当前位置:文档之家› DEFORM实验报告——镦粗

DEFORM实验报告——镦粗

DEFORM实验报告——镦粗
DEFORM实验报告——镦粗

铜陵学院课程实验报告

实验名称圆柱体压缩过程模拟

实验课程材料成型计算机模拟

指导教师张金标

专业班级09材控(1). 姓名万伟

学号0910121059

2012年04月29日

实验一 圆柱体压缩过程模拟

1 实验目的与内容

1.1 实验目的

进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与热能,学会运用DEFORM 软件分析压缩变形的变形力学问题。

1.2 实验内容

运用DEFORM 模拟如图1所示的圆柱坯压缩过程。

(一)压缩条件与参数

锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。 工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度室温。

表1 实验参数

序号 圆柱体直径,mm 圆柱体高度,mm 摩擦系数,滑

动摩擦 锤头运动速度,mm/s

压缩程度,

%

1 100 150 0 1 20

2 100 150 0.2 1 20

3 100 250 0 1 20 4

100

250

0.2

1

20

(二)实验要求

砧板

工件

锤头

图1 圆柱体压缩过程模拟

(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出;

(2)设计模拟控制参数;

(3)DEFORM前处理与运算(参考指导书);

(4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态;

(5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因;

(6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。

2 实验过程

2.1工模具及工件的三维造型

根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,top die,bottom die,输出STL格式。

2.2 压缩过程模拟

2.2.1 前处理

建立新问题:程序→DEFORM-3D Ver 6.1→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前前处理界面;

单位制度选择:点击Simulation Control按钮→Main按钮→在Units栏中选中SI (国际标准单位制度)。

添加对象:点击+按钮添加对象,依次为“workpiece”、“top die”、“bottom die”。

定义对象的材料模型:在对象树上选择workpiece →点击General按钮→选中Plastic选项(塑性)→点击Assign Temperature按钮→填入20→点击OK按钮;在对象树上选择top die →点击General按钮→选中Rigid选项(刚性)→点击OK按钮→勾选Primary Die选项→如此重复,定义其它工模具的材料模型(不勾选Primary Die 选项)。

实体网格化:在对象树上选择workpiece→点击Mesh (采用绝对划分)→点击Detail Settings→选择Absolute→将Min Element Size中数据改为3→点击Surface Mesh→Solid Mesh,工件网格生成;

工件体积补偿:在对象树上选择workpiece→点击Property→在Target V olume卡上选中Active选项→点击Calculate V olume按钮→点击Yes按钮。

设置对象材料属性:在对象树上选择workpiece→点击Material右边;Load material from library→点击other→选择DIN-CuZn40Pb2→点击了Load完成材料属性的添加;同理应用于top die,bottom die 材料的添加。

设置主动工具运行速度:在对象树上选择top die →点击Movement→在speed/force选项卡的type栏上选中Speed选项→在Direction选中主动工具运行,选择-Z→在speed卡上选中Define选项,其性质选为Constant value,填入速度值,1mm/s;

步数和步长的设定:在工具栏上点击Simulation Control按钮→点击Step,在Number of Simulation Steps右格中填入30→Step Increment to Save 格中输入3→点击With die Displacement ,输入1mm。(后面三个实验根据实际设定步数及步长)边界Inter-Object按钮→在对话框上选择workpiece —top die→点击Edit按钮→点击Deformation卡Friction栏上选中Shear和Constant 选项,填入摩擦系数0(一般默认是0)→点击Close按钮→点击Apply to other Relations,点击Generate all按钮→点击OK按钮完成边界条件设置;

2.2.2 生成库文件

在工具栏上点击Database generation按钮→点击Check按钮→没有错误信息则点击Generate按钮→完成模拟数据库的生成。

2.2.3 退出前处理程序

在工具栏上点击Quit按钮,退出前处理程序界面。

2.2.4 模拟运算

在主控程序界面上,单击项目栏中的forging.DB文件→单击Run按钮,进入运算对话框。

2.3 后处理

模拟运算结束后,在主控界面上单击forging.DB文件→在Post Processor栏中单击DEFORM-3D Post按钮,进入后处理界面。

1)观察变形过程:点击播放按钮查看成型过程;

2)观察温度变化:在状态变量的下拉菜单中选择Temperature,点击播放按钮查看成型过程中温度变化情况;

3)观察最大应力分布:在状态变量的下拉菜单中选择Max Stress,点击播放按钮查看成型过程中最大应力分布及其变化情况;

4)观察最大应变分布:在状态变量的下拉菜单中选择Max Strain,点击播放按钮查看成型过程中最大应变分布及其变化情况;

5)观察破坏系数分布:在状态变量的下拉菜单中选择Damage,点击播放按钮查看成型过程中可能产生破坏的情况;

6)成型过程载荷:点击Load Stroke按钮,生成变形工具加载曲线图,保存图形文件为load.png;

7)点跟踪分析:点击Point Tracking按钮,根据上图点的位置,在工件上依次点击生成跟踪点,点击Save按钮,生成跟踪信息,观察跟踪点的最大应力、最大应变、温度、破坏系数,保存相应的曲线图。

3 实验结果与分析

以下实验(a)方案代表高度为150mm、摩擦系数为0;

(b)方案代表高度为150mm、摩擦系数为0.2;

(c)方案代表高度为250mm、摩擦系数为0;

(d)方案代表高度为250mm、摩擦系数为0.2;

3.1圆柱体压缩变形大致过程

(b ) 高度为150mm 、摩擦系数为0.2压缩变形过程

(c )

高度为250mm

、摩擦系数为0

压缩变形过程

(d )高度为250mm 、摩擦系数为0.2压缩变形过程 图2 (a )、(b )(c )(d )四种方案的压缩变形过程

(a ) 高度为150mm 、摩擦系数为0压缩变形过程

从上图2中对比可以明显看出方案(a)与方案(c)在压缩过程中都是均匀变形,未出现鼓形轮廓,而方案(b)与方案(d)在压缩过程中出现不均匀变形,圆柱体四周出现鼓形轮廓。由此可知圆柱体在镦粗时除受变形工具的压缩力外,在与工具接触的端部还受接触摩擦力的作用,由于接触摩擦力阻碍金属质点横向流动,使圆柱体在镦粗时产生鼓形。对比方案(c)、(d),即在有摩擦条件下(摩擦系数相等),当H/d <2比H/d>2 出现的单鼓形较为明显。

