不仅是错误的概念,也导致了广大用户和生产厂家的应用困惑。本文从氟利昂概念、国际公约、国家政策、应用特性入手对常用制冷剂R22和R134a做全面分析,以明确制冷剂R22的优势地位。 关键词:制冷剂R22 R134a 禁氟环保冷媒 一、氟利昂的概念 目前,国内很多用户都要求生产厂家采用R134a等环保冷媒,拒绝使用氟里昂R22冷媒,理由是响应国家号召保护环境。其实R22和R134a都是氟利昂家族的成员,属于氢氯氟烃类。氟里昂是饱和烃类(碳氢化合物)的卤族衍生物的总称。从氟里昂的定义可以看出,现在人们所谓的环保冷媒R134a、R410A及R407C等其实都属于氟里昂家族。所以禁氟这一概念把该禁不该禁的内容混为一谈。 氟里昂之所以能够破坏臭氧层是因为制冷剂中含有CL元素,而且随着CL原子数量的增加对臭氧层破坏能力也增加,随着H元素含量的增加对臭氧层破坏能力降低;造成温室效应主要是因为制冷剂在缓慢氧化分解过程中,生成大量的温室气体,如CO2等。根据分子结构的不同,氟里昂制冷剂大致可以分为以下三大类: 1.氯氟烃类:简称CFC,主要包括R11、R12、R113、R114、R115、R500、R502等,由于其对臭氧层的破坏作用最大,被《蒙特利尔议定书》列为一类受控物质。此类物质目前已被我国逐步禁止使用。 2.氢氯氟烃:简称HCFC,主要包括R22、R123、R141b、R142b等,臭氧层破坏系数仅仅是R11的百分之几,因此,《中国消耗臭氧层物质逐步淘汰国家方案》将HCFC类物质视为CFC类物质的最重要的过渡性替代物质。 3.氢氟烃类:简称HFC,主要包括R134a,R125,R32,R407C,R410A、R152等,臭氧层破坏系数为0,但是气候变暖潜能值较高。 我国目前所使用的所有制冷剂(包括环保冷媒)全部都是氟里昂制品,理想的非氟里昂制冷剂到目

空调常用制冷剂的特性

空调常用制冷剂的特性 目前我们所使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到 0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力

适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12 的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度

进行计算。 1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果

R32与R410A制冷剂特性对比

Daily News 技术公告 机型: 发件人:黄成才 日期: 2011-4-26 注:相对充注量与容积制冷量均以R410A为相对值1。 发行:深圳麦克维尔空调有限公司—市场部 Engineered for flexibility and performance.TM 主题:R32制冷剂与R410A制冷剂特性简介 风冷管道机(MCC、MDB) 针对当前业内应用较多的替代制冷剂R410A以及被国内学者关注的R32制冷剂的循环特性进行理论上的对比分析及实验研究,结果初步表明: 1、 1、 热物性热物性热物性:R32充注量可减少,仅为R410A的0.71倍,R32系统工作压力较R410A高,但最大升高不超过 2.6%,与R410A系统的承压要求相当,同事R32系统排气温度较R410A最大升高达35.3℃,现有压缩机需重新设计; 2、 2、 环保特性环保特性环保特性::ODP值均为0,但R32的GWP值适中,与R22相比CO2减排比例可达77.6%,而R410A仅为2.5%,在CO2减排方面明显优于R410A; 3、 3、 安全性安全性安全性::R32与R410A均无毒,而R32可燃,但在R22的几种替代物R32、R290、R161、R1234yf中,R32的燃烧下限LFL最高,最不易燃烧,相对安全; 4、 4、 循环性能循环性能循环性能::在理论循环性能方面,R32系统制冷量较R410A提高12.6%,功耗增加8.1%,综合节能4.3%,实验结果也表明采用了R32的制冷系统较R410A能效比略有增高。 综合考虑,R32具有较大替代R410A的潜力。下表是三种制冷剂的部分特性对比: 标准沸点℃摩尔质量g/mol 安全等级GWP值容积制冷量 相对充注量临界压力MPa 临界温度℃R22 低0.05工作压力ODP值1700A1,无毒难燃86.47-40.8964.9741.190.71 R410A R32中高002100675A1,无毒难燃A2,无毒可燃72.5852。02-51.4-51.770.578.11.41 1 4.81 5.7810.71

