当前位置:文档之家› 通信原理实验指导书

通信原理实验指导书

通信原理实验指导书
通信原理实验指导书

实验一Matlab基础

一、实验目的

1.熟悉MATLAB开发环境

2.掌握矩阵、变量、表达式的各种基本运算

3.熟悉和了解MATLAB图形绘制程序编辑的基本指令;

4.熟悉掌握利用MATLAB图形编辑窗口编辑和修改图形界面,并添加图形的各种标注;

5.掌握plot、subplot等指令格式和语法。

二、实验环境:

1、Matlab 6.5

2、PC机

三、实验原理:

1.MATLAB基础知识

1.1 MATLAB程序设计语言简介

MATLAB,Matrix Laboratory的缩写,是由MathWorks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。与大家常用的Fortran和C等高级语言相比,MATLAB的语法规则更简单,更贴近人的思维方式,被称为“草稿纸式的语言”。MATLAB 软件主要由主包、仿真系统(simulink)和工具箱(toolbox)三大部分组成。

1.2 MATLAB界面及帮助

Matlab操作界面的默认窗口如图1.1所示,Matlab的通用操作界面包括9个常用的窗口,分别是:命令窗口、历史命令窗口、当前目录浏览器窗口、工作空间浏览器窗口、数组编辑窗口、交互界面分类目录窗口、M文件编辑/调试器窗口、帮助导航/浏览器窗口和程序性能剖析窗口。

图1-1 matlab基本界面

(1)菜单栏

在MA TLAB主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help这6个菜单项。

File菜单项:File菜单项实现有关文件的操作。

Edit菜单项:Edit菜单项用于命令窗口的编辑操作。

View菜单项:View菜单项用于设置MA TLAB集成环境的显示方式。 Web菜单项:Web菜单项用于设置MA TLAB的Web操作。

Window菜单项:主窗口菜单栏上的Window菜单,只包含一个子菜单Close all,用于关闭所有打开的编辑器窗口,包括M-file、Figure、Model和GUI窗口。

Help菜单项:Help菜单项用于提供帮助信息。

(2)工具栏

MATLAB主窗口的工具栏共提供了10个命令按钮。这些命令按钮均有对应的菜单命令,但比菜单命令使用起来更快捷、方便。

(3)命令行区

MATLAB按以下顺序对输入命令进行解释:

检查它是否是工作空间中的变量,实则显示变量内容。

检查它是否是嵌入函数,是则运行之。

检查它是否是子函数。

检查它是否是私有函数。

检查它是否是位于MATLAB搜索路径范围内的函数文件或脚本文件。

MATLAB里有以下几种方法可获得帮助:

(1)帮助命令(help)是查询函数相关信息的最直接方式,信息会直接显示在命令窗口中。例如键入help sin,会显示sin相关信息。

(2)lookfor命令可以从键入的关键字列出所有相关的题材,和help相比,lookfor覆盖范围更广,可查找到某个主题所有词组或短语。

(3)帮助窗口(help window)提供与帮助命令相同的信息,但帮助窗口界面更为方便直接。

(4)帮助桌面(help desk)通过在命令窗口中选择帮助菜单的“help desk”选项或键入helpdesk命令即可进入帮助桌面。

(5)在线帮助页是帮助桌面的在线帮助均有相应的PDF格式文件。

(6)Mathworks网站,对于连接入Internet的用户通过Mathworks公司的网站https://www.doczj.com/doc/7115181035.html,询问有关问题。

2.掌握MATLAB常用命令

3.MATLAB变量与运算符

变量命名规则如下:

(1)变量名可以由英语字母、数字和下划线组成;

(2)变量名应以英文字母开头;

(3)长度不大于31个

(4)区分大小写

MATLAB中设置了一些特殊的变量与常量,列于下表。

表1 MATLAB的特殊变量与常量

MATLAB运算符,通过下面几个表来说明MA TLAB的各种常用运算符

表2 matlab算术运算符

表3 MATLAB关系运算符

表4 MATLAB逻辑运算符

表5 MATLAB特殊运算

4.MATLAB的一维、二维数组的寻访

表6子数组访问与赋值常用的相关指令格式

5.MATLAB的基本运算

表7 两种运算指令形式和实质内涵的异同表

6.MATLAB的常用函数

表8 MATLAB常用数学函数

表8 MATLAB常用随机函数

6.MATLAB的常用绘图函数

plot命令用来绘制x-y坐标中的曲线。它是一个功能很强的命令。输入变量不同,可以产生很多不同的结果。

(1)plot(y):输入一个数组的情况

如果y是一个数组,函数plot(y)给出线性直角坐标的二维图,以y中元素的下标作为X坐标,y中元素的值作为Y坐标,一一画出在X-Y坐标平面图上,而且将各点以直线相连。例如,要画出是个随机数的曲线。可列出:

y=5*(rand(1,10)-.5)

由Rand函数产生的随机数的最大值为1,最小数为0,平均值为0.5。所以y的最大值为2.5,最小值为-2.5,平均值为0。键入plot(y),MATLAB会产生一个图形窗,自动规定最合适的坐标比例绘图。X方向是下标,从1~10,Y方向范围则是-4~4,并自动标出刻度。可以用title命令给图加上标题,用xlabel,ylabel命令给坐标轴加上说明,用text或gext命令可在图上任何位置加标注,也可用grid命令在图上打上坐标网格线。

