当前位置:文档之家› 烟用丝束新材料——聚乳酸纤维的应用

烟用丝束新材料——聚乳酸纤维的应用

烟用丝束新材料——聚乳酸纤维的应用
烟用丝束新材料——聚乳酸纤维的应用

聚乳酸行业报告

一、行业概述 1.1聚乳酸简介 1.1.2 聚乳酸的基本性质 聚乳酸(PLA)是以微生物的发酵产物L-乳酸为单体聚合成的一类聚合物,有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。 聚乳酸耐水但是不能耐高温。虽然不是水溶性的,但是海洋环境中的微生物也能使之降解成二氧化碳和水。这种塑料类似透明的聚苯乙烯,表现出很好的外观(有光泽和透明度),但它是硬且脆的材料,在大多数实际应用中需要改性(例如用增塑剂来提高其柔韧性)。它可以和许多热塑性塑料一样被加工成纤维、薄膜,热成型或者注塑成型。 1.1.3聚乳酸的应用 经过十多年的研究和产业化发展,聚乳酸塑料在市场上已找到了生存的空间。聚乳酸的原料不仅可以是玉米,其他多种作物都可用于提取乳酸,因此,有人把聚乳酸称为“生物质塑料”。今后,聚乳酸进一步发展还有赖于进一步的技术突破,如新品种酶催化剂的开发成功,这类酶可利用低成本的生物质如谷物秆等而不是谷物本身来生产化工产品。随着聚乳酸生产技术的不断完善,应用领域的不断扩大,未来十年聚乳酸有望在一些应用领域逐渐取代性质相近的石油路线合成树脂如聚酯、聚苯乙烯,甚至聚乙烯和聚丙烯等,具有极大的发展潜力。 进入21世纪以后,多途径开拓原料来源成为石油化工行业实现可持续发展的重要方面,也是石油化工技术进步和竞争力的重要体现。聚乳酸采用可再生原料生产,产品可完全降解,绿色环保,是最具发展潜力的生物降解材料之一。欧美日等发达国家近年来竞相投资开发和推进聚乳酸等生物降解塑料的产业化,其原因并不仅仅在于其可降解和环保,更主要的是聚乳酸可以替代逐渐减少、不可再生的化石原料资源,为石油化工生产开拓新的原料来源。 ①日用品 聚乳酸有良好的可生物降解性,能被酸、碱、生物酶、微生物等降解,这些特性使得它在生活用品领域有广泛的应用。可口可乐公司在盐湖城冬奥会上用了50万只一次性杯子,全部是用聚乳酸塑料制成的,这些杯子只需40天就可在露天环境下消失得无影无踪。2004年,美国CollegeFarm牌糖果开始采用以生物降解聚乳酸树脂生产的包装薄膜,这种薄膜外观和性能与传统糖果包装膜(玻璃纸或双向拉伸聚丙烯膜)相同,具有结晶透明性、极好的扭结保持性、可印刷性和强度,并且阻隔性较高,能更好地保留糖果的香味。特拉华州Monte新鲜产品公司于2004年底开始在其Wild Oats市场采用聚乳酸包装材料;俄亥俄州的Avery Dennison公司也采用聚乳酸薄膜作为自粘性标签底膜;从2004年12月开始,美国Biota矿泉水公司采用聚乳酸材料制饮料瓶。2005年比利时零售商Delhaize

聚乳酸的合成方法

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1 引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2 聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 2.1 聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约1.25g/cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。 聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 2.2 聚乳酸的主要优点 1) 聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原

聚乳酸纤维的结构与性能

聚乳酸纤维的结构与性能 一、概述 聚乳酸纤维是一种可完全生物降解的合成纤维,它可从谷物中取得。其制品废弃后在土壤或海水中经微生物作用可分解为二氧化碳和水,燃烧时,不会散发毒气,不会造成污染。是一种可持续发展的生态纤维。” 1.乳酸纤维的发展概况 聚乳酸纤维的研究历史可追溯到上世纪30年代,其发明报道可追溯到50年代,杜帮公司最早测定了聚乳酸酯的分子量,60年代以后,各国科技工作者对此作了广泛的研究,日本以玉米为原料开发了新型聚乳酸纤维,90年代后期,美国两家大公司联合开发了聚乳酸纤维,它们以玉米为原料,首先建设了生产能力很大的试验工厂,完善了现代化生产高分子聚乳酸的生产工艺,开创了聚乳酸酯的工业化发展阶段。日本钟纺、仓敷公司、香港的福田实业公司、日本的东丽公司和台湾的远纺公司等先后开发研制了聚乳酸纤维。2002年上海华源股份有限公司开始与美国CDP公司合作,成为国内第一家实现工业化开发聚乳酸产品的化纤企业。 二、聚乳酸(P LA)纤维制备 <1> 乳酸的制取 合成聚乳酸的单体是乳酸,乳酸的生产可分为: 1发酵法是采用玉米、小麦、稻谷和木薯等含淀粉农作物为

