当前位置:文档之家› 数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)

数字信号处理实验 matlab版 快速傅里叶变换(FFT)
数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)

(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)

XXXX 学号姓名处XXXX

一、实验目的

1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。

2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。

3、了解MA TLAB 有关双线性变换法的子函数。

二、实验内容

1、双线性变换法的基本知识

2、用双线性变换法设计IIR 数字低通滤波器

3、用双线性变换法设计IIR 数字高通滤波器

4、用双线性变换法设计IIR 数字带通滤波器

三、实验环境

MA TLAB7.0

四、实验原理

1、实验涉及的MATLAB 子函数

(1)fft

功能:一维快速傅里叶变换(FFT)。 调用格式:

)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x

每一列的FFT 。当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。

),(n x fft y =;采用n 点FFT 。当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n

点数据;当x 的长度大于n 时,fft 函数会截断序列x 。当x 为矩阵时,fft 函数按类似的方式处理列长度。

(2)ifft

功能:一维快速傅里叶逆变换(IFFT)。 调用格式:

)

(x ifft y =;用于计算矢量x 的IFFT 。当x 为矩阵时,计算所得的y 为矩阵x 中每一

列的IFFT 。

)

,(n x ifft y =;采用n 点IFFT 。当length(x)n 时,

将x 截断,使length(x)=n 。

(3)fftshift

功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。 调用格式:

)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。当x 为向

量时,)(x fftshift 直接将x 中的左右两半交换而产生y 。

当x 为矩阵时,)(x fftshift 同时将x 的左右、上下进行交换而产生y 。

2、用MATLAB 提供的子函数进行快速傅里叶变换

从理论学习可知,DFT 是唯一在时域和频域均为离散序列的变换方法,它适用于有限长序列。尽管这种变换方法是可以用于数值计算的,但如果只是简单的按照定义进行数据处理,当序列长度很大时,则将占用很大的内存空间,运算时间将很长。

快速傅里叶变换是用于DFT 运算的高效运算方法的统称,FFT 只是其中的一种。FFT 主要有时域抽取算法和频域抽取算法,基本思想是将一个长度为N 的序列分解成多个短序列,如基2算法、基4算法等,大大缩短了运算的时间。

MA TLAB 中提供了进行快速傅里叶变换(FFT)的子函数,用fft 计算DFT ,用ifft 计算IDFT 。

例14-1 已知一个长度为8点的时域离散信号,n1=0,n2=7,在n0=4前为0,n0以后为1。对其进行FFT 变换,作时域信号及DFT 、IDFT 的图形。

解 MA TLAB 程序如下:

>> n1=0;n2=7;n0=4;

>> n=n1:n2;

>> N=length(n);

>> xn=[(n-n0)>=0];%建立时域信号 >> subplot(2,2,1); >> Stem(n,xn); >> title('x(n)');

>> k=0:N-1;

>> Xk=fft(xn,N);%用FFT 计算信号的DFT >> subplot(2,1,2); >> Stem(k,abs(Xk));

>> title('Xk=DFT((n))');

>> xn1=ifft(Xk,N);%用IFFT 计算信号的IDFT

>> subplot(2,2,2);stem(n,xn1); >> title('x(n)=IDFT(Xk)');

运行结果如图14-1所示。

05

1000.51

x(n)

01234567

2

4

X k=DFT((n))

0510

0.5

1

x(n)=IDFT(X k)

图14-1 例14-1用FFT 求有限长序列的傅里叶变换

例14-2 将例13-5已知的两个时域周期序列分别取主值,得到x1=[1,1,1,0,0,0],x2=[0,1,2,3,0,0],求时域循环卷积y(n)并用图形表示。

解 本例将例13-5使用DFT 处理的计算,改为用FFT 和IFFT 进行循环卷积。

程序如下:

>> xn1=[0,1,2,3,0,0]; %建立x1(n)序列

>> xn2=[1,1,1,0,0,0]; %建立x2(n)序列

>> N=length(xn1);

>> n=0:N-1;k=0:N-1;

>> Xk1=fft(xn1,N);%由x1(n)的FFT 求X1(k) >> Xk2=fft(xn2,N);%由x2(n)的FFT 求X2(k) >> Yk=Xk1.*Xk2;%Y(k)=X1(k)X2(k)

>> yn=ifft(Yk,N);%由Y(k)的IFFT 求y(n)

>> yn=abs(yn); >> stem(n,yn);