MATLAB实现程序和形成的图如下:

y=5*(rand(1,10)-.5)

y =

Columns 1 through 9

2.2506 -1.3443 0.5342 -0.0701 1.9565 1.3105 -0.2177 -2.4075 1.6070

Column 10

-0.2765

>> plot(y)

>> title('my first plot')

>> xlabel('x'),ylabel('y')

>> grid

(2)plot(x,y):输入两个数组的情况

如果数组x和y具有相同长度,命令plot(x,y,’s’)将绘出以x元素为横坐标,y元素为纵坐标的曲线。

(3)用plot(t,[y1,y2,…])命令

该语句中t是向量,y=[y1,y2,…]是矩阵,若t是列(行)向量,则y的列(行)长与t长度相同。Y的行(列)数就是曲线的根树。例如,

>> t=0:0.5:4*pi;

>> y=exp(-0.1*t).*sin(t);

>> y1=exp(-0.1*t).*sin(t+1);

>> plot(t,[y;y1])

(4)用hold命令

在画完前一张图后用hold命令保持住,再画下一张曲线。如键入

Plot(t,y),hold on,plot(t,y1,‘g’)

执行此命令时,图形窗产生第一幅图形,同时,命令屏幕显示Current plot held,图形处于保持状态。再执行plot(t,y1,‘g’),就把第二幅图以绿色的曲线迭合在同一张图上。(5)图形控制

A、figure:打开图形窗口。MATLAB中的第一幅图随plot命令自动打开,以后的plot

命令都画在同一张图上。如要画在另一张新图上,就要用figure命令打开新的图形窗口。有了顺序为1,2,3,…的几个图形窗后,再用plot语句,即键入figure(i),表示打开第i幅图。否则,所有的图都会画在最后显示的那张图上。

(2)clf:清除当前图形窗的内容。

(3)hold:保持当前图形窗的内容,再键入hold,就解除冻结。这种拉线开关式的控制有时会造成混乱,可以用hold on和hold off命令以得到确定的状态。

(4)close:关闭当前图形窗。close all:关闭所有图形窗。

(5)subplot(n,m,p)命令:将图形窗口分为n╳m个子图,在第p个子图处绘制图形。

四、实验内容和步骤:

1、学习使用help命令:

例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)。

2、学习使用clc、clear:

观察command window、command history和workspace等窗口的变化结果,执行前后有什么不同?

3、初步程序的编写练习:

新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。注意:每一次M-file的修改后,都要存盘。

4、二维曲线绘图基本指令演示:

t=(0:pi/50:2*pi)';

k=0.4:0.1:1;

Y=cos(t)*k;

plot(t,Y);

问题4.1:本例运作后,再试验plot(t),观察产生图形的有什么不同,为什么?

问题4.2:本例运作后,再试验plot(Y),观察产生图形的有什么不同,为什么?

问题4.3:本例运作后,再试验plot(Y,t),观察产生图形的有什么不同,为什么?

5、用图形表示连续调制波形Y=sin(t)sin(9t)及其包络线。

t=(0:pi/100:pi)';

y1=sin(t)*[1,-1];

y2=sin(t).*sin(9*t);

t3=pi*(0:9)/9;

y3=sin(t3).*sin(9*t3);

figure(2);

plot(t,y1,'r:',t,y2,'b',t3,y3,'bo')

axis([0,pi,-1,1]);

问题5.1请查找plot的help的帮助,想想怎么用3行plot语句来代替下面这行一句:plot(t,y1,'r:',t,y2,'b',t3,y3,'bo')。

6、绘制标准三维曲面

sphere函数的调用格式为:[x,y,z]=sphere(n);

cylinder函数的调用格式为:[x,y,z]= cylinder(R,n)

MATLAB还有一个peaks函数,称为多峰函数,常用于三维曲面的演示。

clear all

t=0:pi/20:2*pi;

[x,y,z]=cylinder(2+sin(t),30);

subplot(2,2,1);

surf(x,y,z);

title('[x,y,z]=?cylinder(2+sin(t),30)');

subplot(2,2,2);

[x,y,z]=sphere; %20X20?

surf(x,y,z);

title('[x,y,z]=sphere')

subplot(2,1,2);

[x,y,z]=peaks(30); %30X30

surf(x,y,z);

title('[x,y,z]=peaks(30)');

5

[x,y,z]=cylinder(2+sin(t),30)1

-10

1[x,y,z]=sphere

[x,y,z]=peaks(30)

五、实验报告

1.回答实验内容和步骤上面所有的问题。并总结本次实验遇到了哪些问题?你是怎么解决的?如何避免下次实验再遇到同样的问题?

2.如何在帮助窗口,帮助命令,帮助演示中查找plot 的相关命令和演示程序?

3.MATLAB 软件由几部分组成?各有什么作用?