3.2 最大应力比较

a)高度为150mm、摩擦系数为0

(b)高度为150mm、摩擦系数为0.2

(d) 高度为250mm、摩擦系数为0.2

图3 (a)、(b)、(c)、(d)四种方案的最大应力分布

观察下图3 (a)、(b)、(c)、(d)四种方案的最大应力分布

(1)高度相同,接触摩擦系数不同:

①由上图3中对比方案(a)和方案(b),圆柱体表面及内部最大应力分布截然不同。方案(a)中最大应力2.24Mpa(最大拉应力),最小应力为-2.48Mpa(最大压应力),而最大应力主要分布在圆柱体的表面以及接触面的边缘处,内部应力分布比较均匀,主要为压应力,分布比较均匀。方案(b)中最大应力为9.42Mpa,最小应力为-99.6Mpa,最大应力主要位于圆柱体的表面以及靠近表面处,此区由于环向(切向)出现附加拉应力使其应力发生变化,环向拉应力越靠近外层越大,而径向压应力越靠近外层越小。最大压应力位于圆柱体上下断面的圆心处,压应力延径向逐渐减小,在应力图中呈现出同心圆;延轴线向内呈锥形逐渐减小。由于圆柱体端部的接触面附近,受接触摩擦的影响较大,在原理与垂直面的作用力轴线呈大致45度交角的易产生划一的,在此区域产生塑性变形较为困难,具有强烈的三向压应力状态。

②比较方案(c)和方案(d),方案(c)中最大应力为1.37Mpa,最小应力为

1.53Mpa,最大拉应力主要分布在圆柱体的表面,最小应力即最大压应力一小点区域分布在圆柱体表面,应力分布比较均匀。方案(b)中最大应力为5.22Mpa,最小应力为-58.3Mpa,其分布及形成原因与方案(b)类似。

(2)接触摩擦系数相同,高度不同:

①比较方案(a)和方案(c),摩擦系数均为0时,压下量越大,产生的附加应力拉应力和附加压应力就越小,最大拉应力和最大压应力均分布在圆柱体表面上。

②比较方案(b)和方案(d),摩擦系数均为0.2时,压下量越大,圆柱体压缩

变形过程中最大压应力越小,最大拉应力越小,且应力分布区域大致相同。

综上所述,接触摩擦系数以及高度对圆柱体镦粗时变形均有影响。

3.3最大应变比较

观察下图4中(a)、(b)、(c)、(d)四种方案的最大应变分布

(1)高度一样,接触摩擦系数不一样:

①比较方案(a)和方案(b),从表面及内部的应变状态图可以得出,无摩擦镦粗时,应变分布比较均匀,圆柱体的四周处于拉伸状态,轴向处于压缩状态,属于典型的一向压缩,两向拉伸状态,为自由变形;而方案(b)有摩擦镦粗时,圆柱体应变分布不均匀:位于圆柱体端部接触面附近,由于受接触面摩擦影响较大,且远离与垂直作用力轴线呈大致45度交角的最有利滑移区域,在此区域内产生塑性变形较为困难,为难变形区;处于与垂直作用力大致为45度交角的最有利变形区域,且受摩擦影响较小,因此在此区域内最易发生塑性变形,为易变形区。处于易变形区四周的区域,其变形量介于难变形区与易变形区之间,为自由变形区。观察变形前后的圆柱体的形状,便可以发现其形状在变形后呈单鼓形(不够明显)。

②比较方案(c)和方案(d)的应变分布及其分析原因于①中大致相同。由此可以得出,接触摩擦系数对应变的分布有影响。

(2)接触摩擦系数相同,高度不同:

①比较方案(a)和方案(c),圆柱体接触摩擦系数均为0时,其表面应变分布和内部应变分布都比价均匀,符合压缩过程中均匀变形;

②比较方案(b)和方案(d),圆柱体接触摩擦系数均为0.2时,其表面应变分布和内部应变分布都不均匀,各部分最大应变存在的明显的差异。

综上可以得出,圆柱体在压缩变形过程中,接触摩擦系数和圆柱体高度对对最大应变均有不同程度的影响。

(b) 高度为150mm、摩擦系数为0.2 (c)高度为250mm、摩擦系数为0

3.4 温度变化比较

(a)(b)

(c)(d)

图5 (a)、(b)、(c)、(d)四种方案压缩变形后温度变化

从图5中可以看出,(a)、(b)、(c)、(d)四种方案压缩变形后温度基本上无明显变化,原因都是在室温20°环境下模拟的,圆柱体与锤头和砧板无热交换。从理论上分析,金属在进行塑性变形时,由于金属流动而产生些许热量,应有温度变化,但未出现温度变化,可能的原因是压缩变形的时间过长(30s、50s),变形产生的热散失了。

而且,有接触摩擦的在压缩变形过程中产生的变形热更多,都未能表现出来。

3.5 压缩变形后破坏系数的比较

从图6中可以看出,(a)、(b)、(c)、(d)四种方案压缩变形后破坏系数均未发生变化,即损伤系数均为0。从理论上分析可以得出,方案(a)和方案(c )压缩变

形属于均匀变形,损伤系数应该为0,但是方案(b )和方案(d )压缩变形属于不均匀变形,如方案(b )在压缩过程中产生单鼓形,在圆柱体四周产生较大的环向拉应力作用,也就意味着由于处于拉应力的作用下,圆柱体四周会出现裂纹或者潜在的微观裂纹,即使压下率只有20%。所以在用DEFORM 进行模拟时,也存在一些缺陷。

3.6 行程载荷曲线分析

(a) (b)

(c)

(d)

图5 (a )、(b )、(c )、(d )四种方案压缩变形后破坏系数变化

(c) (d)

图7 (a)、(b)、(c)、(d)四种方案压缩变形过程中行程载荷曲线

观察上图7、下图8和表二所示:

(1)总体分析:四种方案中行程载荷曲线的大致走向呈逐渐上升趋势,整个过程大致可以分两个阶段,第一阶段为弹性变形阶段,此阶段载荷曲线的斜率大,即行程变化小而载荷力变化大,这是由于要克服原子间的相互作用力;第二阶段为塑性变形阶段,此阶段载荷曲线的斜率较小,即行程变化大而载荷力变化小,在压缩变形过程中产生了加工硬化,使其变形抗力增加,故载荷力继续增加。

(2)高度相同,摩擦系数不同:

①比较方案(a)和方案(b),两者在弹性变形阶段和塑性变形阶段的行程载荷曲线大致平行(通过图7),有接触摩擦系数的压缩过程载荷力在相同时刻大于无摩擦的载荷力(通过表二)。