运行结果如图所示,与例13-5用DFT 计算的结果一致。

012345

2

4

6

3、用FFT 计算有限长序列的频谱

(1)基本概念

一个序号从n1到n2的时域有限长序列x(n),它的频谱X(ejw)定义为它的离散傅里叶变换,且在奈奎斯特(Nyquist)频率范围内有界并连续。序列的长度为N ,则N =n2-n1+1。计算x(n)的离散傅里叶变换(DFT)得到的是X(ejw)的N 个样本点X(ejwk)。其中数字频率为

kd ω

)N

π2k(

ωk ==

式中:dw 为数字频率的分辨率;k 取对应-(N -1)/2到(N -1)/2区间的整数。

在实际使用中,往往要求计算出信号以模拟频率为横坐标的频谱,此时对应的模拟频率为

kD

)L

π2k(

)NT π2k(

/T ωΩs

s k k ====

式中:D 为模拟频率的分辨率或频率间隔;Ts 为采样信号的周期,Ts =1/Fs ;定义信号时域长度L =NTs 。

在使用FFT 进行DFT 的高效运算时,一般不直接用n 从n1到n2的x(n),而是取 的主值区间(n =0,1,…,N -1)的数据,经FFT 将产生N 个数据,定位在k =0,1,…,N -1的数字频率点上,即对应[0,2p ]。如果要显示[-p ,p ]范围的频谱,则可以使用fftshift(X)进行位移。

(2)频谱的显示及分辨率问题

例14-3 已知有限长序列x(n)=[1,2,3,2,1],其采样频率Fs =10 Hz 。请使用FFT 计算其频谱。

解 MA TLAB 程序如下:

>> Fs=10;

>> xn=[1,2,3,2,1];N=length(xn);

>> D=2*pi*Fs/N; %计算模拟频率分辨率 >> k=floor(-(N-1)/2:(N-1)/2);

%频率显示范围对应[-p,p ]

>> X=fftshift(fft(xn,N)); %作FFT 运算且移位p >> subplot(1,2,1);plot(k*D,abs(X),'o:'); %横轴化成模拟频率作幅度谱 >> title('幅度频谱');xlabel('rad/s');

>> subplot(1,2,2);plot(k*D,angle(X),'o:'); %横轴化成模拟频率作相位谱

>> title('相位频谱');xlabel('rad/s'); 程序运行结果:

absX =

0.3820 2.6180 9.0000 2.6180 0.3820

angleX =

-1.2566 2.5133 0 -2.5133 1.2566

运行结果如图14-2所示。

-50

050

05

10

幅度频谱

rad/s

-50

050

-4-2

02

4相位频谱

rad/s

图14-2 例14-3有限长序列的频谱

由图14-2可知,当有限长序列的长度N =5时,频谱的频率样本点数也为5,如图上用“。”表示的点位。频率点之间的间距非常大,即分辨率很低。即使使用了plot 命令的插值功能,显示出的曲线仍是断断续续的,与真实曲线有较大的误差。

改变分辨率的基本方法是给输入序列补零,即增加频谱的密度。注意,这种方法只是改善了图形的视在分辨率,并不增加频谱的细节信息。

将上述有限长序列x(n)=[1,2,3,2,1]末尾补0到N =1000点,将程序改为:

>> Fs=10;N=1000;

>> xn=[1,2,3,2,1];Nx=length(xn); >> xn=[1,2,3,2,1,zeros(1,N-Nx-1)];

>> D=2*pi*Fs/N; %计算模拟频率分辨率

>> k=floor(-(N-1)/2:(N-1)/2); %频率显示范围对应 [-p,p] >> X=fftshift(fft(xn,N)); %作FFT 运算且移位p >> subplot(1,2,1);plot(k*D,abs(X)); %横轴化成模拟频率作幅度谱 >> title('幅度频谱');xlabel('rad/s'); >> subplot(1,2,2);plot(k*D,angle(X)); %横轴化成模拟频率作相位谱

>> title('相位频谱');xlabel('rad/s');

此时程序执行的结果如图14-3所示。由图可以看出,图形的分辨率提高,曲线几乎是连续的频谱了。

-50

050

0246

8

10幅度频谱

rad/s

-50050

-4-20

2

4相位频谱

rad/s

图14-3 将例14-2有限长序列末尾补0到N =1000时的频谱

(3)实偶序列如何补0

例14-4 已知一个矩形窗函数序列为

??

??

?>≤=5n 05n 1

x(n)

采样周期Ts =0.5 s ,要求用FFT 求其频谱。

解 由于该序列是一个实的偶序列,因而补0时需要仔细分析。假定按N =32补0,则主值区域在n =0~31,FFT 的输入应为

5)]ones(1,11),-N zeros(1,,6),[ones(1=Xn

即原来n=[-5:-1]的前五个点移到n =[27:31]中去了。

下面考虑分别用N =32,64,512,观察不同N 值代入对频谱的影响。

程序如下,

>> Ts=0.5;C=[32,64,512]; %输入不同的N 值

>> for r=0:2; >> N=C(r+1);

>> xn=[ones(1,6),zeros(1,N-11),ones(1,5)]; %建立x(n)

>> D=2*pi/(N*Ts);

>> k=floor(-(N-1)/2:(N-1)/2);

>> X=fftshift(fft(xn,N));

>> subplot(3,2,2*r+1);plot(k*D,abs(X)); %幅度频谱 >> subplot(3,2,2*r+2);stairs(k*D,angle(X));

%相位频谱

>> end

注意:此处相位频谱使用了stairs ,因为该相位频谱变化率比较陡峭。

程序执行结果如图14-4所示。

-10-50510010

20-10-50510

02

4-10-50510010

20-10-50510

02

4-10

-50510010

20-10

-50510

-50

5图14-4 将例14-4有限长序列补0到N =32、64、512时的频谱

如果将x(n)的输入写成

xn=[ones(1,11),zeros(1,N-11)];%建立x(n -5)

相当于起点不是取自n =0而是n =-5,计算的是x(n -5)的频谱。幅度频谱不受影响,相位频谱引入一个线性相位-5w ,如图14-5所示。

-10

-5051005

10

15

-10

-50510

-4-2

2

4图14-5 将有限长位移序列x(n -5)补0到N =512时的频谱

4、用FFT 计算无限长序列的频谱

用FFT 进行无限长序列的频谱计算,首先要将无限长序列截断成一个有限长序列。序列长度的取值对频谱有较大的影响,带来的问题是引起频谱的泄漏和波动。

例14-5 已知一个无限长序列为

????