实验二 模拟调制系统

一、实验目的

1、掌握模拟调制信号的波形及产生方法;

2、掌握模拟调制信号的频谱特点;

3、掌握模拟调制信号的解调方法;

4、掌握模拟调制系统的MATLAB 仿真实现。

二、实验原理:

模拟调制包括幅度调制(DSB ,SSB ,AM )和相角调制(频率FM 和相位调制PM )。 1、 幅度调制(线性调制)

线性调制是正弦载波的幅度随着调制信号而改变的调制方案。调制方式有AM 、DSB 、SSB 和VSB 。 (1) AM

0()[()]cos AM c s t A m t t ω=+

01

()[()()][()()]2

AM c c c c S A M M ωπδωωδωωωωωω=++-+++-

(2) DSB

()()cos DSB c s t m t t ω=

1

()[()()]2

DSB c c S M M ωωωωω=++-

(3) SSB

1

1

?()()cos ()sin 22

SSB c c s t m t t m t t ωω=

()()()SSB DSB S S H ωωω=?

2、 非线性调制FM

FM ()cos[cos ]cos[n ]

c f m m c f m s t A t K A

d A t m si t ωωττωω=+==+?

[]()()()()FM n f c m c m S A J m n n ωπδωω

ωδωωω∞

-∞

=--+++∑

三、实验方法和步骤

【例1】信源为()2m t t π=,载波为()2cos 20c t t π=,求AM 调制信号的时

域波形及其频谱。

解: l

dt=0.001; fmax=1; fc=10; T=5; N=T/dt; t=0:dt:T;

mt=sqrt(2)*cos(2*pi*fmax*t);% figure(1) plot(t,mt); %AM modulation A=2;

am=(A+mt).*cos(2*pi*fc*t); %power spectrum density 1 [f,Xf]=FFT_SHIFT(t,am); psd=(abs(Xf).^2)/T; figure(2) subplot(211); plot(t,am);hold on plot(t,A+mt,'r--'); title('AM?°??°ü??'); xlabel('t'); subplot(212); plot(f,psd);

axis([-2*fc 2*fc 0 1.5*max(psd)]); title('AM1|?ê?×'); xlabel('f');

运行结果如图2-1所示

AM 及其

包络

t

AM 功率谱

f

图2-1 AM 已调信号波形及其频谱

【例2】信源为()2m t t π=,载波为()2cos 20c t t π=,画出AM 调制信号的

相干解调后的信号波形。

解:dt=0.001; fmax=1; fc=10; T=5; B=2*fmax; N=floor(T/dt); t=[0:N-1]*dt; % D??′

mt=sqrt(2)*cos(2*pi*fmax*t); %AM2úéú A=2;

am=(A+mt).*cos(2*pi*fc*t); %AM?aμ÷

amd=am.*cos(2*pi*fc*t); % amd=amd-mean(amd); [f,AMf]=FFT_SHIFT(t,amd); [t,am_t]=RECT_LPF(f,AMf,B); subplot(211); plot(t,mt); title('signal'); subplot(212); plot(t,am_t); title('modulation');

运行结果如图2-2所示

signal

modulation

图2-2 基带信号和AM 相干解调后的波形

四、实验要求与实验内容:

1、参照例题的信源和载波,画出DSB,SSB的调制信号的波形及其功率谱密度。

2、参照例题的信源和载波,画出DSB,SSB的调制信号相干解调后的波形并与基带波形进行比较。

3、(选做)其它条件不变,在信道中加入经过带通滤波器后的窄带高斯白噪声,功率为0.1。分别进行AM、DSB、SSB解调并画出解调后的波形。

4、(选做)用信号

,01

()2,12

0,

t t

m t t t

else

≤<

??

??

=-+≤≤

??

??

??

对频率为1000Hz的载波进行FM调制,

25

f

m=,画出已调信号的波形和振幅谱。

五、实验报告

1、列出实验程序清单(可打印),并附上必要的程序说明(程序作用)。

2、记录实验结果,实验后,对结果进行分析。

实验三数字基带信号

一、实验目的

1、掌握数字基带信号的波形及产生方法;

2、掌握数字基带系统的MATLAB仿真实现。

二、实验原理:

在数字通信系统中,未经调制的数字信号所占据的频谱是从零频或很低频率开始,称为数字基带信号。

1、数字基带信号的表示

数字基带信号(以下简称基带信号)的类型有很多。以矩形脉冲为例,几种基本的基带信号波形。

(1)单极性不归零波形(SNRZ)

它用正电平和零电平分别对应二进制码“1”和“0”。该波形的特点是电脉冲之间无间隔,极性单一,易于用TTL、CMOS电路产生;缺点是有直流分量(平均电平不为零),要求传输线路具有直流传输能力,因而不适应有交流耦合的远距离传输,只适用于计算机内部或极近距离(如印制电路板内核机箱内)的传输。

function y=snrz(x)

t0=200;

t=0:1/t0:length(x);

for i=1:length(x);

if x(i)==1

for j=1:t0

y((i-1)*t0+j)=1;

end

else

for j=1:t0

y((i-1)*t0+j)=0;%ê?è??a0£????a??ó|μ?è??μ?a0

end

end

end

y=[y,x(i)];

plot(t,y);