原料,从原料中提取淀粉,经淀粉酶分解得到葡萄糖等单糖,再加入纯乳酸菌和碳酸钙进行发酵。发酵液用石灰乳中和至微碱性,煮沸杀菌,冷却后过滤,用热水重结晶。再加入50%的硫酸分解出乳酸和硫酸钙沉淀。滤出硫酸钙,滤液在减压下蒸发浓缩,即得到工业用乳酸。 2.石油合成法 由于发酵法原料来源广泛,原料的利用率和转化率较高,大多数生产商采用此法进行生产。 <2> 聚乳酸树脂的制取 乳酸的聚合是PLA 生产的一项核心技术。近年来国内外对乳酸的聚合工艺作了不少研究,目前聚乳酸的制造方法有两种:一种是直接聚合,即在高真空和高温条件下用溶剂去除凝结水,将精制的乳酸直接聚合(缩合)成聚乳酸树脂,可以生产较低分子量的聚合体。此方法工艺流程短,成本低,对环境污染小,但制得的PLA 平均分子量较小,强度低,不能用作塑料和纤维加工,用途不广,不适合大规模工业化生产。 直接聚合示例(见图1)

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

聚乳酸的合成方法

聚乳酸的合成方法文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 2.1聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约1.25g/cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。

聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 2.2聚乳酸的主要优点 1)聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原料聚合而成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利。 2)聚乳酸的物理性能良好,其具有良好的抗拉强度及延展度和热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑等各种加工方法,应用十分广泛。聚乳酸可用于民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。 3)聚乳酸薄膜具有良好的透气性、透氧性及透二氧化碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。

聚乳酸PLA纳米纤维的制备方法

聚乳酸PLA纳米纤维的制备 一、背景 中文别名:聚丙交酯,聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,聚乳酸(PLA)纤维是最具发展前景的“绿色纤维”之一。聚乳酸树脂可由单体乳酸环化二聚合成丙交酯,丙交酯再开环聚合合成,也可由乳酸直接聚合得到。乳酸可由淀粉发酵得到,而淀粉来源广泛,可再生的天然植物如红薯、玉米及其他谷物都可作为它的原料。聚乳酸是一种无毒、无刺激性、强度高、可塑性强,具有良好生物相容性和生物可吸收性的生物高分子材料。 聚乳酸的结构式 聚乳酸纳米纤维是一种新型的人工合成医用高分子,其良好的生物相容性和生物降解性使得聚乳酸在生物医用上获得广泛的应用,例如手术缝合线、组织工程支架、伤口包覆材料等。Dasari 等将聚乳酸-二氯甲烷(DCM)溶液与海泡石-去离子水-乙醇溶液按一定比例混合后进行静电纺丝,制备了直径约为2um的多孔结构纳米纤维[1]。Wan Ju Li等对聚乳酸-聚乙交酯共聚物(PLGA)制备的电纺纤维进行研究,所制得的PLGA电纺纤维孔隙率高,为细胞生长提供了更多的结构空间,是理想的组织工程支架材料[2]。Kim等将聚乳酸与一定比例的PLGA、聚乳酸-聚乙二醇-聚乳酸三嵌段共聚物共混后进行静电纺丝,制备的组织工程支架的降解速率较快(7周后质量下降约65%);共混物的亲水性能提高了约50%[3]。Zong等用无定形的PDLA和半结晶的PLLA 静电纺丝法制备了可生物吸收的无纺布纳米纤维膜,发现溶液浓度和盐的加入对纤维直径影响比较明显[4]。Kataphinan Woraphon等利用静电纺丝在聚乳酸及其共聚物内载入多种药物,制备了比表面积大、载药量高、孔隙率高而利于被遮盖的皮肤表面与大气交换空气和水分的皮肤贴膜和皮肤保护膜[5]。 二、纳米纤维的制备 2.1仪器和试剂 仪器:型静电纺丝装置(SS-2535H);磁力搅拌器;电子天平;扫描电镜。 试剂:聚乳酸(PLA86);二氯甲烷、N,N-二甲基甲酰胺(市售,分析纯) 2.2聚乳酸纳米纤维膜的制备 静电纺丝装置制备纳米纤维膜纺丝液制备,以聚乳酸切片为纺丝溶质,以DCM和DMF(体积比为8∶2)的混合液为纺丝溶剂,配制溶液,室温磁力搅拌6h,分别配制质量分数为10%的PLA纺丝液备用。将配置好的溶液倒入50mL注射器中,连接高压电源的正极,金属接收滚筒连接负极。,调节溶液推进速度为0.1mm/min,调节正电压为12KV,负高压2KV,喷射距离15cm。液滴在静电力作用下在喷针形成Taylor锥形成射流和纤维。纺丝时间为8~10h后制得聚乳酸纤维膜。 三、结构表征 扫描电子显微镜广泛应用于对静电纺纤维表面形貌的观察。在实际的应用中能够有效地反映