常用制冷剂种类及特性教案资料

常用制冷剂种类及特 性 常用制冷剂种类及特性 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热 量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、 R12 R113 R114 R115 R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC四氯化碳(CCL4和甲基 氯仿(C2H3CL3生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上 物质,发展中国家可推迟到2010年。另外对过渡性物质HCF(提出了2020年后的控制日程表。

HCFC中的R123和R134a是R12和R22的替代品 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使 其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力PC应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这 样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩 机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

制冷剂R134a的特点及正确使用

制冷剂R134a的特点及正确使用长期以来含氯氟利昂R 12(CCL2F2)一直是汽车空调的唯一制冷剂,近年来科学家们发现,R 12的氯会破坏地球上空15km-25km 内的臭氧层,从而使更多的太阳能光紫外线能辐射到地球危害到人体健康,因此,国际社会于1987年9月在加拿大缔结了蒙特利尔协议书,明确规定了禁用R 12的期限为2000年,但近年来由于臭氧层的破坏不断加剧,国际社会把R 12R 的完全禁用日期提前到了1995年,发展中国家则可推迟10年。 我国于1992年发文规定:各汽车厂从1996年起在汽车空调中逐步用新制冷剂R 134a替代R 12,在2000年生产的新车上不准再用R 12。因此,汽车使手人员和维修人员必须了解和熟悉新制冷剂R134a的特点,以便能够熟练、正确地使用。 一、制冷剂R 134a的主要特点 ①.R 134a不含氯原子,对大气臭氧层不起破坏作用; ②.R 134a具有良好的安全性能(不易燃,不爆炸,无毒,无剌激性无腐性); ③.R 134a的传热性能比较接近,所以制冷系统的改型比较容易。 ④.R 134a的传热性能比R 12好,因此制冷剂的用量可大大减少。 二、 R 134a与R12制冷系统的主要区别

①.存放R 134a的容器为浅蓝色,而存放R 12的容器为白色。 ②.R 134a制冷系统连接软管是用橡胶和尼龙特制的,并且在其处部有汽车工程学会的印记(S.A.E.#J2196);而 R12制冷系统连接软管常用一般橡胶管。 ③.R 134a制冷系统连接管有颜色标记(低压管是蓝色带黑色条纹,高压管是红色带黑色条纹,普通管是黄色带黑色条纹)而R 12制冷系统连接管则无标记。 ④.R 134a制冷剂入口处使用的是快速接头,而R 12制冷系统估用的是螺纹接口。 ⑤.R 134a制冷系统连接软管与仪表的接头具有1/2in英寸螺纹,且高压口的接头比低压口的大;而R12制冷系统连接软管与仪表的接头具有7/16in螺纹。 ⑥.与R12制冷系统相比R134a制冷系统具有较高的压力和温度,需要较大的冷却风扇。 三、 R134a的使用及维修注意事项。 A).用于R 134a的仪器,设备和量具等不能与用R 12的互换,因若在R 134a中混有R12会使压缩面损坏,并且也可能使用仪器和调备损坏。 B).R 134a与R 12制冷剂的冷冻机油不能混用,因为R 134a 与R 12制冷系统的冷冻机油不相容。R12制冷系统一般用国产的18号、25号冷冻机油或日本产的SUNISO3GS、SUNISO4GS、SUNISO5GS