%2éó?title?üá?êμ??±ê???÷???a??ó|μ??t?aD??¢

title('1 0 1 1 0 0 1 0');

grid on

axis([0,i,-0.1,1.1]);

(2)双极性不归零波形(DNRZ)

用正、负电平的脉冲分别表示二进制代码“1”和“0”。因其正负电平的幅度相等、极性相反,故当“1”和“0”等概率出现时无直流分量,有利于在信道中传输,并且在接收端恢复信号的判决电平为零值,因而不受信道特性变化的影响。抗干扰能力也较强。在ITU-T制定的V.24接口标准和美国电工协会(EIA)制定的RS-232C接口标准中均采用双极性波形。

function y=dnrz(x)

t0=200;

t=0:1/t0:length(x);

for i=1:length(x);

if x(i)==1

for j=1:t0

y((i-1)*t0+j)=1;

end

else

for j=1:t0

y((i-1)*t0+j)=-1;%ê?è??a0£????a??ó|μ?è??μ?a0

end

end

end

y=[y,x(i)];

plot(t,y);

%2éó?title?üá?êμ??±ê???÷???a??ó|μ??t?aD??¢

title('1 0 1 1 0 0 1 0');

grid on

axis([0,i,-1.1,1.1]);

(3)单极性归零波形(SRZ)

所谓归零波形是指它的有电脉冲宽度tao小于码元宽度T,即信号电压在一个码元终止时刻前总要回到零电平。通常,归零波形使用半占空码.。

function y=srz(x)

t0=200;

t=0:1/t0:length(x);

for i=1:length(x);

if x(i)==1

for j=1:t0/2

y((2*i-2)*t0/2+j)=1;

y((2*i-1)*t0/2+j)=0;

end

else

for j=1:t0

y((i-1)*t0+j)=0;%ê?è??a0£????a??ó|μ?è??μ?a0

end end end

y=[y,x(i)]; plot(t,y);

%2éó?title?üá?êμ??±ê???÷???a??ó|μ??t?aD??¢ title('1 0 1 1 0 0 1 0'); grid on

axis([0,i,-0.1,1.1]);

(4)双极性归零波形(DRZ )

兼有双极性和归零波形的特点。由于其相邻脉冲之间存在零电位的间隔,使得接收端很容易识别出每个码元的起止时刻,从而使收发双方能保持正确的位同步。

function y=drz(x) t0=200;

t=0:1/t0:length(x); for i=1:length(x); if x(i)==1 for j=1:t0/2

y((2*i-2)*t0/2+j)=1; y((2*i-1)*t0/2+j)=0; end else

for j=1:t0/2

y((2*i-2)*t0/2+j)=-1; y((2*i-1)*t0/2+j)=0; end end end

y=[y,x(i)]; plot(t,y);

%2éó?title?üá?êμ??±ê???÷???a??ó|μ??t?aD??¢ title('1 0 1 1 0 0 1 0'); grid on

axis([0,i,-1.1,1.1]);

2、基带信号频谱特性

数字基带信号的时域波形为()()n

s

n s t a g t nT ∞

=-∞

=

-∑。

式中,a n - 第n 个码元所对应的电平值

T s - 码元持续时间 g (t ) -某种脉冲波形

频谱为

由上式可见,二进制随机脉冲序列的功率谱P s(f)可能包含连续谱(第一项)和离散谱(第二项)。连续谱总是存在的,这是因为代表数据信息的g1(t)和g2(t)波形不能完全相同,故有G1(f) ≠ G2(f) 。谱的形状取决于g1(t)和g2(t)的频谱以及出现的概率P。

离散谱是否存在,取决于g1(t)和g2(t)的波形及其出现的概率P。一般情况下,它也总是存在的,但对于双极性信号g1(t) = - g2(t) = g(t) ,且概率P=1/2(等概)时,则没有离散分量δ(f - mf s)。根据离散谱可以确定随机序列是否有直流分量和定时分量。

【例1】:SNRZ和SRZ的功率谱

f=0:0.01:5;

Ts=1;

x=f*Ts;

y=sin(pi*x);

y=y./(pi*x);

y(1)=1;

dnrz=y.*y;

dnrz=Ts*dnrz;

y=sin(pi*x/2);

y=y./(pi*x/2);

y(1)=1;

drz=y.*y;

drz=Ts*drz/4;

plot(x,dnrz,':',x,drz,'-');

xlabel('f');

ylabel('????D?P=1/2');

legend('dnrz','drz');

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信原理心得体会

通信原理心得体会 篇一:通信原理学习心得 通信原理学习心得 一学期的通信原理课程结束了,但我对通信原理的学习永远不会结束。经过一个学期的学习我对通信原理有了深刻的认识,我知道这还远远不够,今后的日子里我要更加努力学习通信原理。学习是个艰难的过程,厌烦过,沮丧过,但同时也是充满着激情和快乐的。我想不管干什么都要自信,千万不要轻易的放弃,只要坚持不懈,一定会有结果的。 按照我的传统理解,通信就是信息的传输,在当今高度信息化的社会,信息和通信已经成为现代社会的命脉。所以我们要好好学习通信原理,可以预见,未来的通信系统对人们的生活方式和社会的发展将会产生更加重大和意义深远的影响。 通信原理是电子、通信、计算机络专业的一门理论性较强的专业基础课程,课程的重点是通信系统的性质、信号的传输、检测、处理的基本原理和方法以及信号调制,量化,编码,处理和传输的应用。该课程的特点是概念比较抽象,分析求解所用的数学知识较多。该课程的难点是理论性较强和比较抽象,然而我的数学基础并不够扎实,因此在数学分析与计算方面是一个难点,还有就是缺乏工程背景,而这门课又结合实际比较多,所以学这门课程并不容易,但我们要