聚乳酸纤维PLA

聚乳酸生物分解性纤维(PLA) 谢绍铨 近来,不少刊物报导日本、美国研制生物分解性聚乳酸纤维的消息,今年二月,美国中部Cagill Dow合资公司宣布,要投资三亿美元在偏远的Blair,Nebraska建一座大型年产14万吨的聚乳酸PLA(Polylactic Acid)工厂,预定2001年完成,此一新厂比该公司现有的4千吨小型工厂或日本钟纺(Kanebo)公司的试验工厂大很多。由于聚乳酸具有环保、易分解等一系列的优点,可开发成聚乳酸纤维、不织布和薄膜等产品。 现有的四大项合成纤维,聚酯(PET)、尼龙(Nylon)、亚克力(Acrylics)、聚丙烯(PP)等都是以石油化工产品为基本原料所合成的,其物理、化学性质稳定,但存在着使用后废弃物无法分解的问题,棉、毛、麻、丝等天然纤维又缺乏上述合纤特有的性能。聚乳酸纤维兼具两者纤维的优点,其原料乳酸可以玉米之类的植物中取得,其成品聚乳酸可在一定的温度、PH值和水份的条件下,会被分解成水和二氧化碳。 聚乳酸融点约为175 度C,比PET、Nylon低,与PP相近,具备实用的耐热性,所抽成丝的纤维强度等物性,具有与聚酯纤维一般相近的性能。聚乳酸可以采用融熔纺丝装置抽丝,即先将它以融点以上的温度熔化,由纺嘴中压出,经冷却、固化、牵伸成丝。可先生产POY丝,卷绕之后再在另外设备上加工成成品丝,也可以直接经热牵伸一步完成。若生产短纤维产品,需经卷曲,卷曲数为10-15个/20毫米。乳酸本身有不同的光学异构体,即L体(左旋)和D体(右旋),原料中不同的D和L体含量,可使聚乳酸的融点不同。因此,原料光学异构体的纯化是以生物技术天然方法最关键的技术,也是Cargill专利技术及商标权”NatureWorks”technology的重点。调整聚乳酸纤维表层和芯层的DL体含量比例,使皮比芯层的融点低,利用这般不同的融点,可容易地生产出热粘着型的不织布产品,且产品十分柔软。聚乳酸纤维具有优良的耐气候性。经科学试验,此种纤维具有超强的紫外线(UV)抵抗力,经日晒500小时后,仍然保持90%的强力,而一般聚酯纤维200小时后,强力便降至60%左右。聚乳酸纤维内部结构存在着大量非结晶部分,在水、细菌和氧气存在下,可进行较快的分解。经土壤掩埋试验,经过一年半之后,纤维强度降至60%左右,系因相对粘度对应降低所致。聚乳酸纤维可使之堆肥化,这样更能显出它与传统合成纤维的优势,废弃物堆肥化,回归自然,绿色再生。 除了上述纤维基本性质之外,聚乳酸纤维加工性良好,很容易可以制成超细(microdeniers)纤维;快干、不缩,介于棉与丝之间的性质,适合于制作衣裤等;又耐光线、低燃性,燃烧时低烟、低放热等性质,是有防火概念的家饰品及窗帘等最好的材料。目前美国尖端的纤维业者如Unifi、Fiber Innovation、Parkdale及下游纺织业者如

聚乳酸合成

聚乳酸合成方法研究进展 聚乳酸的合成主要有两条路线:一条是乳酸(1actic acid)直接聚合.另一条是由乳酸预聚生成低分子量物质,其解聚得丙交酯(1actide),丙交酯重结晶后开环聚合(ROP)得到聚乳酸。具体过程如下 图2-1 聚乳酸的两条合成路线 1、直接聚合法[JK] 乳酸同时具有-OH和-COOH,是可直接缩聚的,采用高效脱水剂和催化剂使乳酸或乳酸低聚物分子间脱水缩合成高分子质量聚乳酸: 式1.1 采用直接法合成的聚乳酸,原料乳酸来源充足,大大降低了成本,有利于聚乳酸材料的普及,但该法得到的聚乳酸相对分子质量较低,机械性能较差。 2、丙交酯开环聚合法[L] 开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体-丙交酯。丙交酯经过精制提纯后,由引发剂如辛酸亚锡、氧化锌等许多化合物催化开环得到高分子量的聚合物第一步是乳酸经脱水环化制得丙交酯。 式1.2 第二步是丙交酯经开环聚合制得聚丙交酯由于此方法可通过