?<≥=-0n 0

0n e

x(n)n 0.5

采样频率Fs =20 Hz ,要求用FFT 求其频谱。

解 MA TLAB 程序如下:

>> Fs=20;C=[8,16,128]; %输入不同的N 值

>> for r=0:2;

>> N=C(r+1); >> n=0:N-1;

>> xn=exp(-0.5*n);%建立x(n) >> D=2*pi*Fs/N;

>> k=floor(-(N-1)/2:(N-1)/2); >> X=fftshift(fft(xn,N));

>> subplot(3,2,2*r+1);plot(k*D,abs(X)); >> axis([-80,80,0,3]);

>> subplot(3,2,2*r+2);stairs(k*D,angle(X)); >> axis([-80,80,-1,1]); >> end

运行结果如图14-6所示。

-50

50

012

3-50

50

-10

1-50

50

012

3-50

50

-10

1-50

50

12

3-50

50

-1

1

图14-6 将无限长序列截断为N =8,16,128时的频谱

由图14-6可见,N 值取得越大,即序列保留得越长,曲线精度越高。

例14-6 用FFT 计算下列连续时间信号的频谱,并观察选择不同的Ts 和N 值对频谱特性的影响。

xa(t)=e -0.01t(sin2t +sin2.1t +sin2.2t) t ≥0

解 该题选择了三个非常接近的正弦信号,为了将各频率成分区分出来,在满足奈奎斯特定理的条件下确定采样周期,选择三组数据,分别是Ts =0.5 s 、0.25 s 和0.125 s ;再确定N 值,分别选择N =256和2048。观察不同Ts 和N 的组合对频谱的影响。

程序如下:

>> T0=[0.5,0.25,0.125,0.125]; %输入不同的Ts 值 >> N0=[256,256,256,2048];%输入不同的N 值 >> for r=1:4;

>> Ts=T0(r);N=N0(r);%赋Ts 和N 值 >> n=0:N-1;

>> D=2*pi/(Ts*N);%计算模拟频率分辨率

>> xa=exp(-0.01*n*Ts).*(sin(2*n*Ts)+sin(2.1*n*Ts)+sin(2.2*n*Ts));

>> k=floor(-(N-1)/2:(N-1)/2);

>> Xa=Ts*fftshift(fft(xa,N));

>> [r,Xa(1)]%输出Xa(1)的数值,供误差计算用 >> subplot(2,2,r);plot(k*D,abs(Xa),'k');

>> axis([1,3,1.1*min(abs(Xa)),1.1*max(abs(Xa))]); >> end

运行结果如图14-7所示。

1

2

3

102030

401

2

3

5101520

251

2

3

510

151

2

3

102030

40

图14-7 用FFT 计算三个很靠近的谐波分量的频谱图

由图14-7可以得出以下结论:

N 同样取256(如前三个图形),当Ts 越大时,时域信号的长度L =NTs 保留得越长,则分辨率越高,频谱特性误差越小;反之,则分辨率越低,频谱特性误差越大,甚至丢失某些信号分量。

Ts 相同(如后两个图形),当N 越大时,在[0,2p ]范围内等间隔抽样点数越多,且时域信号的长度L =NTs 保留得越长,则分辨率越高,频谱特性误差越小;反之,当N 越小时,在[0,2p ]范围内等间隔抽样点数越少,则有可能漏掉某些重要的信号分量,称为栅栏效应。

五、实验过程

1 已知有限长序列x(n)=[1,0.5,0,0.5,1,1,0.5,0],要求: (1)用FFT 算法求该时域序列的DFT 、IDFT 的图形;

(2)假定采样频率Fs =20 Hz ,序列长度N 分别取8、32和64,使用FFT 来计算其幅度频谱和相位频谱。

解 MA TLAB 程序如下:

>> xn=[1,0.5,0,0.5,1,1,0.5,0]; >> N=length(xn); >> n=0:N-1;k=0:N-1;

>> Xk=fft(xn,N);

>> subplot(2,1,1);stem(k,abs(Xk)); >> title('Xk=DFT(x(n))'); >> xn1=ifft(Xk,N);

>> subplot(2,1,2);stem(n,xn1); >> title('x(n)=IDFT(Xk)');

运行结果如图1所示。

图1

>> Fs=20;C=[8,32,64];

>> for r=0:2;

>> N=C(r+1);