好好学习通信原理。 对于通信原理这门课,一开始觉得很难,而且听学长们说通信原理是很难的课程,平时一定要好好学,不然自己学习习的日子根本就抓不到要点了。事实上好像也是如此,当然对于我这样的人,上课时 也不算是比较认真的,但是半学期的学习,我对通信原理确实有了一定的了解和认识。我知道学好通信原理需要一定的数学基础,所以我又翻阅了一下高数课本。翻阅高数课本之后,感觉轻松了一些。我认识到要完成通信,首先要对信号有一个充分的了解与认识,为了对这个信号进行传输我们要进行调制,并选择合适的信道,当然还要考虑噪声的干扰;在接收端我们通过解调把原始信号解调出来以完成我们的通信。 虽然该课程在学习上很困难,但我发现该课程在组织上遵循由特殊到一般、再由一般到特殊的符合认识规律的顺序,由通信系统性能分析到实际调制解调框图的设计等具体问题的应用的规律,后来又结合上机实验学习了MATLAB工具软件,通过Simulink或者MATLAB程序进行通信系统仿真,加深了我对通信系统的理解。 以上是我的学习心得,对于本门课程本想提出课程建议,但是老师讲的挺好的,基本没有什么建议可提。并且感觉老师讲的越来越好了,颜渊曾经这样评价自己的老师孔子,“仰

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信原理实验 思考题

通信原理实验思考题 第三章数字调制技术 实验一FSK传输系统实验 实验后思考题: 1.FSK正交调制方式与传统的FSK调制方式有什么区别?有哪些特点? 答:传统的FSK调制方式采用一个模拟开关在两个独立振荡器中间切换,这样产生的波形在码元切换点的相位是不连续的。而且在不同的频率下还需采用不同的滤波器,在应用上非常不方便。采用正交调制的优点在于在不同的频率下可以自适应的将一个边带抑制掉,不需要设计专门的滤波器,而且产生的波形相位也是连续的,从而具有良好的频谱特性。 2.TPi03 和TPi04 两信号具有何关系? 答:正交关系 实验中分析: P28 2. 产生两个正交信号去调制的目的。 答:在FSK 正交调制方式中,必须采用FSK 的同相支路与正交支路信号;不然如果只采一路同相FSK 信号进行调制,会产生两个FSK 频谱信号,这需在后面采用较复杂的中频窄带滤波器。用两个正交信号去调制,可以提高频带利用率,减少干扰。 4.(1)非连续相位 FSK 调制在码元切换点的相位是如何的。 答:不连续的,当包含 N(N 为整数)个载波周期时,初始相位相同的相邻码元的波形(为整数)个载波周期时,和瞬时相位是连续的,当不是整数时,波形和瞬时相位 也是可能不连续的。 P29 1.(2)解调端的基带信号与发送端基带波形(TPi03)不同的原因? 答:这是由于解调端与发送端的本振源存在频差,实验时可根据以下方法调整:将调模块中的跳线KL01置于右端,然后调节电位器WL01,可以看到解调端基带信号与发送端趋于一致。 2.(2)思考接收端为何与发送端李沙育波形不同的原因? 答:李沙育图形的形状与两个输入信号的相位和频率都有关。 3. 为什么在全0或全1码下观察不到位定时的抖动? 答:因为在全0或全1码下接收数据没有跳变沿,译码器无论从任何时刻开始译码均能正确译码,因此译码器无须进行调整,当然就看不到位定时的抖动了。 实验二BPSK传输系统实验 实验后思考题: 1.写出眼图正确观察的方法。 答:眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。 观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

光通信原理实验指导书

实验一模拟信号光调制实验 一、实验目的 1、了解模拟信号光纤通信原理。 2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。 二、实验内容 1、测量不同的正弦波、三角波和方波的光调制系统性能。 三、实验器材 1、主控&信号源、25号模块各1块 2、双踪示波器1台 3、连接线若干 4、光纤跳线1根 四、实验原理 1、实验原理框图 光调制功率检测框图 模拟信号光调制传输系统框图 2、实验框图说明 本实验是输入不同的模拟信号,测量模拟光调制系统性能。如模拟信号光调制传输系统框图所示,不同频率不同幅度的正弦波、三角波和方波等信号,经25号模块的光发射机单元,完成电光转换,然后通过光纤跳线传输至25号模块的光接收机单元,进行光电转换处理,从而还原出原始模拟信号。实验中利用光功率计对光发射机的功率检测,了解模拟光调制系统的性能。 注:根据实际模块配置情况不同,自行选择不同波长(比如1310nm、1550nm)的25号光收发模块进行实验。 五、注意事项 1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。 2、不要带电插拔信号连接导线。 六、实验步骤 1、系统关电,参考系统框图,依次按下面说明进行连线。 (1)用连接线将信号源A-OUT,连接至25号模块的TH1模拟输入端。