②比较方案(c)和方案(d)的结果与①大致相同,不过相对于方案(a)、(b)在塑性变形阶段,相同的变化行程,前者的载荷力变化较大。仔细观察(d)载荷曲线,在弹性变形结束后出现载荷力瞬间回落阶段,此阶段可能是由于接粗摩擦导致表面金属流动困难而使整体延45°方向发生滑移所致。

由上可知,接触摩擦系数影响行程载荷力,摩擦系数越大,载荷力越大,摩擦系数越小,载荷力越小(相对的)。

(3)摩擦系数相同,高度不同:

①比较方案(a)和方案(c),虽然两者都是属于均匀变形,但是从图7中可以明显看出,行程相同时,高度越低,载荷力越大;反之,越小。即使压下程度相同

时,最终结果,高度越低,载荷力越大;反之,越小。

②比较方案(b )和方案(d ),两者都属于不均匀变形,比较同上述①类似。

综上可知圆柱体的接触摩擦系数和高度对其镦粗变形过程中行程载荷有较大影响,接触摩擦系数越大,载荷力越大,高度约低,载荷力越大。

Time (sec) Z Load (N )

(a)

(b)

(c) (d) 0 0

0 0 1 1536559.1 1571013.9 916138.0 982345.2 2 1555359.3 1592030.3 925071.2 936406.3 3 1576448.0 1613672.3 934264.6 947763.8 4 1597950.8 1636006.2 940890.9 954821.9 5 1620114.7 1658812.1 948873.3 961347.2 6 1642423.6 1682114.6 956557.3 969894.0 7 1665312.3 1705904.9 964378.0 978061.6 8 1688665.2 1730207.0 972310.2 986152.4 9 1712503.6 1755036.4 980348.8 994291.8 10 1736855.5 1780403.0 988488.4 1002602.6 11 1761708.8 1806322.6 996734.0 1011118.5 12 1787111.9 1832813.4 1005084.6 1019615.2 13 1813089.4 1859893.2 1013540.9 1028277.6 14

1839622.3

1887578.6

1022103.4

1037049.9

表二 (a )、(b )、(c )、(d )四种方案压缩变形过程中行程载荷数据

图8 (a )、(b )、(c )、(d )四种方案下载荷曲线对比

15 1866743.3 1915880.9 1030776.8 1045936.1

16 1894469.2 1944828.4 1039561.7 1054940.8

17 1922816.9 1974434.6 1048458.0 1064061.3

18 1951804.4 2004737.1 1057470.5 1073302.2

19 1981457.6 2035737.8 1066599.6 1082616.0

20 2011783.2 2067456.9 1075846.5 1092142.3

21 2042808.0 2099921.4 1085214.3 1101750.2

22 2074562.6 2133151.6 1094707.3 1111485.6

23 2107058.0 2167163.6 1104323.2 1121349.5

24 2140323.3 2202027.5 1114066.8 1131345.9

25 2174381.4 2237730.5 1123938.4 1141480.2

26 2209267.2 2274304.3 1133942.9 1151747.6

27 2244991.1 2311777.2 1144081.0 1162154.8

28 2281589.0 2350185.9 1154355.0 1172701.9

29 2319088.9 2391299.5 1164770.5 1183394.1

30 2357519.8 2431706.0 1175325.6 1194237.3

31 . . 1186025.6 1205223.6

32 1196872.2 1216364.6

33 1207868.4 1227660.1

34 1219018.3 1239115.2

35 1230322.8 1250732.0

36 1241784.2 1262512.0

37 1253405.5 1274459.4

38 1265192.6 1286576.8

39 1277145.4 1298868.7

40 1289268.2 1311336.5

41 1301565.1 1323982.6

42 1314041.0 1336815.1

43 1326694.3 1349835.0

44 1339530.9 1363046.2

45 1352553.2 1376451.2

46 1365772.9 1390056.3

47 1379179.5 1403864.5

48 1392787.6 1417877.8

49 1406598.8 1432097.1

50 1420616.6 1446536.5 3.7 点追踪最大应力变化.

(a)(b)

(c) (d)

图9 (a)、(b)、(c)、(d)四种方案下点追踪最大应力变化趋势

总体上来分析,无论是均匀变形还是不均匀变形,在变化趋势上主要分两个阶段,一是弹性变形阶段,应力变化大;二是塑性变形阶段,应力变化小(相对于弹性变化阶段)。

(1)比较方案(a)和方案(b),在选取的8个追踪点中,最大的不同点就是其中方案(a)中7号点的应力为拉应力且逐渐变大,而方案(b)中7号点的应力为压应力,且压应力逐渐增大。其余对应点的变化趋势大致相同。如果细看(b),点1、2、3三点的应力在相同时刻依次减小,由于圆柱体表面有接触摩擦,产生粘着区,都处于三向压应力状态。

(2)比较方案(c)和方案(d),其变化趋势同(1)大致相同。方案(d)中

圆柱体上表面处于强烈的三向压应力状态,而曲线的走势与其他点明显不同,其他点的应力变化几乎很小,甚至没什么变化。

(3)比较方案(a )和方案(c ),虽然选取的点的位置不一样,但是应力的变化趋势大致一样,例如,方案(a )选取的点7和方案(c )中选取的点6差不多都位于圆柱体表面,其变化趋势大致相同。

(4)比较方案(b )和方案(d ),从图中可以明显看出位于圆柱体上表面的应力变化趋势大致相同,而其他部位的应力变化相差较大,方案(b )中4、5、6、7、8五点的应力均为压应力,且压应力逐渐增大,变化趋势明显;方案(d )中其余点的应力变化很小,变化趋势比明显。

3.8 点追踪最大应变变化

总体分析得出,方案(a )、(b )、(c )、(d )中点追踪最大应变变化趋势基本上

相同,呈上升趋势,每个点的应变大致相同,唯一明显不同的是方案(d )中点1、

(c ) (d )

(a ) (b )

图10 (a )、(b )、(c )、(d )四种方案下点追踪最大应变变化趋势

2、3、4四点的上升变化趋势较其他点缓慢,这是由于产生的粘着区和侧面翻平导致的。高度越高,这种变化趋势越明显。

4 实验小结

本实验通过AUTOCAD和DEFORM对镦粗过程进行了模拟,通过对有无接触摩擦、坯料高度不同的对比分析,验证接触摩擦和坯料高度对均匀变形及不均匀变形的变形特点,本次DEFORM模拟实验,对镦粗过程有了更一层次的了解。