>> xn=[1,0.5,0,0.5,1,1,0.5,0]; >> D=2*pi*Fs/N;

>> k=floor(-(N-1)/2:(N-1)/2); >> X=fftshift(fft(xn,N));

>> subplot(3,2,2*r+1);plot(k*D,abs(X)); >> title('幅度频谱');xlabel('rad/s'); >> subplot(3,2,2*r+2);stairs(k*D,angle(X)); >> title('相位频谱');xlabel('rad/s');

>> end

运行结果如图2所示。

1

2

3

4567

024

6X k=DFT(x(n))

01234567

0.5

1

x(n)=IDFT(X k)

-100

-50

50

05

幅度频谱rad/s -100

-50

050

-505相位频谱

rad/s -100

-50

05010005

幅度频谱

rad/s -100

-50

050100

-505相位频谱

rad/s -100

-50

050

10005

幅度频谱

rad/s

-100

-50

050100

-505相位频谱

rad/s

图2

2 已知一个无限长序列x(n)=0.5n(n ≥0),采样周期Ts =0.2 s ,要求序列长度N 分别取8、32和64,用FFT 求其频谱。

解 MA TLAB 程序如下:

>> Ts=0.2;C=[8,32,64]; >> for r=0:2; >> N=C(r+1); >> n=0:N-1;

>> xn=exp(0.5*n); >> D=2*pi/(N*Ts);

>> k=floor(-(N-1)/2:(N-1)/2); >> X=fftshift(fft(xn,N));

>> subplot(3,2,2*r+1);plot(k*D,abs(X)); >> title('幅度频谱');xlabel('rad/s'); >> subplot(3,2,2*r+2);stairs(k*D,angle(X)); >> title('相位频谱');xlabel('rad/s');

>> end

运行结果如图3所示。

-20-10

01020050

100幅度频谱

rad/s -20

-10

01020

-50

5相位频谱

rad/s -20-10

01020

01

2x 10

7

幅度频谱

rad/s -20

-10

01020

-50

5相位频谱

rad/s -20

-10

0102001

2x 10

14

幅度频谱

rad/s

-20

-10

01020

-50

5相位频谱

rad/s

图3

六、实验感想

通过此次实验中练习使用matlab 语言进行快速傅里叶变换,更为熟悉的掌握了matlab 的功能,在实验过程中也遇到很多小问题,并通过仔细检查和查阅相关书籍解决此类问题,让我深刻认识到,细节的重要性。在使用help 过程中,深切体会到良好的英语基础和充实

的课堂知识的重要性。

按频率抽取基2-快速傅里叶逆变换算法_MATLAB代码

function x=MyIFFT_FB(y) %MyIFFT_TB:My Inverse Fast Fourier Transform Time Based %按频率抽取基2-傅里叶逆变换算法 %input: % y -- 傅里叶正变换结果,1*N的向量 %output: % x -- 逆变换结果,1*N的向量 %参考文献: % https://www.doczj.com/doc/7615418251.html,/view/fea1e985b9d528ea81c779ee.html N=length(y); x=conj(y); %求共轭 x=MyFFT_FB(x);%求FFT x=conj(x);%求共轭 x=x./N;%除以N end %% 内嵌函数====================================================== function y=MyFFT_FB(x,n) %MYFFT_TB:My Fast Fourier Transform Frequency Based %按频率抽取基2-fft算法 %input: % x -- 输入的一维样本 % n -- 变换长度,缺省时n=length(x) 当n小于x数据长度时,x数据被截断到第n个数据% 当n大于时,x数据在尾部补0直到x 含n个数据 %output: % y -- 1*n的向量,快速傅里叶变换结果 %variable define: % N -- 一维数据x的长度 % xtem -- 临时储存x数据用 % m,M -- 对N进行分解N=2^m*M,M为不能被2整除的整数 % two_m -- 2^m % adr -- 变址,1*N的向量 % l -- 当前蝶形运算的级数 % W -- 长为N/2的向量,记录W(0,N),W(1,N),...W(N/2-1,N) % d -- 蝶形运算两点间距离 % t -- 第l级蝶形运算含有的奇偶数组的个数 % mul -- 标量,乘数 % ind1,ind2 -- 标量,下标 % tem -- 标量,用于临时储存 %参考文献: % https://www.doczj.com/doc/7615418251.html,/view/fea1e985b9d528ea81c779ee.html %% 输入参数个数检查

快速傅里叶变更fft的Matlab实现 实验报告

一、实验目的 1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2熟悉并掌握按时间抽取FFT算法的程序; 3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。 二、实验内容 1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序; 用MATLAB语言编写的FFT源程序如下: %% 输入数据f、N、T及是否补零 clc; clear; f=input('输入信号频率f:'); N=input('输入采样点数N:'); T=input('输入采样间隔T:'); C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0 if(C==0) t=0:T:(N-1)*T; x=sin(2*pi*f*t); b=0; e lse b=input('输入补零的个数:'); while(log2(N+b)~=fix(log2(N+b))) b=input('输入错误,请重新输入补零的个数:'); end t=0:T:(N+b-1)*T; x=sin(2*pi*f*t).*(t<=(N-1)*T); end %% fft算法的实现 A=bitrevorder(x); % 将序列按二进制倒序 N=N+b; M=log2(N); % M为蝶形算法的层数 W=exp(-j*2*pi/N); for L=1:1:M %第L层蝶形算法 B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔 K=N/(2^L); % K为每层蝶形算法中独立模块的个数 for k=0:1:K-1 for J=0:1:B-1