(2)用光纤跳线连接25号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。注意,连接光纤跳线时需定位销口方向且操作小心仔细,切勿损伤光纤跳线或光收发端口。 (3)用同轴连接线将25号模块的P4光探测器输出端,连接至23号模块的P1光探测器输入端。 2、设置25号模块的功能初状态。 (1)将收发模式选择开关S3拨至“模拟”,即选择模拟信号光调制传输。 (2)将拨码开关J1拨至“ON”,即连接激光器;拨码开关APC此时选择“ON”或“OFF”都可,即APC功能可根据需要随意选择。 (3)将功能选择开关S1拨至“光功率计”,即选择光功率计测量功能。 3、进行系统联调和观测。 (1)打开系统和各实验模块电源开关。设置主控模块的菜单,选择【主菜单】→【光纤通信】→【模拟信号光调制】。此时系统初始状态中A-OUT输出为1KHz正弦波。调节信号源模块的旋钮W1,使A-OUT输出正弦波幅度为1V。 (2)选择进入主控&信号源模块的【光功率计】功能菜单,根据所选模块波长类型选择波长【1310nm】或【1550nm】。 (3)保持信号源频率不变,改变信号源幅度测量光调制性能:调节信号源模块的W1,改变输入信号的幅度,记录不同幅度时的光调制功率变化情况。 (4)保持信号源幅度不变,改变信号源频率测量光调制性能:改变输入信号的频率,自行设计表格记录不同频率时的光调制功率变化情况。 (5)拆除23号模块和25号模块之间的同轴连接线,适当调节25号模块的W5接收灵敏度旋钮,用示波器对比观察光接收机的模拟输出端TH4和光发射机的模拟输入端TH1,了解模拟光调制系统线性度。 (6)改变信号源的波形,用三角波或方波进行上述实验步骤,进行相关测试,表格自拟。 七、实验报告 1、画出实验框图,并阐述模拟信号光调制基本原理。

通信原理课程设计报告2

¥ 课程设计报告? < 课程名称通信原理 设计题目 DSB与2ASK调制与解调 专业通信工程 班级 学号 姓名 完成日期 …

课程设计任务书 设计题目:DSB与2ASK调制与解调 设计内容与要求: 设计内容: 1.根据DSB的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 2. 根据ASK的调制原理设计线路,进行仿真模拟调制DSB的调制和解调过程,并通过仿真软件观察信号以及的调制过程中信号波形和频谱的变化。 3.在设计过程中分析信号变化的过程和思考仿真过程的设计原理。 ; 设计要求: 1.独立完成DSB与ASK的调制与解调; 2.运用仿真软件设计出DSB与ASK的调制线路 3.分析信号波形和频谱 指导教师:范文 2012年12月16日 课程设计评语 ( 成绩: 指导教师:_______________

年月日

一.调制原理: 调制: 将各种数字基带信号转换成适于信道传输的数字调制信号(已调信号或频带信号); 时域定义:调制就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 频域定义:调制就是将基带信号的频谱搬移到信道通带中或者其中的某个频段上的过程,而解调是将信道中来的频带信号恢复为基带信号的反过程. 根据所控制的信号参量的不同,调制可分为: 调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。 调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。 调相,利用原始信号控制载波信号的相位。 调制的目的是把要传输的模拟信号或数字信号变换成适合信道传输的信号,这就意味着把基带信号(信源)转变为一个相对基带频率而言频率非常高的代通信号。该信号称为已调信号,而基带信号称为调制信号。调制可以通过使高频载波随信号幅度的变化而改变载波的幅度、相位或者频率来实现。调制过程用于通信系统的发端。在接收端需将已调信号还原成要传输的原始信号,也就是将基带信号从载波中提取出来以便预定的接受者(信宿)处理和理解的过程。该过程称为解调。

通信原理SystemView仿真实验指导书

实验一图符库的使用 一、实验目的 1、了解SystemVue图符库的分类; 2、掌握SystemVue各个功能库常用图符的功能及其使用方法。 二、实验内容 按照实例使用图符构建简单的通信系统,并了解每个图符的功能。 三、基本原理 SystemVue的图符库功能十分丰富,一共分为以下几个大类 1.基本库 SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。 (信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号 (算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求 (函数库)32种函数尽显函数库的强大库容! (信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它 2.扩展功能库 扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。它允许通信、DSP、射频/模拟和逻辑应用。 (通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。这些模块从纠错编码、调制解调、到各种信道模型一应俱全。 (DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。该库支持大多DSP芯片的算法模式。例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。 还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。 (逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。 (射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。 3.扩展用户库