R22、R410a冷媒充注

R22、R410a冷媒充注冷媒的特性 冷媒R-22R-407C R-410A 分子式CHCLF2CH2F2/CHF2CF3/CF3CH2F CH2F2/CHF2CF3 分子量86.586.272.6 沸点(℃)-40.8-43.7-52.7 临界温度(℃)9687.372.5 497448164949.6 临界压力 (kPa) 512.82515.78500.0 临界密度 (kg/m3) 120811711107 液体密度 (kg/m3) 38.2837.6853.84 气体密度 (kg/m3) 1.212 1.483 1.637 液体比热 (kj/kg·K) 0.76040.9328 1.027 气体比热 (kj/kg·K) 潜热(kj/kg)233.7249.73256.68 0.087250.092140.1025 液体导热系数 (W/m·K ) 气体导热系数 0.011220.012800.01266 (W/m·K ) 液体粘度(μ 180816961314 poise) 气体粘度(μ 126.5123.5128.8 poise)

ODP0.0500 GWP0.370.380.46 表中R410A蒸发潜热和蒸汽密度较大,压缩机单位排气体积的能力大,为避免系统设计点的偏离导致的效率低下,需要缩小压缩机的排气体积,更改压缩机汽缸。 在P-h图上,R410A冷媒的运转冷凝压力约为R22的1.5倍,设计时需要考虑相关构成部品的耐压性。(均为标准工况下)。 注意事项 空调停电12小时以上: 启动空调时,必须先使曲轴箱加热器得电预热,预热时间以系统充注冷媒量每公斤冷媒不少于1小时,目的是将曲轴箱内冷冻油中混有的液体冷媒蒸发,避免压缩机吸入液体冷媒,引起液压缩。 充注操作工具及连接 压力表(组合表阀) 数字温度表 钳形电流表 重量计 冷媒R-22 操作工具连接 压力表的连接与排空

常用制冷剂简介

常用制冷剂简介 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿(C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 热力学的要求 1 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 2 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 3 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 4 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 5 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 制冷剂分子式分子量u 正常蒸发温度ts(℃) 凝固点tf(℃) 临界温度tkp(℃) 临界压力PKP绝对压力绝热指数K 水(R718) H2O 18.02 +100 ±0 +374.1 225.6 1.33 氨(R717) NH3 17.03 -33.4 -77.7 +132.4 115.2 1.31 R11 CFCL3 137.39 +23.7 -111 +198 44.6 1.17 R12 CF2CL2 120.92 -29.8 -155 +111.5 40.86 1.15 R13 CF3CL 104.47 -81.5 -180 +28.8 39.4 -

制冷剂到底对环境有何影响

制冷剂到底对环境有何影响 摘要:论述了当前使用的制冷剂以及其存在的问题,指出现行制冷剂对臭氧层的破坏作用及引起的温室效应,将严重影响了环境的可持续发展。总结了当前制冷剂的替代工作及取得的成果。在论述可持续发展概念的基础上分析了制冷剂的替代研究与环境的可持续发展的关系,得出了是环境的可持续发展的要求推动了制冷剂的替代研究工作,并为替代研究指明了方向,同时制冷剂的替代进一步促进了环境的可持续发展。总结了在环境可持续发展要求下的制冷剂的发展趋势。 1引言 目前制冷空调行业中使用的制冷剂多为CFC(氯氟烃的统称)和HCFC(含氢氯氟烃)。这些物质由于对臭氧层具有破坏作用并产生温室效应,因此其替代研究已成为热点课题[1]。本文在回顾制冷剂发展的历史中,发现制冷剂的替代发展有两条主线。一条是提高系统的能效比,另一条就是可持续发展的环境观。随着人们环保意识的增强,可持续发展的观点越来越深入人心。因此作者认为,在当前的制冷剂替代研究中,应首先考虑对环境的可持续发展。 2当前的制冷剂与制冷剂的替代 2.1 当前的制冷剂及其存在的问题 制冷剂的发展经历了三个阶段[1]: 第一阶段,从1830年到1930年,主要采用NH3、CO2、H2O等作为制冷剂,它们有的有毒,有的可燃,有的效率低,用了约100年的时间。 第二阶段,从1930年到1990年,主要采用CFCs和HCFCs制冷剂,使用了约60年。 第三阶段,从1990年至今,进入了以HFCs(含氟烃)为主的时期。 由于行业发展的惯性,目前使用较多的制冷剂是CFCs和HCFCs,其次是HFCs。(对于CFCs 发达国家已于1996年1月1日起禁止生产和使用,但一些发展中国家仍然在使用。)CFCs的禁用是因为CFCs会在大气中分裂并释放出破坏臭氧层的氯原子[2]。据UNEP(联合国环境规划署)提供的资料,如果平流层的臭氧总量减少1%,预计到达地面的有害紫外线将增加2%。有害紫外线的增加,会产生以下一些危害[3]: 使皮肤癌和白内障患者增加,损坏人的免疫力,使传染病的发病率增加。 破坏生态系统。过量的紫外线辐射会使植物的生长和光合作用受到抑制,使农作物减产。紫外线辐射也可能导致某些生物物种的突变。 引起新的环境问题。过量的紫外线能使塑料等高分子材料更加容易老化和分解,结果又带来光化学大气污染。 因此保护臭氧已经引起了各国的高度重视,成为一项全球性的紧迫任务[4]。 而HCFCs与CFCs同样能够破坏臭氧,两者只不过是所含的氯原子多少不同而已。同时CFCs、HCFCs和新一代HFCs制冷剂都被认为是温室气体[5],它们对全球气候变暖影响的大小,取决于它们吸收红外能量的能力和它们在大气中延续的时间,可用GWP(全球变暖潜值)来度量它们对全球变