Matlab傅里叶变换傅里叶逆变换-FFT-IFFT

Matlab傅里叶变换傅里叶逆变换 %% 信号经过傅里叶变换然后进行傅里叶逆变换后信号的变化 clear all;clc; %------Author&Date------ %Author: %Date: 2013/07/31 %========================================================================== Fs=8e3; %采样率 t=0:1/Fs:1; %采样点 len=length(t); %采样长度 f1=10; %频率1 f2=100; %频率2 f3=1000; %频率3 A1=1; %幅度1 A2=0.8; %幅度2 A3=0.3; %幅度3 MaxS=A1+A2+A3; %信号幅度的最大值 signal=A1*sin(2*pi*f1*t)+A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t); X=fft(signal,len); %傅里叶变换 magX=abs(X); %信号的幅度 angX=angle(X); %信号的相位 Y=magX.*exp(1i*angX); %信号的频域表示 y=ifft(Y,len); %信号进行傅里叶逆变换 y=real(y); er=signal-y; %原始信号和还原信号的误差 subplot(311);plot(t,signal);axis([0 1 -MaxS MaxS]);xlabel('时间');ylabel('振幅');title('原始信号'); subplot(312);plot(t,y);axis([0 1 -MaxS MaxS]);xlabel('时间');ylabel('振幅');title('还原信号'); subplot(313);plot(t,er);xlabel('时间');ylabel('振幅');title('误差'); % End Script

傅里叶变换matlab代码

%傅里叶变换 clc;clear all;close all; tic Fs=128;%采样频率,频谱图的最大频率 T=1/Fs;%采样时间,原始信号的时间间隔 L=256;%原始信号的长度,即原始离散信号的点数 t=(0:L-1)*T;%原始信号的时间取值范围 x=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180)+3*cos(2*pi*30*t-90*pi/ 180); z=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180); z1=6*cos(2*pi*30*t-90*pi/180); z1(1:L/2)=0; z=z+z1; y=x;%+randn(size(t)); figure; plot(t,y) title('含噪信号') xlabel('时间(s)') hold on plot(t,z,'r--') N=2^nextpow2(L);%N为使2^N>=L的最小幂 Y=fft(y,N)/N*2; Z=fft(z,N)/N*2;%快速傅里叶变换之后每个点的幅值是直流信号以外的原始信号幅值的N/2倍(是直流信号的N倍) f=Fs/N*(0:N-1);%频谱图的频率取值范围 A=abs(Y);%幅值 A1=abs(Z); B=A; %让很小的数置零. B1=A1; A(A<10^-10)=0; % A1(A1<10^-10)=0; P=angle(Y).*A./B; P1=angle(Z).*A1./B1; P=unwrap(P,pi);%初相位值,以除去了振幅为零时的相位值 P1=unwrap(P1,pi); figure subplot(211) plot(f(1:N/2),A(1:N/2))%函数ffs返回值的数据结构具有对称性,因此只取前一半 hold on plot(f(1:N/2),A1(1:N/2),'r--') title('幅值频谱')

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

FFT超全快速傅里叶

快速傅里叶变换 FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 现在圈圈就根据实际经验来说说FFT结果的具体物理意义。一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示 采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高

MATLAB数字图像处理几何变换傅里叶变换

Matlab数字图像处理实验指导 实验目的: 通过实验,深入理解和掌握图像处理的基本技术,提高动手实践能力。 实验环境: Matlab变成 实验一图像的几何变换 实验内容:设计一个程序,能够实现图像的各种几何变换。 实验要求:读入图像,打开图像,实现图像的平移变换、比例缩放、转置变换、镜像变换、旋转变换等操作。 实验原理: 图像几何变换又称为图像空间变换,它将一幅图像中的坐标位置映射到另一幅图像中的新坐标位置。学习几何变换的关键就是要确定这种空间映射关系,以及映射过程中的变化参数。 几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排。一个几何变换需要两部分运算:首先是空间变换所需的运算,如平移、镜像和旋转等,需要用它来表示输出图像与输入图像之间的(像素)映射关系;此外,还需要使用灰度插值算法,因为按照这种变换关系进行计算,输出图像的像素可能被映射到输入图像的非整数坐标上。 设原图像f(x0,y0)经过几何变换产生的目标图像为g(x1,y1),则该空间变换(映射)关系可表示为: x1=s(x0,y0) y1=t(x0,y0) 其中,s(x0,y0)和t(x0,y0)为由f(x0,y0)到g(x1,y1)的坐标换变换函数。 一、图像平移 图像平移就是将图像中所有的点按照指定的平移量水平或者垂直移动。