通过自己在图书馆借阅书籍查看,初步运用了DEFORM进行简易的应用,通过镦粗的前处理和求解以及后处理。在模拟过程中,镦粗变形后坯料的温度与破坏系数均为发生变化,从理论上分析应有稍微的变化,这可能就是DEFORM模拟的一个缺点。

DEFORM能够帮助我们设计工具和产品工艺流程,减少昂贵的现场试验成本。提高了工模具设计效率,降低生产和材料成本。缩短了产品的研究开发周期。同时我也学会了使用DEFORM-3D进行简单的材料成型模拟,分析成型过程中工件的应力、应变、破坏系数及挤压工具载荷的变化。

deform挤压模拟课程设计

课题: 材料成型计算机模拟系别: 机械工程学院专业班级: 11级材控1班 指导教师: 张金标 组别: 第五组 2014年6月

第一章课程设计内容及任务分配.............................................................................................................. - 1 - 1.1 概述.......................................................................................................................................................... - 1 - 1.2 设计目的.................................................................................................................................................. - 1 - 1.3 设计内容.................................................................................................................................................. - 1 - 1.4 设计要求.................................................................................................................................................. - 1 - 1.5 挤压方案任务分配.................................................................................................................................. - 2 - 第二章工艺参数.......................................................................................................................................... - 3 - 2.1 工艺参数的设计...................................................................................................................................... - 3 - 2.1.1 摩擦系数的确定.................................................................................................................................... - 3 - 2.1.2 挤压速度的确定.................................................................................................................................... - 3 - 2.1.3 工模具预热温度的确定........................................................................................................................ - 3 - 第三章模具尺寸的确定.............................................................................................................................. - 4 - 3.1 挤压工模具示意图.................................................................................................................................. - 4 - 3.2 模具尺寸的确定...................................................................................................................................... - 4 - 3.2.1挤压模结构尺寸的确定......................................................................................................................... - 4 - 3.2.2 挤压筒结构尺寸的确定...................................................................................................................... - 6 - 3.2.3 挤压垫的结构及尺寸确定.................................................................................................................... - 7 - 第四章实验模拟及数据提取分析............................................................................................................ - 8 - 4.1挤压工模具及工件的三维造型............................................................................................................... - 8 - 4.2 挤压模拟.................................................................................................................................................. - 8 - 4.3 后处理...................................................................................................................................................... - 9 - 4.4分析数据................................................................................................................................................... - 9 - 4.5 坯料温度对挤压力的影响.................................................................................................................... - 10 - 4.6 坯料预热温度对破坏系数的影响........................................................................................................ - 11 - 个人小结........................................................................................................................................................ - 12 - 参考文献........................................................................................................................................................ - 21 - 附表《塑性成型计算机模拟》课程设计成绩评定表

deform模拟常见问题

1.我用deform模拟轧制过程时,推动块(pusher)和轧件(slab)再整个运动过程中始终粘在一起,我设置多个轧辊速度都不能使其分离,为什么?请高手指点? (1)你给推动块设置一个速度时间曲线就可以了吧,让它在某一时间停下来,不就分离了 2.DEFORM的一些参数跟我们传统理工科的习惯很不一致,导致建模、模拟的时候经常会莫名的出错,而且很难找出问题出在哪里!比如:(1) 边界条件设置(BDRY)中的压强(pressure)——按照我们的习惯,施加在面上的应为压应力(因为是压强嘛),如果想设置为拉应力的话,要取负值;可在DEFORM中却是相反的。不信你建个简单的立方体模型,上下面加压(正的值),模拟结果很明显是物体被拉长了!(2) 旋转方向设置——如果从旋转轴的箭头方去看,我们通常以顺时针为正;可是在DEFORM中是反过来的!而且有的时候你选了轴,可在用系统选定旋转中心点后(俗称小绿帽),刚刚选好的轴会更改,本来你选的-X,它有时会变成+X(很奇怪!),出现这种情况只能通过正负值的设定来改变旋转方向了。特别是在轧制、旋压加工的时候,千万要看准工作辊旋转方向!(3)边界条件设置(BDRY)中的力(force)——这地方的正负值仅仅是决定方向的,更值得注意的地方是:有时候你设置的拉力或张力在生成DB文件的时候不写入的(可能是DEFORM有个许可范围,你设置的值溢出了),也就是说你的边界力是没有加上去的,模拟的时候为零。还要注意,你输入的力值是加在每个所选的节点上的,举例:你想在面上加载100kN的力,面上节点数为100,这时你在力值的输入窗口所写的值应为1kN。类似的细节问题还有很多,一不小心或稍有不熟悉就可能出问题,而且很难排查出,最伤人了! (1)正应力—拉、负应力—压是常识呀;旋转方向的判别采用右旋定则,即右手握住旋转轴,大拇指伸直与旋转轴正向一致。 3.我用Dform 3D进行轧制模拟,起初用稳态ALE模型,但是轧件扭曲很严重,计算很快就终止了。换成增量ALE以后,便基本顺利完成了轧制的模拟(模拟

deform3D实验报告

学生学号0120801080128 实验课成绩 学生实验报告书 实验课程名称材料成型数值模拟设计实验 开课学院材料学院 指导教师姓名朱春东、钱东升 学生姓名王丹丹 学生专业班级成型0801 2011-- 2012学年第一学期

实验教学管理基本规范 实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平 与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高 学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参 照执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验 报告外,其他实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容和评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有 实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。 附表:实验考核参考内容及标准 观测点考核目标成绩组成 实验预习1.预习报告 2.提问 3.对于设计型实验,着重考查设计方案的 科学性、可行性和创新性 对实验目的和基本原理 的认识程度,对实验方 案的设计能力 20% 实验过程1.是否按时参加实验 2.对实验过程的熟悉程度 3.对基本操作的规范程度 4.对突发事件的应急处理能力 5.实验原始记录的完整程度 6.同学之间的团结协作精神 着重考查学生的实验态 度、基本操作技能;严 谨的治学态度、团结协 作精神 30% 结果分析1.所分析结果是否用原始记录数据 2.计算结果是否正确 3.实验结果分析是否合理 4.对于综合实验,各项内容之间是否有分 析、比较与判断等 考查学生对实验数据处 理和现象分析的能力; 对专业知识的综合应用 能力;事实求实的精神 50%