常见制冷剂热力性质表

附录: 附表1:R12饱和液体及蒸汽热力性质表 附表2:R13饱和液体及蒸汽热力性质表 附表3:R22饱和液体及蒸汽热力性质表 附表4:R134a饱和液体及蒸汽热力性质表 附表5:R152a饱和液体及蒸汽热力性质表 附表6:R600a饱和液体及蒸汽热力性质表 附表7:R407c饱和液体及蒸汽热力性质表 附表8:R123饱和液体及蒸汽热力性质表 附表9:R410a饱和液体及蒸汽热力性质表

附表1:R12饱和液体及蒸汽热力性质表 R12饱和液体及蒸汽热力性质表 温度绝对压力密度密度比焓比焓比熵比熵t pρ′ρ″h′h″s′s″℃MPa kg/m3kg/m3kJ/kg kJ/kg kJ/kg·K kJ/kg·K -1000.00118851679.10.099959113.32306.090.60771 1.721 -990.00130441676.50.10908114.14306.540.61242 1.7172 -980.00142981673.90.1189114.96306.980.61711 1.7135 -970.00156531671.30.12945115.78307.430.62178 1.7098 -960.00171171668.60.14077116.6307.880.62642 1.7062 -950.001869616660.15291117.42308.320.63105 1.7026 -940.00203971663.40.16592118.24308.770.63564 1.6992 -930.00222281660.70.17983119.06309.230.64022 1.6958 -920.00241971658.10.19471119.88309.680.64477 1.6925 -910.00263111655.50.21059120.71310.130.6493 1.6892 -900.0028581652.80.22754121.53310.590.65381 1.6861 -890.00310131650.20.24561122.36311.040.6583 1.6829 -880.00336171647.50.26485123.18311.50.66277 1.6799 -870.00364041644.90.28532124.01311.960.66722 1.6769 -860.00393831642.20.30708124.83312.410.67164 1.6739 -850.00425651639.60.33019125.66312.870.67605 1.6711 -840.00459591636.90.35471126.49313.340.68044 1.6683 -830.00495781634.30.38072127.32313.80.68481 1.6655 -820.00534321631.60.40827128.15314.260.68916 1.6628 -810.005753416290.43743128.98314.720.69349 1.6602 -800.00618961626.30.46827129.81315.190.6978 1.6576 -790.00665291623.60.50087130.64315.650.7021 1.655 -780.007144916210.53531131.47316.120.70637 1.6525 -770.00766671618.30.57164132.31316.580.71063 1.6501 -760.00821981615.60.60996133.14317.050.71487 1.6477 -750.00880561612.90.65034133.98317.520.7191 1.6454 -740.00942561610.30.69286134.81317.990.7233 1.6431 -730.010*******.60.73761135.65318.460.72749 1.6409 -720.010*******.90.78466136.49318.930.73167 1.6387 -710.0115061602.20.83411137.33319.40.73583 1.6365 -700.0122781599.50.88605138.17319.870.73997 1.6344 -690.0130921596.80.94056139.01320.340.74409 1.6323 -680.013951594.10.99774139.85320.820.7482 1.6303 -670.0148541591.4 1.0577140.69321.290.7523 1.6283 -660.0158051588.7 1.1205141.54321.760.75638 1.6264