式1.3 由于此方法可通过催化剂的种类和浓度使得聚乳酸分子量高达70万到100万【M】,机械强度高,适合作为医用材料。 乳酸直接聚合与乳酸先制成丙交酯后再开环聚合制备聚乳酸相比,工艺简单,成本低廉。但以往的研究表明采用乳酸直接聚合法难以获得具有实用价值的高分子量聚乳酸,但丙交酯开环聚合的高成本限制了聚乳酸的应用。随着化工技术的进步,研究者们对乳酸缩聚制各聚乳酸又重新重视起来。 常有的缩聚方法有:熔融缩聚、溶液缩聚、乳液缩聚和界面缩聚。本实验室采用了熔融缩聚和溶液缩聚制得分子量较高的聚乳酸。 实验部分 实验原料:乳酸(85-90%);二水和氯化亚锡(Sn 2Cl 2 .2H 2 O);三氧化二锑(Sb 2 O 3 ); 甲醇;高纯氮;二丁基氧化锡(SnOEt 2);月桂酸二丁基锡;醋酸锰(Mn(CH 3 COO) 2 ); 五氧化二磷(P 2O 5 );苯;氯仿;甲苯;四氢呋喃 实验仪器:温度计;通气管;三口烧瓶;油浴锅;磁力搅拌器一套;分馏头;冷凝管;尾接管;圆底烧瓶;干燥瓶;真空抽滤机;分析天平; 图2-1 实验装置图

聚乳酸功能材料小论文

生物可降解塑料-聚乳酸 摘要:本文主要阐述了聚乳酸的合成,改性以及其应用 关键词:聚乳酸合成改性应用 一、前言 目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。 二、聚乳酸合成 在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。 聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

聚乳酸与聚乳酸纤维特点及生产应用研究学习资料

聚乳酸与聚乳酸纤维特点及生产应用研究 摘要:聚乳酸(PLA)纤维具有很好的生物降解性和生物相容性,由它织成的织物具有丝绸般的光泽和舒适的肌肤触感,快干且抗皱,因此该纤维具有较广阔的发展前景。由于聚乳酸纤维是一种可完全生物降解的合成纤维,因此是一种可持续发展的生态纤维。 关键词:聚乳酸;聚乳酸纤维;特性 一、聚乳酸与聚乳酸纤维 聚乳酸纤维(简称PLA纤维)是以由谷物、甜菜等天然糖类得到的聚乳酸酯为原料,经溶液纺丝或熔融纺丝制得的聚酯合成纤维.目前,商业化生产的PLA 纤维以玉米淀粉发酵而成的乳酸为原料,经脱水聚合反应制成的聚乳酸酯溶液为纺丝液,再进行纺丝加工而成.聚乳酸纤维兼有天然纤维和合成纤维的特点,吸湿排汗均匀、回弹性好,所制成的成衣穿着舒适,并具有抗皱抗紫外等性能,其制品废弃后,在土壤或水中微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下,又会成为淀粉的起始原料。由于这是一个循环过程,因此可减少纤维工业对石油资源的依赖

性,所以PLA纤维又被称为21世纪的环境循环材料。聚乳酸纤维(PLA)的生产原料乳酸是从玉米淀粉中制得,所以也将这种纤维称为玉米纤维。 二、聚乳酸与聚乳酸纤维的生产 (一)聚乳酸的生产 1.聚乳酸的生产原料 聚乳酸的生产原料是乳酸,即-羟基丙酸、2-羟基丙酸。由于乳酸分子中有一个不对称碳原子,所以具有d-型(右旋光)和L-型(左旋光)两种对映体,等量的L-乳酸和d-乳酸混合而成的dL-乳酸不具旋光性。成纤聚乳酸以L-乳酸为单体。 2.聚乳酸的聚合 聚乳酸的聚合方法有两种,一种是减压在溶剂中由乳酸直接聚合的方法,即:乳酸→预聚体→聚乳酸;另一种方法是常压下以环状二聚乳酸为原料聚合得到,即:乳酸→预聚体→环状二聚体→聚乳酸。 3.聚乳酸的合成 聚乳酸有两种合成方法,即丙交酯(乳酸的环状二聚体)的开环聚合和乳酸的直接聚合。丙交酯开环聚合生产工序为:先将乳酸脱水环化制成丙交酯;再将丙交酯开环聚合制得聚乳酸。其中乳酸的环化和提纯是制备丙交酯的难点和关键,这种方法可制得高分

聚乳酸的合成方法

聚乳酸的合成方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1 引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2 聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。

聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 聚乳酸的主要优点 1) 聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原料聚合而成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利。 2) 聚乳酸的物理性能良好,其具有良好的抗拉强度及延展度和热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑等各种加工方法,应用十分广泛。聚乳酸可用于民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。 3) 聚乳酸薄膜具有良好的透气性、透氧性及透二氧化碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。 4) 当焚化聚乳酸时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性[3-4]。