Deform-3D在挤压中的应用1

Deform-3D在挤压中的应用挤压就是对放在容器(挤压筒)内的金属锭坯从一端施加外力,强迫其从特定的模孔中流出,获得所需要的断面形状和尺寸的制品的一种塑性成型方法。 挤压过程分为开始(填充)挤压阶段、基本(平流)挤压阶段和终了(紊流)挤压三个阶段。在填充挤压阶段:金属发生横向流动,出现单鼓或双鼓变形。随着挤压杆的向前移动,挤压力呈直线上升。随着填充过程中锭坯直径增大,在锭坯的表面层出现了阻碍其自由增大的周向附加拉应力。随着填充过程进行,锭坯长度缩短,直径增大,中间部分首先与挤压筒壁接触,由于摩擦作用,从而在表面层出现了阻碍金属向前后两个空间流动的纵向附加拉应力。在基本挤压阶段:金属不发生横向流动。挤压力随挤压杆向前移动几乎呈直线下降。在终了挤压阶段:金属的横向流动剧烈增加,并产生环流,挤压力增加,产生挤压缩尾。这些因素使其变形机理非常复杂,很难用准确的数学关系式进行描述,从而导致生产过程中对产品质量控制的难度增大。采用DEFORM软件对大变形生产工序进行模拟分析和控制,能有效地对挤压生产进行指导。这里主要介绍DEFORM塑性成形模拟的基本过程和方法。 关键字:DEFORM 挤压塑性成形 DEFORM软件模拟塑性成形的基本流程: (1)几何模型的建立。 DEFORM-3D不具有三维造型功能,所以物理模型要在其他三维软

件中建立。例如用CAD,Pro/e,UG等三维造型软件造型,然后,通过另存为STL格式,实现模型与数值模拟软件间的数据转换。 (2)网格的划分与重划分。 划分网格是将问题的几何模型转化成离散化的有限元网格。分网时要根据问题本身的特点选择适当的单元类型。根据问题的几何和受力状态的特点,尽可能的选用比较简单的的单元类型。网格划分的方法有映射法或称为结构化的方法和自由的或非结构化的方法两种,根据不同问题类型应选用合适的方法划分网格。网格划分太大则模拟精度降低;网格划分太小模拟准确性上升,但是模拟时间增加,效率降低。所以选择一个合适的网格划分方式和网格划分大小至关重要。用刚(黏)塑性有限元法计算材料成型过程时,随着变形程度的增加和动态边界条件的变化,初始化分好的规则有限元网格,会发生部分畸变现象,网格出现不同程度的扭曲,从而影响有限元的计算精度,严重时会使迭代过程不收敛,这时就需要进行网格的重新划分,保证仿真过程中材料经大量流动后仍然可以继续,获得的结果仍然具有足够的精度。Deform在网格畸变到一定程度后会自动进行网格重划分,生成搞质量的网格。 (3)材料模型的建立及其他参数设置 功能强的分析软件提供的材料模型种类较多,用户可以根据问题的主要特点,精度要求即可得到的材料参数选择合适的模型,并输入相关参数。越是复杂的模型,其计算精度越高;但计算量也会提高,同时所需输入的材料参数也越多。一般而言,材料的物理性能和弹

Deform 6.1 开式模锻模拟实例

一.DEFORM软件介绍 DEFORM系列软件是由位于美国Ohio Clumbus的科学成形技术公司(Science Forming Technology Corporation)开发的。该系列软件主要应用于金属塑性加工、热处理等工艺数值模拟、它的前身是美国Battelle实验室开发的ALPID软件。在1991年成立的SFTC公司将其商业化,目前,Deform软件已经成为国际上流行的金属加工数值模拟软件之一。 其主要软件产品有: 1. DEFORM-2D(二维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析平面应变和轴对称等二维模型。它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。 2. DEFORM-3D(三维) 适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。可以分析复杂的三维材料流动模型。用它来分析那些不能简化为二维模型的问题尤为理想。 3. DEFORM-PC(微机版) 适用于运行Windows 95,98和NT的微机平台。可以分析平面应变问题和轴对称问题。适用于有限元技术刚起步的中小企业。 4. DEFORM-PC Pro(Pro版) 适用于运行Windows 95,98和NT的微机平台。比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。 5. DEFORM-HT(热处理) 附加在DEFORM-2D和DEFORM-3D之上。除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。 二.模锻模拟 2.1 创建一个新的题目 正确安装DEFORM 6.1后运行程序DEFORM-3D,其界面如下图所示。

实验报告镦粗报告

实验报告 实验名称EFORM-3D镦粗仿真实验实验课程锻造工艺及模具设计 指导教师 专业班级 姓名 学号 2013年4月 1 日

实验一DEFORM-3D镦粗仿真实验 1 实验目的与内容 实验目的 通过DEFORM软件平台实现镦粗过程的仿真模拟实验。了解材料在不同工艺条件下的变形流动情况,熟悉镦粗变形工艺特点。掌握圆柱体镦粗过程的应力应变场分布特点。 实验内容 运用DEFORM模拟如图1所示的圆柱坯压缩过程。 图1 镦粗实验模型 (一)工艺条件 上模:Φ200×50,刚性材料,初始温度200℃; 下模:200×200×40。 工件:16钢,尺寸如表1所示。 序号圆柱体直 径,mm 圆柱体高 度,mm 摩擦系数, 滑动摩擦 加热温 度℃ 锤头运动速度, mm/s 镦粗行程 1 80 150 0 900 500 40 2 80 150 1200 500 40 3 80 250 0 900 500 40 4 80 250 1200 500 40 (二)实验要求