空调维修项目理论试题库(基础知识)

空调竞赛基础知识复习题 一、判断题 1.汽车空调制冷剂回收/净化/加注机可由经过相关专业培训但无上岗证书的维修人员进行操作。() 2.不应使用CFC-12、HFC-134a等制冷剂对制冷装置进行开放性清洗。()3.因被污染或其他原因不能确定其成分且不能净化利用的制冷剂,应排放到大气中。() 4.卤素检漏仪是行业标准推荐的制冷剂检漏仪之一。() 5.制冷剂中破坏臭氧层的成分是氯。() 6.防冻液中的乙二醇是没有毒性的。() 7.在R12制冷剂附近进行焊接作业会引起毒气的形成。() 8.作业时,维修人员应配备必要的安全防护设施,如防护手套和防护眼镜等,避免接触或吸入制冷剂和冷冻机油的蒸气及气雾。() 9.含有甲烷的制冷剂可以用于汽车空调系统。() 10.汽车空调的取暖系统有两大类,分别是余热式和独立式。()11.压缩机输出端连接高压管路、冷凝器、贮液干燥器和液体管路,并构成高压侧。() 12.汽车空调压缩机主要采用蒸气容积式压缩机。() 13.汽车空调的三个重要指标分别是温度、湿度和空气清洁度。()14.蒸发器的作用是将经过节流元件节流升压后的制冷剂在蒸发器内沸腾汽化。 () 15.鼓风机的作用是加速蒸发器周围的空气流动,将冷气吹入车内,达到降温的目的。() 16.在制冷工程中,表明制冷剂状态参数的压力是指绝对压力。()17.制冷剂蒸发时的潜热越大,需要的制冷剂循环量就越大。() 18.制冷剂有较高的稳定性,对金属、橡胶和润滑油无明显腐蚀。()19.制冷剂从气体变成等温液体时放出的热叫做液化潜热。() 20.视液镜位于制冷系统的低压管路上。() 21.从汽车空调节流元件流出的制冷剂为低压气态。()

R410A与R134A制冷剂性能对比

R410A与R134A物理特性对比 一、R410A与R134A的物理特性对比: R410A: 其中R410A是R32和R125按照1:1的比例混合而成的HFC类非共沸制冷剂。其温度滑移为0.2℃,具有其沸制冷剂的优点,所以其系统温度控制准确,对系统稳定运行具有良好效果。 其次其臭氧衰减系数为0,温室指数较高,对臭氧环境无破坏作用,是一种环保冷媒。标准沸点为-52.7℃,而R134A的标准沸点温度仅为-26.1,所以R410A相对R134A最大的优点是低温制热能力突出,

在-30℃工况下也具有良好的换热能力。另外R410A的汽化潜热比R134A高近25%,所以其单位质量制冷量,制热量,R410A远高于R134A。 二:R410A与R134A制冷相对R22的对比: R134a的容量比R22小,压力比R22低。由于这些特点,相同能力的R134a空调需要配置一台更大排气量的压缩机,更大的蒸发器、冷凝器和管路。最终所导致的是,制造和运行一个和R22相同冷量的系统,R134a系统会需要更高的成本。 与R22系统相比,R410A系统有个显著的热传递优势—蒸发器的热传递高35%,冷凝器高5%。而R134a和R407C的系统热传递系数均低于R22。同等质量流量下,R410A的压降较小,使其可以使用比R22或其他制冷剂更小管路和阀门。这将为制造R410A系统降低更多的材料成本更有可能并且在长配管家用机和多联机系统中更有优势。