二、图像镜像 镜像变换又分为水平镜像和垂直镜像。水平镜像即将图像左半部分和右半部分以图像竖直中轴线为中心轴进行对换;而竖直镜像则是将图像上半部分和下半部分以图像水平中轴线为中心轴进行对换。 三、图像转置 图像转置是将图像像素的x坐标和y坐标呼唤。图像的大小会随之改变——高度和宽度将呼唤。

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

MATLAB实验二傅里叶分析及应用

实验二傅里叶分析及应用 、实验目的 (一)掌握使用Matlab 进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab 分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab 分析周期信号的频谱特性 二)掌握使用Matlab 求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab 求连续时间信号的傅里叶变换 2、学会运用Matlab 求连续时间信号的频谱图 3、学会运用Matlab 分析连续时间信号的傅里叶变换的性质 三)掌握使用Matlab 完成信号抽样并验证抽样定理 1、学会运用MATLAB 完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB 改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB 对抽样后的信号进行重建 、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab 符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code: ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t- 1))+(2-t)*(heaviside( t-1)-heaviside(t- 2))' ); fw = simplify(fourier(ft)); subplot(2, 1, 1); ezplot(abs(fw)); grid on; title( 'amp spectrum' ); phi = atan(imag(fw) / real(fw)); subplot(2, 1, 2); ezplot(phi); grid on ; title( 'phase spectrum' ); 符号运算法 Code: dt = 0.01; t = -2: dt: 2; ft (t+2).*(uCT(t+2)- uCT(t+1))+(u CT(t+1)-uCT(t- 1))+(2-t).*(uCT (t-1)- uCT(t-2)); N = 2000; k = -N: N; w = pi * k / (N*dt); fw = dt*ft*exp(-i*t'*w); fw = abs(fw); plot(w, fw), grid on; axis([-2*pi 2*pi -1 3.5]); 数值运算法

快速傅里叶变换(FFT)课程设计

快速傅里叶变换(FFT)的DSP 实现 (马灿明 计算机学院 计算机应用技术 2110605410) 摘要:本文对快速傅里叶变换(FFT)原理进行简单介绍后,然后介绍FFT 在TMS320C55xx 定 点DSP 上的实现,FFT 算法采用C 语言和汇编混合编程来实现,算法程序利用了CCS 对其结果进行了仿真。 关键字:FFT ,DSP ,比特反转 1.引言 傅里叶变换是将信号从时域变换到频域的一种变换形式,是信号处理领域中一种重要的分析工具。离散傅里叶变换(DFT )是连续傅里叶变换在离散系统中的表现形式。由于DFT 的计算量很大,因此在很长一段时间内使其应用受到很大的限制。 20世纪60年代由Cooley 和Tukey 提出了快速傅里叶变换(FFT )算法,它是快速计算DFT 的一种高效方法,可以明显地降低运算量,大大地提高DFT 的运算速度,从而使DFT 在实际中得到了广泛的应用,已成为数字信号处理最为重要的工具之一。 DSP 芯片的出现使FFT 的实现变得更加方便。由于多数的DSP 芯片都能在单指令周期内完成乘法—累加运算,而且还提供了专门的FFT 指令(如实现FFT 算法所必需的比特反转等),使得FFT 算法在DSP 芯片上实现的速度更快。本节首先简要介绍FFT 算法的基本原理,然后介绍FFT 算法的DSP 实现。 2.FFT 算法的简介 快速傅里叶变换(FFT )是一种高效实现离散傅里叶变换(DFT )的快速算法,是数字信号处理中最为重要的工具之一,它在声学,语音,电信和信号处理等领域有着广泛的应用。 2.1离散傅里叶变换DFT 对于长度为N 的有限长序列x(n),它的离散傅里叶变换(DFT )为 1,1,0, )()(1 0-==∑-=N k W n x k X n n nk N (1) 式中, N j N e W /2π-= ,称为旋转因子或蝶形因子。 从DFT 的定义可以看出,在x(n)为复数序列的情况下,对某个k 值,直接按(1) 式计算X(k) 只需要N 次复数乘法和(N-1)次复数加法。因此,对所有N 个k 值,共需要N 2 次复数乘法和N(N-1)次复数加法。对于一些相当大有N 值(如1024点)来说,直接计算它的DFT 所需要的计算量是很大的,因此DFT 运算的应用受到了很大的限制。 2.2快速傅里叶变换FFT 旋转因子W N 有如下的特性。 。对称性: 2/N k N k N W W +-= 。周期性: N k N k N W W += 利用这些特性,既可以使DFT 中有些项合并,减少了乘法积项,又可以将长序列的DFT

用Matlab对信号进行傅里叶变换实例

目录 用Matlab 对信号进行傅里叶变换 (2) Matlab 的傅里叶变换实例 (5) Matlab 方波傅立叶变换画出频谱图 (7)