聚乳酸纤维在改性香烟滤嘴中的性能研究

聚乳酸纤维在改性香烟滤嘴中的性能研究 【摘要】现代科学研究表明,卷烟焦油中存在着微量可能致癌和诱发癌症的物质[1]。烟气焦油由于烟支的不完全燃烧及其裂解反应而产生了成分复杂的物质,如稠环芳烃、苯并芘、酚类等均为致癌物和癌症促进物。因此努力降低卷烟烟气中的焦油已成为卷烟工业的主攻课题[2]。近年来人们对天然生物降解高分子材料的研究越来越重视,由于聚乳酸PLA价廉物美,可生物降解,对人体无毒,具有良好的透气性、芯吸性及弹性,发烟量少、燃烧热低等等这些特点,为PLA被作为可吸食性的滤嘴研究提供了可行性。我们考虑把其应用到改性醋酸纤维过滤嘴的研究中,而目前国内外关于这方面的研究还没有。本论文系统研究了聚乳酸纤维过滤嘴的焦油化实验,验证聚乳酸纤维是否具有吸附焦油的能力。 【关键词】聚乳酸纤维;生物降解;焦油化实验 1 实验部分 1.1 原料与试剂 紫外可见分光光度计(TU-1800spc,北京普析通用仪器有限责任公司);可见分光光度计(VIS-723型,上海精密科学仪器有限公司);扫描电子显微镜(S-3400N,Hitachi)。 1.2 纤维物理化学性能的测定 1.2.1 燃烧性能的测定 参照ZB W 04004.2-89。 1.2.2 纤维吸附焦油的测定 (1)紫外光谱的测定 在200nm~500 nm扫描范围内,以四氯化碳为参比溶液,分别测定未经吸收和经过吸收的聚乳酸纤维滤嘴的紫外光谱。 (2)分光光度法测定焦油 在330 nm~800 nm扫描范围内,分别测定未经吸收和经过吸收的聚乳酸纤维滤嘴的吸光度,找出两者的最大吸收波长,在此波长下,以四氯化碳为参比溶液,分别测定未经吸收和经过吸收的聚乳酸纤维滤嘴的吸光度。

聚乳酸纺丝

聚乳酸的成型加工方法及其应用 摘要:简单介绍了聚乳酸的聚合方法和目前聚合工艺方面的新发展。介绍了聚乳酸纤维的纺丝方法、聚乳酸熔融纺丝工艺流程及目前国内外聚乳酸纤维的生产、开发情况。比较了聚乳酸纤维与涤纶等合成纤维及真丝等天然纤维的物理性能指标。纺丝用聚乳酸合成和聚乳酸纤维纺丝的方法、优缺点和国内外研究现状,对聚乳酸纤维的降解性能、物理机械性能和染色性能进行了述评。最后,介绍了聚乳酸纤维在医药、织物和非织造布方面的应用。 关键词:聚乳酸;聚合;溶液纺丝;熔融纺丝;应用 引言 合成纤维出现以后,发展速度非常快,用量非常大,但是它使用后的废弃物对环境造成了极大的威胁。从环保的观点出发,研究开发可生物降解的纤维原料已变得非常迫切。目前聚乳酸的合成技术逐渐成熟,在纺织领域的应用非常广泛,聚乳酸纤维的开发非常吸引业界人士的关注,它是采用玉米等自然资源为原料制取的纤维,从原料到废物完全可以再生利用,对环境完全没有危害。这里主要介绍纺丝用聚乳酸的合成及聚乳酸纤维的性能和研究现状。 聚乳酸的合成 聚乳酸并不是一种全新的高分子。早在1932年,被誉为高分子化学之父的Carothers采用直接缩合的方法将乳酸在有机溶剂和真空状态下反应得到聚乳酸,但未能工业化。直到20世纪60年代,由丙交酯(LA)开环聚合得到高相对分子质量的PLA,并根据聚乳酸能在人体内分解的特性,将其应用于医用材料领域,人们才再次掀起PLA研究的热潮。 聚乳酸一般可以通过两种方法聚合:一种是乳酸的直接聚合,另一种是丙交酯的开环聚合。熔融缩聚是直接合成聚乳酸的方法之—,最近备受关注。但是如果只是通过熔融缩聚还不能得到高分子量的聚乳酸,必须在熔融缩聚后进行固相缩聚,使聚乳酸大分子链继续增长,以提高产物分子量。目前还有一些人通过在乳酸预聚物中加入扩链剂的方法获得高分子聚合物,但是这种方法在合成过程中会用到一些有机溶剂,对环境造成污染。 该反应存在两个平衡反应: (1)伴随着聚乳酸末端-COOH基和-OH基的缩合脱水的酯化平衡反应。 (2)聚乳酸与丙交酯之间的环线平衡反应。 合理控制上述两个平衡过程,使反应向缩聚的方向深入进行,将有利于聚乳酸分子量的提高。在有效脱水和抑制解聚反应这两个关键技术上采取有效的措施,可使聚合反应得以顺利进行,从而获得高分子量聚合物。