通信原理-习题及答案概要

一、填空 1、单音调制时,幅度A不变,改变调制频率Ωm,在PM中,其最大相移△θm 与Ωm_______关系,其最大频偏△?m与Ωm__________;而在FM,△θm与Ωm________,△?m与Ωm_________。 1、在载波同步中,外同步法是指____________________,内同步法是指 ________________________。 2、已知一种差错控制编码的可用码组为:0000、1111。用于检错,其检错能力 为可检;用于纠正位错码;若纠一位错,可同时检查错。 3、位同步信号用于。 1.单边带信号产生的方式有和。 2.设调制信号的最高频率为f H ,则单边带信号的带宽为,双边带信号的带宽为,残留边带信号的带宽为。 3.抽样的方式有以下2种:抽样、抽样,其中没有频率失真的方式为抽样。 4.线性PCM编码的过程为,,。 5.举出1个频分复用的实例。 6.当误比特率相同时,按所需E b /n o 值对2PSK、2FSK、2ASK信号进行排序 为。 7、为了克服码间串扰,在___________之前附加一个可调的滤波器;利用____________的方法将失真的波形直接加以校正,此滤波器称为时域均衡器。 1、某数字传输系统传送8进制信号,码元速率为3000B,则该系统的信息速 率为。 2、在数字通信中,可以通过观察眼图来定性地了解噪和对系统性 能的影响。 3、在增量调制系统中,当模拟信号斜率陡变时,阶梯电压波形有可能跟不 上信号的变化,形成很大失真的阶梯电压波形,这样的失真称 为。 4、为了防止二进制移相键控信号在相干解调时出现“倒π”现象,可以对 基带数字信号先进行,然后作BPSK调制。 1、通信系统的性能指标主要有和,在模拟通信系统中前者用有效传输带宽衡量,后者用接收端输出的衡量。 2、对于一个数字基带传输系统,可以用实验手段通过在示波器上观察该系统

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理课程设计心得体会

通信原理课程设计心得体会 、时分解复用原理 为了提高信道利用率,使多路已抽样的信号组合起来沿同一信道传输而互相不干扰,称时分多路复用。时分复用的解调过程称为时分解复用。目前采用较多的是频分多路解复用和时分多路解复用。频分多路解复用用于模拟通信,而时分多路解复用用于数字通信。为了实现TDM传输,要把传输时间分成若干个时隙,在每个时隙内传输一路信号,将若干个原始的脉冲调制信号在时间上进行交错排列,从而形成一个复合脉冲串,该脉冲串扰码后经信道传输到达接收端。时分解复用通信,是把各路信号在同一信道上占有不同时间间隙进行通信分离出原来的模拟信号。由抽样定理可知,将时间上离散的信号变成时间上连续的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。时分解复用是建立在抽样定理的基础上的,因为抽样定理连续的基带信号由可能被在时间上离散出现的抽样脉冲所代替.具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。抽样脉冲占据时间一般较短,在抽样脉冲之间就留出间隙.利用这些空隙便可以传输其他信号的抽样,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽

样值占用的时间越短,能够传输的数据也就越多.时分解复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别互相分开,互不干扰并不失真地还原出原来的模拟信号。 在通信系统中,同步具有相当重要的地位。通信系统能否具有有效、可靠地工作,在很大程度上依赖有无良好的同步系统。同步可分为载波同步、位同步、帧同步和网同步几大类型。他们在通信系统中都具有相当重要的作用。时分解复用通信中的同步技术包括位同步和帧同步,这是数字通信的又一个重要特点。时分解复用的电路原理就是先通过帧同步信号和位同步信号把各路信号数据分开,然后通过移位寄存器构成的并/串转换电路输出串行的数据,把时分复用的调制信号不失真的分离出来。 位同步 位同步的目的是确定数字通信中的个码元的抽样时刻,即把每个码元加以区分,使接受端得到一连串的码元序列,这一连串的码元列代表一定的信息。位同步是最基本的同步,是实现帧同步的前提。位同步的基本含义是收、发两端机的时钟频率必须同频、同相,这样接收端才能正确接收和判决发送端送来的每一个码元。因此,接收端必须提供一个确定抽样判决时刻的定时脉冲序列.

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验指导书

通信原理实验指导书 实验准备步骤 在进行通信原理实验之前,请同学们按照下面的步骤进行实验准备: 1.通过串口线、程序下载线连接PC机与实验平台; 2.打开稳压电源,调节电压输入值为12V; 3.检查电源线连接是否正确,白黑相间线连接正极,纯黑线连接负极,切 勿接反; 4.连接无误后,打开实验板电源; 5.打开通信原理实验界面,如下图所示配置并打开串口; 6.将实验板上的拨码开关全部拨到ON; 7.下载程序到实验板上: 打开quartusⅡ5.0软件,选择Tools/programmer,设置Hardware Setup为ByteBlasterll[LPT1],Mode为Passive Serial,单击Add File,选择文件路径E:\实验平台程序与文档\通信原理实验平台程序与文档 \FPGA\toplevel.sof,文件选择完毕后,单击Start 进行程序下载,当 程序下载完毕,且在实验板下载指示灯(LED后四位)未灭时,拔掉实 验板上下载线,如果此过程中指示灯灭了,显示程序下载过程失败,请 重新单击Start进行下载。 完成以上操作步骤后,同学们可以开始进行以下实验内容。