(1)运用三维如阿健绘制各模具部件及棒料的三维造型,以stl格式输出; (2)设计模拟控制参数; (3)DEFORM前处理与运算; (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图; (5)比较方案1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因; (6)提交分析报告及分析日志文件(log)。 2 实验过程 1)建模 通过UG将压缩的模型绘制出来,分别为坯料圆柱直径80mm高150mm和圆柱直径80mm高250mm,并将它们各自的三部分分别导出为stl格式,并保存。2)镦粗模拟 a. 打开一个deform软件,新建一个文件。(Insert object)添加坯料Workpiece,上模Top Die,下模Bottom Die,并导入相应的之前保存的stl格式文件(Import); b. 修改坯料的General,其中设定Object Type为plastic,AssignTemperature 为给定的900/1200;(Mesh)将坯料分为20000/40000份,并预览(Preview),General Mesh;选择坯料的材料(Material)为16号钢;在Property中计算坯料的体积,选择自动计算(Active); c. 修改Top Die的General,其中设定Object Type 为Rigid,Assign Temperature 为200;设定其Movement 速度为500in/sec; d. 设定Bottom Die 的General ,其中设定Object Type 为Rigid,Assign Temperature 为200; e. 设定Simulation Control 中的Units为SI,Step中的Starting Step Number 为-1,Number of Simulation Steps 为40,Step Increment to Save 为1,Primary Die 为Top Die ,With Constant Die Displacement为1in.,然后点击OK。 f. 设置摩擦系数,分别为0和 g. 保存并检核(Check),然后退出 h. 运行(Run) 3)后处理 可以通过选择查看压缩的每一步的变形过程,Damage ,Strain-Effective ,Strain Rate -Effective ,Stress Effective ,Stress Max-Principal ,Temperature ,以及载荷行程曲线等。通过这些参数来检查所设定的这些数据是否合理。 3 实验结果及讨论 1)变形过程(抓取6步) 第一组数据:

DEFORM模拟锻造过程中的憋气

DEFORM模拟锻造过程中的憋气 模锻件生产过程中,最常见的缺陷之一是未充满模具型腔,其中主要原因有结构设计上的不合理,造成模具中的气体在金属流动过程中被过早封闭于型腔内,无法及时排除型腔,尤其润滑液较充分的时候,影响更加明显。目前大部分金属成形仿真软件实际计算过程中,并没有由于憋气造成未充满缺陷,这给工艺人员判断是否会存在憋气造成未完全充满型腔缺陷的直观判断造成困扰。 DEFORM模拟仿真软件是目前世界上最著名的金属成形仿真软件,它能够模拟金属整个成形及热处理过程,预测各个阶段可能出现的缺陷,分析产生缺陷的原因,帮助工艺人员在工艺及模具设计阶段提前修正和优化。未充满型腔缺陷也是DEFORM能够精准预测的缺陷之一,该缺陷的精准性模拟主要体现在能够区分模拟有排气孔、无排气孔憋气、无排气孔憋油的充满型腔的结果。 DEFORM憋气模拟原理是以变形体与模具构成一个型腔的封闭情况和气体或油的体积模量来计算,如下图1所示,当构成这样一个封闭的型腔时(红色圈区域),通过理想气体定律,工件表面将增加一个压力,最终轻微的未充满被标记,如图2所示,通过高亮的绿色接触点可以看到。在这个案例中,即使两个物体已经被完全挤到一起,但仍然有细微的裂缝存在。 图1 受压作用下的体积

图2 最终状态下带有轻微未充满的体积 下面是一个简单的墩粗案例,当不考虑不憋气影响时,墩粗高度为88.5217mm,如果考虑了憋气的影响,墩粗高度为88.426mm,高度略低。但如果同时考虑了润滑油的影响,墩粗高度只有73.1683mm。 图3 不考虑憋气影响

图4 考虑憋气影响 图5 憋油影响 我们再看一个复杂模锻件如果考虑了憋气与憋油的影响,模拟计算结果如下:图6为不考虑憋气影响的模拟结果,与图7考虑憋气影响的模拟计算结果模具型腔充满性基本相同,完全充满了模具,但图7飞边部位的接触情况更加接近实际生产结果,而图8是考虑了润滑较充分的情况下憋油的影响,未充满区域较多, 与实际生产完全一致,生产时需要采取适当的润滑措施。

DEFORM模拟锻压挤压实验报告

铜陵学院课程实验报告 实验课程材料成型计算机模拟 指导教师 专业班级 姓名 学号 2014年05月11日

实验一 圆柱体压缩过程模拟 1 实验目的与内容 1.1 实验目的 进一步熟悉AUTOCAD 或PRO/E 实体三维造型方法与技艺,掌握DEFORM 软件的前处理、后处理的操作方法与热能,学会运用DEFORM 软件分析压缩变形的变形力学问题。 1.2 实验内容 运用DEFORM 模拟如图1所示的圆柱坯压缩过程。 (一)压缩条件与参数 锤头与砧板:尺寸200×200×20mm ,材质DIN-D5-1U,COLD ,温度室温。 工件:材质DIN_CuZn40Pb2,尺寸如表1所示,温度700℃。 (二)实验要求 (1)运用AUTOCAD 或PRO/e 绘制各模具部件及棒料的三维造型,以stl 格式输出; 砧板 工件 锤头 图1 圆柱体压缩过程模拟

(2)设计模拟控制参数; (3)DEFORM前处理与运算(参考指导书); (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态; (5)比较实验 1与2、3与4、1与3和2与4的模拟结果,找出圆柱体变形后的形状差别,说明原因; (6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。 2 实验过程 2.1工模具及工件的三维造型 根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、锤头和砧板的几何实体,文件名称分别为workpiece,topdie,bottomdie,输出STL格式。 2.2 压缩过程模拟 2.2.1 前处理 建立新问题:程序→DEFORM6.1→File→New Problem→Next→在Problem Name栏中填写“Forging”→ Finish→进入前前处理界面; 单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。 添加对象:点击+按钮添加对象,依次为“workpiece”、“topdie”、“bottomdie”。 定义对象的材料模型:在对象树上选择workpiece →点击General按钮→选中Plastic 选项(塑性)→点击Assign Temperature按钮→填入温度,→点击OK按钮;在对象树上选择topdie →点击General按钮→选中Rigid选项(刚性)→点击Assign Temperature 按钮→填入温度,→点击OK按钮→勾选Primary Die选项(定义为extusion dummy block 主动工具)→如此重复,定义其它工模具的材料模型(不勾选Primary Die选项)。 调整对象位置关系:在工具栏点击Object Positioning按钮进入对象位置关系调整对话框→根据挤压要求及实体造型调整相互位置关系→点击OK按钮完成; 模拟控制设置:点击Simulation Conrol按钮→Main按钮→在Simulation Title栏中填入“tuble extrusion”或“stick extrusion”→在Operation Title栏中填入“deform heat transfer”→选中SI选项,勾选“Defromation”选项,点击Stemp按钮→在Number of Simulation Stemps 栏中填入模拟步数→Stemp Increment to Save栏中填入每隔几步就保存模拟信息→在Primary Die栏中选择extusion dummy block(以挤压垫为主动工具)→在With Constant Time Increment栏中填入时间步长→点击OK按钮完成模拟设置; 实体网格化:在对象树上选择workpiece→点击Mesh →在Number of Elements卡上填入需要的网格数,如15000→点击Generate Mesh →工件网格生成; 说明:工模具不作分析,可以不进行网格划分。 设置对象材料属性:在对象树上选择workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加; 设置主动工具运行速度:在对象树上选择topdie →点击Movement→在speed/force选

deform2D实验报告

学生学号28 实验课成绩 学生实验报告书 实验课程名称材料成型数值模拟设计实验 开课学院材料学院 指导教师姓名朱春东、钱东升 学生姓名王丹丹 学生专业班级成型0801 2011-- 2012学年第一学期