新型聚乳酸纤维材料简介及应用

新型聚乳酸纤维材料简介及应用 内容摘要 近年来,随着以石油为原料的塑料、橡胶及纤维工业的迅速发展,地球上能源存储量日趋减少、环境污染问题愈来愈严重,各国都在考虑可持续发展和环境保护问题。如何解决这些污染并开发出可自然降解的新型材料已经成为近年来世界各国的重要研究目标。目前环保行业的明星是利用乳酸生产的新型聚酯材料——聚乳酸(PLA)。其中,以聚乳酸为原料加工而成的可降解纤维材料尤其引人关注。本文主要讲诉聚乳酸纤维的性能,合成及研究现状。 关键词:聚乳酸纤维,聚乳酸纤维研究现状,聚乳酸纤维性能。 新型聚乳酸纤维材料简介及应用 一、聚乳酸纤维简介 (一)聚乳酸纤维简介 聚乳酸纤维又称玉米纤维,它是由玉米等谷物原料经过发酵、聚合、纺丝制成的。在其生产过程中,首先将玉米中的淀粉提炼成植物糖,再将植物糖经过发酵形成乳酸,乳酸再经过聚合生成高性能的乳酸聚合物,最后将这种聚合物经过熔体纺丝等纺丝方法制成聚乳酸纤维。 聚乳酸( Polylactic Acid),简称PLA,化学结构式为: 聚乳酸(PLA) 它是一种以乳酸为主要原料的高分子聚合物。聚乳酸由乳酸合成,而乳酸的原料是所有碳水化合物富集的物质,如粮食(玉米、甜菜、土豆、山芋等)以及有机废弃物(玉米芯或其他农作物的根、茎、叶、皮、城市有机废物和工业下脚料等)。以涤纶为代表的合成纤维自问世以来,得到了快速的发展。然而,随着以石油为原料的合成纤维产量的快速增长,石油过度开采引起的能源枯竭,以及石油制品废弃物的不可自然降解性对环境造成了极大的威胁。从环保的观点出发,

对生物可降解材料的研究和开发己变得非常迫切。聚乳酸纤维是一种性能较好的可生物降解纤维。在微生物的作用下,其废弃物会分解生成碳酸气体和水,它们在阳光下通过光合作用又会生成起始原料淀粉,而淀粉又是聚乳酸的原料(如图2-10),这实现了资源的可持续利用。用玉米等谷物原料加工聚乳酸产品对综合利用资源,减少环境污染具有重要的意义和价值。 图2-10 聚乳酸纤维的可持续应用 (二)聚乳酸纤维的形态结构 图2-11和图2-12为聚乳酸纤维的横截面形态和纵向表面形态。聚乳酸纤维横截面为近似圆形且表面存有斑点,而聚乳酸纤维纵面存在无规律的斑点及不连续性条纹,这些无规律的斑点及不连续性条纹形成的原因主要是由于聚乳酸存在着大量的非结晶部分,在水、细菌、氧气的存在下,可以进行较快的分解而形成的。 图2-11 聚乳酸纤维的横截面图2-12 聚乳酸纤维的纵向 (三)聚乳酸纤维生产工艺 乳酸经聚合反应得到聚乳酸,聚乳酸再经纺丝加工生成聚乳酸纤维。 (1)乳酸的合成

年产5万吨聚乳酸纤维(玉米纤维)生产线可行性研究报告

目录 第一章项目总论………………………………………………………………第二章项目背景和发展概况…………………………………………………第三章市场分析与建设规模…………………………………………………第四章建设条件与厂址选择…………………………………………………第五章工厂技术方案…………………………………………………………第六章环境保护与劳动安全…………………………………………………第七章企业组织和劳动定员…………………………………………………第八章项目实施进度安排……………………………………………………第九章投资估算与资金筹措…………………………………………………第十章财务效益、经济与社会效益评价……………………………………第十一章可行性研究结论与建议………………………………………………

第一章项目总论 本项目计划年产聚乳酸短纤维5万吨,项目分二期建设,建设周期为2年。其中一期建设周期为一年,完成后年产玉米淀粉3.5万吨,聚乳酸短纤维(玉米纤维)1万吨,需投入资金为人民币24210万元;项目总投资98010万元,其中主设备辅助设备、设施为人民币84500万元,厂房等为人民币9390万元。项目总占地面积286810平方米,总建筑面积为93900平方米。在计算周期内项目的平均投资利润率为30.53%,平均利税率为46.56%,投资回收期所得税前为3.70年,所得税后为4.24年。 §1.1 项目背景 §1.1.1 项目名称 年产5万吨聚乳酸纤维(玉米纤维)生产线。 §1.1.2 项目承办单位 陕西京泰纺织化纤(集团)有限公司,总经理 §1.1.3项目拟建地区、地点 陕西省宝鸡市岐山县五丈原镇。 §1.1.4可行性研究报告编制单位 §1.1.5可行性报告编制的依据、原则和研究范围 1.编制依据 (1)中国纺织工业“十一五”发展规划。 (2)宝鸡市国民经济发展规划。 (3)陕西京泰纺织化纤(集团)有限公司提供的相关资料。 2.可行性报告编制原则 (1)依据国家行业产业政策、技术政策以及国家、行业、地区发展的长远规划、承办单位提供的工程设计基础资料,公正、客观和科学地论证项目建设的可行性; (2)工艺技术力求先进合理,工艺流程简洁顺畅,节约投资; (3)注意环境保护与劳动安全卫生、改善生产条件,消除对周围环境的污染,做到文明生产; (4)节约能源,广泛采用能耗少的工艺和设备。