用 Matlab 对信号进行傅里叶变换 1. 离散序列的傅里叶变换 DTFT(Discrete Time Fourier Transform) 代码: %原离散信号有 8 点 %原信号是 1行 8列的矩阵 %构建原始信号,为指数信号 %频域共-800 +800 的长度(本应是无穷, 高 %求 dtft 变换,采用原始定义的方法,对复指 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号 )'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT 变换 ') 结果: 分析:可见,离散序列的 dtft 变换是周期的,这也符合 Nyquist 采样 定理的描述, 连续时间信号经周期采样之后, 所得的离散信号的频谱 是原连续信号频谱的周期延拓。 2. 离散傅里叶变换 1 N=8; 2 n=[0:1:N-1] 3 xn=0.5.^n; 4 5 w=[-800:1:800]*4*pi/800; 频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); 数分 量求和而得

与 1 中 DTFT 不一样的是, DTFT 的求和区间是整个频域,这对 N=8; % 原离散信号有 8 点 n=[0:1:N-1] %原信号是 1行 8列的矩阵 xn=0.5.^n; %构建原始信号,为指数信号 w=[-8:1:8]*4*pi/8; %频域共 -800 +800 的长度(本应是无穷, 高频分量很少, 故省去) X=xn*exp(-j*(n'*w)); %求 dtft 变换,采用原始定义的方法,对复指数分量求和而得 subplot(311) stem(n,xn); w1=[-4:1:4]*4*pi/4; X1=xn*exp(-j*(n'*w1)); title(' 原始信号 (指数信号 )'); subplot(312); stem(w/pi,abs(X)); title(' 原信号的 16 点 DFT 变换 ') subplot(313) stem(w1/pi,abs(X1)); title(' 原信号的 8 点 DFT 变换 ') 计算机的计算来说是不可以实现的, DFT 就是序列的有限傅里叶变换。 实际上, 1 中代码也只是对频域的 -800 +800 中间的 1601 结果图: 分析: DFT 只是 DTFT 的现实版本,因为 DTFT 要求求和区间无穷, 而 DFT 只在有限点内求和。 3. 快速傅里叶变换 FFT ( Fast Fourier Transform ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

傅里叶变换的应用,matlab程序,C语言程序

1 利用FFT 计算连续时间信号的傅里叶变换 设()x t 是连续时间信号,并假设0t <时()0x t =,则其傅里叶变换由下式给出 0()()i t X x t e dt ωω∞ -=? 令Γ是一个固定的正实数,N 是一个固定的正整数。当,0,1,2,,1k k N ω=Γ=-L 时,利用FFT 算法可计算()X ω。 已知一个固定的时间间隔T ,选择T 足够小,使得每一个T 秒的间隔(1)nT t n T ≤<+内,()x t 的变化很小,则式中积分可近似为 (1)0 ()()()n T iwt nT n X e dt x nT ω∞+-==∑? (1)01[ ]()i t t n T t nT n e x nT i ωω ∞-=+==-=∑ 0 1()i T i nT n e e x nT i ωωω-∞-=-=∑ (27) 假设N 足够大,对于所有n N ≥的整数,幅值()x nT 很小,则式(27)变为 1 01()()i T N i nT n e X e x nT i ωωωω---=-=∑ (28) 当2/k NT ωπ=时,式(28)两边的值为 2/2/12/0211()()[]2/2/i k N i k N N i nk N n k e e X e x nT X k NT i k NT i k NT ππππππ----=--==∑ (29) 其中[]X k 代表抽样信号[]()x n x nT =的N 点DFT 。最后令2/NT πΓ=,则上式变为 2/1()[]0,1,2,,12/i k N e X k X k k N i k NT ππ--Γ==-L (30) 首先用FFT 算法求出[]X k ,然后可用上式求出0,1,2,,1k N =-L 时的()X k Γ。 应该强调的是,式(28)只是一个近似表示,计算得到的()X ω只是一个近似值。通过取更小的抽样间隔T ,或者增加点数N ,可以得到更精确的值。如果B ω>时,幅度谱()X ω很小,对应于奈奎斯特抽样频率2s B ω=,抽样间隔T 选择/B π比较合适。如果已知信号只在时间区间10t t ≤≤内存在,可以通过对1nT t >时的抽样信号[]()x n x nT =补零,使N 足够大。 例1 利用FFT 计算傅里叶变换

实验三 周期信号的傅里叶级数分析及MATLAB实现

实验三周期信号的傅里叶级数分析及MATLAB实现 一、实验目的: 1.利用MATLAB实现周期信号的分解与合成,并图示仿真结果; 2.用MATLAB实现周期信号的频谱,画图观察和分析周期信号的频谱; 3.通过MATLAB对周期信号频谱的仿真,进一步加深对周期信号频谱理论知识的理解。 二、实验内容 9.1(a):程序: display('Please input the value of m(傅里叶级数展开项数)'); m=input('m='); t=-3*pi:0.01:3*pi; n=round(length(t)/4); f=cos(t).*(heaviside(t+2.5*pi)-heaviside(t+1.5*pi)+heaviside(t+0.5*pi)-heaviside(t-0.5 *pi)+heaviside(t-1.5*pi)-heaviside(t-2.5*pi)); y=zeros(m+1,max(size(t))); y(m+1,:)=f'; figure(1); plot(t/pi,y(m+1,:)); grid; axis([-3 3 -1 1.5]); title('半波余弦'); xlabel('单位:pi','Fontsize',8); x=zeros(size(t)); kk='1'; syms tx n T=2*pi; fx=sym('cos(tx)'); Nn=30; An=zeros(m+1,1); Bn=zeros(m+1,1); a0=2*int(fx,tx,-T/4,T/4)/T an=2*int(fx*cos(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T bn=2*int(fx*sin(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T An(1)=double(vpa(a0,Nn)); An(2)=0.5; for k=2:m An(k+1)=double(vpa(subs(an,n,k),Nn)); Bn(k+1)=double(vpa(subs(bn,n,k),Nn));