实验教学管理基本规范 实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参 照执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验 报告外,其他实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容和评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作和记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有 实验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格和不及格五级评定。

实验课程名称材料成型数值模拟

Deform棒材热挤压过程模拟

铜陵学院课程实验报告 实验名称棒材热挤压过程模拟 实验课程材料成型计算机模拟 指导教师张金标. 专业班级10材控(2). 姓名彭建新. 学号1010121064 . 2012年04月23日

实验二棒材热挤压过程模拟 1 实验目的与内容 1.1 实验目的 进一步熟悉DEFORM软件前处理、后处理的操作方法,掌握热力耦合数值模拟的模拟操作。深入理解并掌握DEFORM软件分析热挤压的塑性变形力学问题。 1.2 实验内容 运用DEFORM模拟如图2所示的黄铜(DIN_CuZn40Pb2)棒挤压过程(已知:坯料φ90?25mm)。 图1 棒材热挤压示意图 挤压工具:尺寸如图所示,材质DIN-D5-1U,COLD,温度3500。 坯料:材质DIN_CuZn40Pb2,尺寸φ98×60,温度6300。 工艺参数:挤压速度10mm/s,摩擦系数0.1。 (二)实验要求

(1)运用AUTOCAD或PRO/e绘制各模具部件及棒料的三维造型,以stl格式输出; (2)设计模拟控制参数; (3)DEFORM前处理与运算; (4)DEFORM后处理,观察圆柱体压缩变形过程,载荷曲线图,通过轴对称剖分观察圆柱体内部应力、应变及损伤值分布状态; (5)运用DEFORM后处理Flow Net(流动栅格)功能观察金属流动的不均匀性,说明原因; (6)提交分析报告(纸质和电子版)、模拟数据文件、日志文件。 2 实验过程 2.1挤压工模具及工件的三维造型 根据给定的几何尺寸,运用AUTOCAD或PRO/E分别绘制坯料、挤压模、挤压垫、挤压筒的几何实体,文件名称分别为extrusion workpiece,extrusion die,extusion mandrel,extusion dummy block,extusion chamber。输出STL格式。 说明:上述几何形体尽量在一个空间体系下用相对尺寸绘制,保证它们的装配关系;所有实体造型都要在空间体系的第一象限内,即几何点的坐标值非负。 2.2 挤压模拟 1.前处理 2.建立新问题: 注:单位制度选择:点击Simulation Conrol按钮→Main按钮→在Units栏中选中SI(国际标准单位制度)。 3.添加对象:点击+按钮添加对象,依次为“workpiece”、“top die”、“bottom die”和“object 4”,在Object Name栏中填入extrusion workpiece→点击Change按钮→点击geometry →点击import→选择extrusion workpiece.stl实体文件→打开;重复操作,依次添加extrusion die,extusion mandrel,extusion dummy block,extusion chamber。 4.定义对象的材料模型 5.模拟控制设置 6.实体网格化 说明:工模具不作分析,可以不进行网格划分。 7.设置对象材料属性:在对象树上选择extrusion workpiece→点击Meterial→点击other→选择DIN-CuZn40Pb2→点击Assign Meterial完成材料属性的添加; 8.设置主动工具运行速度:在对象树上选择extusion dummy block→点击Movement→在speed/force选项卡的type栏上选中Speed选项→在Directiont选中主动工具运行,如-Y→在speed卡上选中Define选项,其性质选为Constant,填入数度值,如10mm/s; 9.工件体积补偿:在对象树上选择extrusion workpiece→点击Property→在Target V olume卡上选中Active选项→点击Calculate V olumer按钮→→点击Yes按钮→勾选Compensate during remeshing

实验上机指导书(Deform基础操作)

上机实验DEFORM软件的基本操作 1实验目的 了解认识DEFORM软件的窗口界面,掌握DEFORM软件的前处理、后处理的操作方法与技能,学会运用DEFORM软件分析实际问题。 2实验内容 (1)运用DEFORM绘制或导入各模具部件及坯料的三维造型; (2)设计模拟控制参数; (3)定义模具及坯料的材料; (4)完成模具及坯料的网格划分; (5)调整模具和坯料的相对位置; (6)设定模具运动; (7)设定变形边界条件; (8)生成数据库; (9)利用后处理观察变形过程,绘制载荷曲线图,观察变形体内部应力、应变及损伤值分布状态; (10)制作分析报告。 图1圆柱体镦粗过程模拟 3实验步骤 3.1创建新项目 打开DEFORM软件,在DEFORM主界面单击设置工作目录为C:\DEFORM3D\PROBLEM。单击按钮,弹出Problem setup(项目设置)对话框,选择

使用Deform-3D preprocessor,单击进入项目位置设置对话框,直接单击进入项目名称设置对话框,在Problem name框中输入本项目名称“Upset”,进入DEFORM-3D前处理界面。 3.2设置模拟控制初始参数 单击Input/Simulation controls菜单或单击按钮进入模拟控制对话框,在对话框左侧的栏中选取Main窗口,如图2所示。设定模拟分析标题为“Upset”,操作名为“Upset”,Units单位制为“SI”,分析模式为变形“Deformation”,单击OK按钮,完成模拟控制的初始设置。 图2模拟控制初始设置 3.3创建对象 3.3.1坯料的定义 单击对象设置区的按钮,进入Workpiece对象一般信息设置窗口,。在Object name后面的框中输入“Billet”,单击其后的按钮,将对象名称改为“Billet”。在Object type(对象类型)中选择Plastic(塑性)。 单击对象设置区的按钮,进行对象几何模型的设置,单击 按钮,进入几何造型单元。采用圆柱体,输入其半径为100,高度为200,