另外r134a的比容是r22的1.47倍,且蒸发潜热小,因此就同排气体积的压缩机而言,r134a机组的冷冻能力仅为r22机组的60%。r134a的热传导率比r22下降10%,因此换热器的换热面积增大。 因此综上所述,通过R410A与R134A的对比及分别与R22的对比,可得知: 在相同P数能力下,使用R134A作制冷剂的机组,其制冷能力较R410A的机组能力低30%以上。

制冷剂的分类

常用制冷剂种类及特性 新闻来源: 空调技术网2005-6-14 11:13:12作者: 未知责任编辑: LOG 说明 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿 (C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 制冷剂的要求氨(R717)的特性 制冷剂的分类氟哩昂的特性 制冷剂的要求 热力学的要求 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。

21世纪制冷空调行业绿色环保制冷剂的趋势与展望

21世纪制冷空调行业绿色环保制冷剂的趋势与展望 摘要:介绍了第20届国际制冷大会和地球技术论坛中有关制冷剂替代物的简况,讨论了保护臭氧层和全球气候变化对制冷空调行业所使用的制冷剂提出的要求与国际社会所采取的相应对策,以及国际社会共同关注的问题,综述了21世纪绿色环保制冷发展趋势。 关键字:臭氧层全球气候变化制冷剂替代物 臭氧层的破坏和全球气候变化,是当前世界所面临的主要环境问题。由于制冷空调热泵行业广泛采用CFC与HCFC类物质对臭氧层有破坏作用以及产生温室效就,使全世界的这一行业面临严重的挑战。CFC与H CFC的替代已成为当前国际性的热门话题。 1 最近两次国际会议简介 国际制冷学会于1999年9月19~24日在澳大利亚悉尼召开的"第20届国际制冷大会"和联合国环境规划署、美国环保局于1999年9月25~27日在美国华盛顿召开"地球技术讼坛",分别着重讨论了全球性环保问题对制冷空调行业的制冷剂替代物对策等问题,现简介如下。 国际制冷学会从1908年创建以来举行的19次国际制冷大会,每次都是对国际制冷空调界具有重大影响盛会。1999年举行的第20届国际制冷大会,又恰逢即将来临的21世纪,因此大会的主题确定为"进入第3个千禧年的制冷界",近千名来自世界各国的学者、专家和企业代表与会,共商21世纪制冷空调行业的发展趋势和面临的挑战与机遇。我国由中国制冷学会组团共有26位代表参会,发表了多篇论文。 此次大会的内容广泛、全面,其中涉及制冷剂替代方面的,有大会报告2篇,题目分别为《制冷与环境--未来的问题与对策》和《作为制冷剂的HFCs应用》;有专题报告6篇,分别为《制冷空调的制冷剂替代》、《碳氢化合物制冷剂的综述》、《下个世纪的热泵系统》、《新制冷剂的材料相容性和油溶性》、《新制冷剂传热物性》和《新制冷剂强化管内传热》;还举办了2次讨论班,主题分别为制冷剂热力学物性和碳氢化合物安全性;交流学术论文有46篇,涉及CFC与HCFC的替代(包括替代、改型、汽车空调和混合物)、制冷剂/油(包括热物性、粘度、溶解性)、CO2超临界循环(包括系统、性能、应用和设备)碳氢化合物(应用、成本、性能)。其中,笔者在会上作了题为《THR03--一种新的HCFC-22替代物》的学术报告,获得分组会议主席和与会代表的好评,认为是 "一篇很有意义的论文"。 在美国举行的"

相关主题
文本预览
相关文档 最新文档