详解FFT(快速傅里叶变换FFT.

kn N W N N 第四章 快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。 快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。 DFT 的定义式为 N ?1 X (k ) = ∑ x (n )W N R N (k ) n =0 在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。算出全部 N 点 X (k ) 共需 N 2 次复数乘法 和 N ( N ? 1) 次复数加法。即计算量是与 N 2 成正比的。 FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。 W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT 运算: (1) 周期性: ( k + N ) n N = W kn = W ( n + N ) k (2) 对称性:W ( k + N / 2 ) = ?W k N N 利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。例子: 求当 N =4 时,X(2)的值

利用MATLAB编写FFT快速傅里叶变换

一、实验目的 1.利用MATLAB 编写FFT 快速傅里叶变换。 2.比较编写的myfft 程序运算结果与MATLAB 中的FFT 的有无误差。 二、实验条件 PC 机,MATLAB7.0 三、实验原理 1. FFT (快速傅里叶变换)原理: 将一个N 点的计算分解为两个N/2点的计算,每个N/2点的计算再进一步分解为N/4点的计算,以此类推。根据DFT 的定义式,将信号x[n]根据采样号n 分解为偶采样点和奇采样点。设偶采样序列为y[n]=x[2n],奇采样序列为z[n]=x[2n+1]。 上式中的k N W -为旋转因子N k j e /2π-。下式则为y[n]与z[n]的表达式: 2. 蝶形变换的原理: 下图给出了蝶形变换的运算流图,可由两个N/2点的FFT (Y[k]和Z[k]得出N 点FFT X[k])。同理,每个N/2点的FFT 可以由两个N/4点的FFT 求得。按这种方法,该过程可延迟后推到2点的FFT 。 下图为N=8的分解过程。图中最右边的为8个时域采样点的8点FFTX[k],由偶编号采样点的4点FFT 和奇编号采样点的4点得到。这4点偶编号又由偶编号的偶采

样点的2点FFT 和奇编号的偶采样点的2点FFT 产生。相同的4点奇编号也是如此。依次往左都可以用相同的方法算出,最后由偶编号的奇采样点和奇编号的偶采样点的2点FFT 算出。图中没2点FFT 成为蝶形,第一级需要每组一个蝶形的4组,第二级有每组两个蝶形的两组,最后一级需要一组4个蝶形。 四、实验内容 1.定义函数disbutterfly ,程序根据FFT 的定义:]2[][][N n x n x n y + +=、n N W N n x n x n z -+-=])2 [][(][,将序列x 分解为偶采样点y 和奇采样点z 。 function [y,z]=disbutterfly(x) N=length(x); n=0:N/2-1; w=exp(-2*1i*pi/N).^n; x1=x(n+1); x2=x(n+1+N/2); y=x1+x2; z=(x1-x2).*w; 2.定义函数rader ,纠正输出序列的输出顺序。 function y=rader(x,N) n=[0:N-1]; bn=dec2bin(n); rbn=fliplr(bn); rn=bin2dec(rbn); y=x(rn+1); 3.定义函数myfft ,程序中套了两个循环。 function X=myfft(x) N=length(x); h=log2(N); %h=3 for i=1:h %第一次i=1;第二次i=2 s=[]; for j=1:2^(i-1);%i=1时,j=1;i=2时,j=1:2 M=2^(h-i+1);%M:M=8;M=4 xj=x([1:M]+(j-1)*M);%xj=x([1:8]+(1-1)*8)=x(1)+x(2)...+x(8); %j=1:xj=x([1:4]);j=2:xj=x([1:4]+4) [y,z]=disbutterfly(xj); s=[s,y,z]; end x=s;

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MA TLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞ --∞ =? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞ -∞ =? 因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使之符合电脑计算的特征。另外,当把傅里叶变换应用于实验数据的分析和处理时,由于处理的对象具有离散性,因此也需要对傅里叶变换进行离散化处理。而要想将傅里叶变换离散化,首先要对时域上的波形x (t )进行离散化处理。采用一个时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()()x t x t t nT x nT δ=-=的傅里叶变换()X f 进行离散处理。与上述做法类似,采用频域上的δ脉冲序列: δ ( f -n/T 0), n = 0, 1, 2, …, N -1;T 0= NT 为总采样时间 可以实现傅里叶变换()X f 的离散化,如下图示。不难看出,离散后的傅里叶变换其频率间隔(频率轴上离散点的间隔,即频域分辨率) x (t ) δ 脉冲序列 x (t )δ (t -nT ) t t t

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

相关主题
文本预览
相关文档 最新文档