【阅】deform问题汇总

1.DEFORM4.02帮助文档 System setup是根据各种设好的网格划分条件进行网格划分 userdefine用于指定特定区域可以有更高的单元密度. absolute是在毛坯或模具表面单位长度上的网格数 relative是指定所划分网格最大边长与最小边长的比率 而在deform5.03中好像有点改进. 在system define中也可以进行局部区域的高密度网格,且好像多了圆柱和环形的局部区域方式。 2.machining_template_3d Deform网格划分应该说还是相当不错的,尤其是2维的deform的网格划分技术,曾被ABAQUS的技术人员誉为行业的骄傲。deform3d的网格划分也还不错,它的优点是可以指 meshwindow。 一个取1,另一个取10, (不管是相对密度,还是绝对尺寸) 多了就不保险了。 需用手工划分,deform的缺省网格划分方式还是不错的,它已考虑了变形,温度分布及边界的影响。 先把划分好的网格(你不满意的)生成数据库,退出再打开,然后重新生成一下网格就ok 了。也就是说生成完整的database文件,退出程序,再启动打开这个文件,重新mesh——detailedsetting——surfacemesh——solidmesh。 3.DEFORM-3D則用boolean作切削 4.改变底色 要从deform拷贝出底色为白色的图形?默认的是黑色的!————在显示屏幕点击右键,好像有一项theme的选项,点击它后就有菜单弹出,就可以改变底色了 5.deform 可以的!在stat evariable中得type中选择linecontour就可以了! 后处理中选择color\linecouter将所有颜色改为黑色 另外,再将底色改为白色就可以了。 6.deform3d怎样分析锻造缺陷 折叠可以看网格,断裂就是看损伤,如果设置断裂和删除准则,可以直接看到断裂元 7.有没有人用过deform 工件材料-AISI1045(45#钢),设置Cockroft&Latham破坏准则的临界值=0.3 8. 再点右边按钮 9.华氏度F=32+(9/5)乘以摄氏度C 10.Elastic-viscoplasticity——弹-黏塑性 热力耦合——thermal force coupling 11.Material data: Regular:phrasematerial(有物相转化) Mixture:混合材料 Elasticdata:是用来分析弹性材料和弹塑性材料的。

Deform模拟实验报告

第一章挤压模具尺寸及工艺参数的制定 1.1实验任务 已知:空心坯料Φ90×25mm,材料是黄铜(DIN-CuZn40Pb2),内径与挤压针直径相同。所要完成成品管直径26mm,模孔工作带直径36mm,模孔出口带直径46mm。 完成如下操作: (1)根据所知参数设计挤压模具主要尺寸和相关工艺参数,并运用AUTOCAD(或Pro/E)绘制坯料挤压过程平面图。 (2)根据所绘出的平面图形,在三维空间绘出三维图。并以STL格式分别输出各零件图形,并保存。 (3)运用DEFORM-3D模拟该三维造型,设置模拟参数,生成数据库,最终完成模拟过程。 1.2挤压温度的选取 挤压温度对热加工状态的组织、性能的影响极大,挤压温度越高,制品晶粒越粗大,挤制品的抗拉强度、屈服强度和硬度的值下降,延伸率增大。由于黄铜在730℃时塑性最高,而在挤压过程中由于变形、摩擦产热使配料温度升高,若把黄铜预热到730℃,坯料可能超过最佳塑性成型温度,所以选取坯料初始温度为500℃。挤压筒、挤压模具也要预热,以防止过大的热传递导致金属温度分布不均,影响制品质量,预热温度与坯料温度不能相差太大,故选取为300℃。 挤压速度的选取 挤压速度对制品组织与性能的影响,主要通过改变金属热平衡来实现。挤压速度低,金属热量逸散较多,致使挤压制品尾部出现加工组织;挤压速度高,锭坯与工具内壁接触时间短,能量传递来不及,有可能形成变形区内的绝热挤压过程,使金属的速度越来越高,导致制品表面裂纹。而且在保证产品质量和设备能量允许的前提下尽可能提高挤压速度。根据挤压流程可计算得挤压比为λ=13,故挤压垫速度为为1.5 mm/s。

第二章工模具尺寸 2.1 挤压筒尺寸确定 2.1.1考虑坯料挤压过程中的热膨胀,取挤压筒内径为mm; 2.2.2挤压筒外径为,故挤压筒外径为mm; 2.2.3挤压筒长度 (2-1) 式中:—锭坯最大长度,对重金属管材为; —锭坯穿孔时金属增加的长度; —模子进入挤压筒的深度; —挤压垫厚度。 由于金属的内径与挤压针的直径相等,则锭坯穿孔时金属增加的长度L=0,改例中模子进入挤压筒的深度t=0,挤压垫厚度s=5mm mm 模子尺寸设计

deform黄铜棒挤压实验报告

机械工程系 实验报告 实验内容黄铜棒挤压过程模拟 实验时间 2010-5-21至2010-6-3 班级 姓名 学号 指导教师

黄铜挤压模拟实验报告 实验目的:通过模拟训练,让学生熟悉AUTOCAD、UG、(PRO/E) 、OFFICE等软件,并掌握这些软件的实用方法,提高学生在专业领域内运用计算机技术 分析问题、解决问题的能力。熟悉DEFORM-3D软件的实用的环境,学 会使用DEFORM-3D进行简单的材料成型模拟,分析成型过程中工件的 温度、应力、应变、破坏系数及挤压工具载荷的变化。 实验内容:运用DEFORM-3D模拟黄铜的挤压过程。本次实习模拟的是材料为DIN_CuZn40Pb2尺寸为200mm×140mm黄铜棒的挤压过程。主要内容: 1)绘图:熟悉AUTOCAO(PRO\E、UG)绘图软件的使用方法,运用 AUTOCAD (PRO\E、UG)完成给定问题的二维平面图形和三维实体图形 的绘制。 2)成型过程模拟实验:熟悉模拟软件DEFORM-3D的使用方法,运用DEFORM-3D模拟实例问题的成型过程,进行简要的工艺参数队成 型过程的影响分析。 3)电子文档编辑训练:练习OFFICE软件的Word等常用编辑软件的使用方法,运用OFFICE完成材料成型过程模拟实验的实验报告。实验过程:1.根据给定的主要尺寸,运用AutoCAD/UG/PRO\E绘出挤压过程平面图形,并标注尺寸。 2.根据所绘出的平面图形,在三维空间绘出三维图。并以stl格式分 别输出各零件图形,并保存。 3.在DEFORM中输入各个零件图形,设置模拟参数,生成数据库,最 终完成模拟过程。 4.完成模拟的后处理过程,观察模拟过程中工件及挤压工具主要参数 的变化,并记录数据。 5.撰写实验报告。

相关主题
文本预览
相关文档 最新文档