聚乳酸与聚乳酸纤维特点及生产应用研究资料

聚乳酸与聚乳酸纤维特点及生产应用研究

聚乳酸与聚乳酸纤维特点及生产应用研究 摘要:聚乳酸(PLA)纤维具有很好的生物降解性和生物相容性,由它织成的织物具有丝绸般的光泽和舒适的肌肤触感,快干且抗皱,因此该纤维具有较广阔的发展前景。由于聚乳酸纤维是一种可完全生物降解的合成纤维,因此是一种可持续发展的生态纤维。 关键词:聚乳酸;聚乳酸纤维;特性 一、聚乳酸与聚乳酸纤维 聚乳酸纤维(简称PLA纤维)是以由谷物、甜菜等天然糖类得到的聚乳酸酯为原料,经溶液纺丝或熔融纺丝制得的聚酯合成纤维.目前,商业化生产的PLA纤维以玉米淀粉发酵而成的乳酸为原料,经脱水聚合反应制成的聚乳酸酯溶液为纺丝液,再进行纺丝加工而成.聚乳酸纤维兼有天然纤维和合成纤维的特点,吸湿排汗均匀、回弹性好,所制成的成衣穿着舒适,并具有抗皱抗紫外等性能,其制品废弃后,在土壤或水中微生物的作用下分解成二氧化碳和水,随后在太阳光合作用下,又会成为淀粉的起始原料。由于这是一个循环过程,因此可减少纤维工业对石油资

源的依赖性,所以PLA纤维又被称为21世纪的环境循环材料。聚乳酸纤维(PLA)的生产原料乳酸是从玉米淀粉中制得,所以也将这种纤维称为玉米纤维。 二、聚乳酸与聚乳酸纤维的生产 (一)聚乳酸的生产 1.聚乳酸的生产原料 聚乳酸的生产原料是乳酸,即-羟基丙酸、2-羟基丙酸。由于乳酸分子中有一个不对称碳原子,所以具有d-型(右旋光)和L-型(左旋光)两种对映体,等量的L-乳酸和d-乳酸混合而成的dL-乳酸不具旋光性。成纤聚乳酸以L-乳酸为单体。 2.聚乳酸的聚合 聚乳酸的聚合方法有两种,一种是减压在溶剂中由乳酸直接聚合的方法,即:乳酸→预聚体→聚乳酸;另一种方法是常压下以环状二聚乳酸为原料聚合得到,即:乳酸→预聚体→环状二聚体→聚乳酸。 3.聚乳酸的合成 聚乳酸有两种合成方法,即丙交酯(乳酸的环状二聚体)的开环聚合和乳酸的直接聚合。丙交酯开环聚合生产工序为:先将乳酸脱水环化制成丙交酯;再将丙交酯开环聚合制得聚乳酸。其中乳酸的环化和提纯是制备丙交酯的难点和关键,这种方法可制得高分