实验一、实验平台基础实验 实验步骤: 通信原理实验界面,选择基础实验,开始以下实验步骤:串口收发及其测温实验 1.点击测温按钮,查看并分析实验结果; 2.发送两位16进制数字,观察LED的变化是否与设定值相同; 3.改变拨码开关并接收数据,查看并分析返回数值。 单片机波形发生器实验 1.填入合适的峰峰值和频率值,选择要生成的波形,单击开始; (由于实验箱问题,输入的峰峰值和示波器测出来的峰峰值有误差) 2.用示波器观察TP13点的输出波形。 语音录放实验 暂时不做 实验结果: 整理实验数据,画出各测试点的波形。 实验二、直接数字频率合成和数字调制实验 实验步骤: DDS频率合成实验 1.进入数字调制技术界面,选择直接数字频率合成; 2.在左方文本框中填入合适的频率值并发送; 3.用示波器观察TP35的DDS输出波形,修改输入值,观察DDS所产生 的频率。 FSK调制实验 1.在两个文本框中分别填写合适的频率值并发送; 2.用示波器观察TP35波形,验证是否为原输入信号相对应的FSK信号。 BPSK、DPSK、ASK调制实验操作均同FSK操作

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

《通信原理》实验设计报告

中南大学《通信原理》 实验设计报告 学院: 专业班级: 姓名: 学号: 指导老师: 设计时间:

目录 第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 (1) 实验五:数字锁相环与位同步 (6) 实验六:帧同步 (13) 实验七:时分复用数字基带通信系统 (17) 第二部分实验设计部分 设计任务与要求 (22) 方案设计与论证 (22) 源程序与仿真结果 (24) 系统性能分析 (29) 程序调试 (29) 结论与心得 (30) 参考文献 (31)

第一部分硬件部分实验报告 实验一:模拟锁相环与载波同步 一、实验目的 1. 掌握模拟锁相环的工作原理,以及环路的锁定状态、失锁状态、同步带、捕捉带等基本概念。 2. 掌握用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法。 3. 了解相干载波相位模糊现象产生的原因。 二、实验内容 1. 观察模拟锁相环的锁定状态、失锁状态及捕捉过程。 2. 观察环路的捕捉带和同步带。 3. 用平方环法从2DPSK信号中提取载波同步信号,观察相位模糊现象。 三、基本原理 通信系统中常用平方环或同相正交环(科斯塔斯环)从2DPSK信号中提取相干载波。本实验系统的载波同步提取模块用平方环,原理方框图如图3-1所示,电原理图如图3-2所示(见附录)。模块内部使用+5V、+12V、-12V电压,所需的2DPSK输入信号已在实验电路板上与数字调制单元2DPSK输出信号连在一起。 图3-1 载波同步方框图 本模块上有以下测试点及输入输出点: ? MU平方器输出测试点,VP-P>1V ? VCO VCO输出信号测试点,VP-P>0.2V ? Ud鉴相器输出信号测试点 ? CAR-OUT 相干载波信号输出点/测试点 图3-1中各单元与电路板上主要元器件的对应关系如下: ? 平方器 U25:模拟乘法器MC1496

通信原理答案第五章

第五章 5-1 已知线性调制信号表示式如下: (1)t t c ωcos cos Ω,(2)t t c ωcos )sin 5.01(Ω+。 式中,Ω=6c ω。试分别画出它们的波形图和频谱图。 1(1)cos cos [cos()cos()] 2[cos cos ]{[()][()][()][()]} 2 1 (2)(10.5sin )cos cos [sin()sin()] 4 [(10.5sin )cos ][()(c c c c c c c c c c c c c c c t t F t t t t t F t t ωωωπ ωδωωδωωδωωδωωωωωωωπδωωδωωΩ=-Ω++Ω∴Ω= --Ω++-Ω+-+Ω+++Ω+Ω=+-Ω++Ω∴+Ω=-++Q Q 解:)]{[()][()] 4 [()[()]]} c c c c j π δωωδωωδωωδωω++-Ω---Ω+++Ω--+Ω 5-2 根据图P5-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。

图P5-1 m(t) t 解: 从波形中可以看出,DSB 信号经过包络检波器后输出波形失真,不能恢复调制信号;而AM 信号经过包络检波器后能正确恢复调制信号。 m(t) t 0 S DSB (t) 0 t S AM (t) t 5-3已知调制信号m (t )=cos(2000πt ),载波为cos104 πt ,进行单边带调制,试确定该单边带信号的表示式,并画出频谱图。 ()sin(2000)sin(4000) 1111 ()()cos ()sin cos(12000)cos(14000) 22221111 ()()cos ()sin cos(8000)cos(6000) 2222 USB c c LSB c c m t t t s t m t t m t t t t s t m t t m t t t t ππωωππωωππ=+=-=+=+=+) ))解:则 f (kHz) S SSB (ω) 上边带 -7 –6 -4 -3 0 3 4 6 7 上边带 下边带 下边带 5-4 将调幅波通过残留边带滤波器产生残留边带信号。若此滤波器的传输函数H( ) 如图P5-2所示(斜线段为直线)。当调制信号为()[100600]m t A sin t sin t ππ=+时,试确定所得残留边带信号的表达式。 14 -14 H ( ) 1 f/kHz

相关主题
文本预览
相关文档 最新文档