聚乳酸纤维的特性和用途

聚乳酸纤维的特性和用途 众所周知,谈及纤维素材(天然纤维、人造纤维、合成纤维)及其原料高分子物质的安全性时,不能单纯地停留在对人直接的安全性上,还要考虑我们居住的地球生态系统的安全性,也就是对地球环境负荷的抑制和减少。近年来成为问题的地球温暖化气体不断增加,影响了地球环境,所以不能只从对人和自然环境安全性的局部观点看,还要依时间、空间从整个环球环境的观点考虑。 另外,纤维产品在其制造、加工过程中,使用各种各样的化学物质(溶剂、凝固剂、油剂、抗菌剂、耐候剂、防火·阻燃剂、防污剂、染料、加工整理剂)和能源,这些化学物质也必须以同样的观点考虑,所使用的能源也要从环境负荷减少的观点考虑,要求尽量节能。 合成纤维聚乳酸纤维及其原料不仅具有对人和自然环境的安全性。而且还具有没有添加一切有害化学物质的固有抗菌性和防火性、耐气侯性等。 环境负荷的评价 在与传统纤维素材对比中,采用生命周期评价(LCA)将聚乳酸纤维的环境负荷客观·定量地进行了评价。也就是定量地评价从聚乳酸的原料采集经过乳酸发酵、聚合、纤维化(制造·加工过程)到使用后的废弃物处理(即从摇篮到墓场)的二氧化碳排放量。 相当从聚乳酸的原料采集(对玉米地的播种、施肥和撒药、收获),经过淀粉制取、糖化、乳酸发酵,到制造出聚乳酸树脂(切片)的每1吨树脂的二氧化碳排放量,由美国Nature Works发表。其次,从树脂切片采用熔融纺丝进行纤维化过程中的二氧化碳排放量,已有的合成纤维也没有正式数据,但一般在整个工艺中所占的比例很低,尤其是聚乳酸特别不要高能量,在素材间没有大的差别(相同)。最后,考虑关于燃烧废弃时或再资源化时的二氧化碳排放量(生物降解中进行生物氧化,也转换成二氧化碳),这种场合的排放量可以从化学结构进行理论上的预测。 按照各素材将这些数值加起来,采用传统粘胶法的再生纤维素纤维粘胶丝为14680CO2Kg/t、代表性合成纤维的聚酯纤维为6443 CO2Kg/t,而聚乳酸纤维只不过3650 CO2Kg/t,其环境负荷特性显著(表1)。纤维素粘胶是植物由来,为生物降解性纤维,原料本身不含1滴石油,但因为在其纤维化的制造·加工过程中使用大量能源(石油),所以释放出石油系以上的二氧化碳。另外,由于在其制造过程中还放出二氧化碳以外对人和环境有害的化学物质,所以近年来退出的企业不断。 聚乳酸及其构成单体乳酸的安全性 乳酸的基本特性和安全性 聚乳酸因为在使用中或使用后在人体内和自然环境中降解,最终分解为作为其构成单位的乳酸,所以首先必须了解乳酸及其安全性。 人类在大约1万年前在从打猎生活向农耕牧畜生活变更生活方式的过程中学会了采用发酵保存食品的技术,乳酸是从很久以来就与人类共存在的天然有机化合物。但是,它作为乳酸第1次被发现是在18世纪后半期。

竹原纤维,天丝(Tencel),莫代尔(Modal),聚乳酸(PLA)新型纤维染色实验

竹原纤维、天丝(Tencel)、莫代尔(Modal)、聚乳酸(PLA) 新型纤维染色实验 一、实验内容 对竹原纤维、天丝、莫代尔纤维和聚乳酸纤维进行染色。 二、实验目的 对竹原纤维、天丝、莫代尔纤维和聚乳酸纤维的染色性能有所了解,掌握上述纤维染色工艺要点。 三、实验原理 1.竹原纤维 该纤维是从竹材中将木质素、蛋白质、脂肪、果胶等分离后直接提取出来的纤维。260℃左右开始分解,540℃左右分解终止,其热稳定性与苎麻相当。 竹原纤维的化学性能与其他纤维素纤维相似,耐碱不耐酸。在稀碱中极为稳定,在浓碱作用下,纤维能膨胀,生成碱纤维素。竹原纤维具有良好的抗菌、抑菌作。竹原纤维的大分子上存在亲水基团,且大分子中腔有裂纹,因此染色性能良好。 2.天丝(Tencel)纤维 Tencel纤维属再生纤维素纤维,具有高取向度和高结晶度,但原纤间结合较弱且没有弹性,不具备皮层结构,如受到机械摩擦,纤维外层会发生断裂,特别在湿态情况下,易产生微原纤,严重时还会缠结成棉粒。 Tencel纤维吸湿性好,遇水后膨胀较大,染料及助剂容易进入纤维内部,另外纤维纤度较细,比表面积大,对活性染料亲和力强,故初染率高,移染性和匀染性差,易造成色差。 3.莫代尔(Modal)纤维 即高湿模量的再生纤维素纤维,由木浆纤维通过专门的工艺生产而成。其干强接近涤纶,湿强远高于普通粘胶。 莫代尔纤维结构松散.有较多的空隙和内表面积。作为一种纤维素纤维,可以用活性染料、还原染料、直接染料等进行染色。该纤维对活性染料的亲和能力强。染色时宜选用分子较小、扩散性好、但对纤维直接性适中的染料,以提高透染性和匀染性。元明粉和碱剂在染色过程中有促染和固色作用。 4.聚乳酸(PLA)纤维 聚乳酸纤维是利用耦合剂将低分子量的聚乳酸聚合成具有良好机械物性的较高分子量聚乳酸,再通过化学改性纤维化后的产物。聚乳酸玻璃化转变温度在57℃左右,熔点为175℃。PLA具有与PET相似的性质,密度和模量介于PET 和PA之间,回潮率低。 PLA纤维中含有较多的酯基和甲基,没有亲水性的极性基团和反应性基团,属于疏水性纤维,纤维结构较紧密。染色时,染料进入纤维的无定形区。它的染色性能随着纺丝条件及染色前加工不同而变化。目前,多采用高温高压染色法用

相关主题
文本预览
相关文档 最新文档