当前位置:文档之家› 实用生物信息技术课程第4次作业BLAST数据库相似性搜索姓名

实用生物信息技术课程第4次作业BLAST数据库相似性搜索姓名

实用生物信息技术课程第4次作业BLAST数据库相似性搜索姓名
实用生物信息技术课程第4次作业BLAST数据库相似性搜索姓名

实用生物信息技术课程第4次作业

BLAST数据库相似性搜索

姓名________ 学号______________ 组号_____ 日期________年___月___日

1.以人血红蛋白beta亚基(HBB_HUMAN)为检测序列,搜索Swiss-Prot数据库,找出

灵长目动物(Primates)中与HBB_HUMAN序列相似性高于90%(Identity>90%)的beta珠蛋白(beta globin)。

2.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用BlastP搜索Swiss-Prot数据

库,改变种子序列字长(Word size)和计分矩阵(Scoring matrix),找出人珠蛋白家族12个成员。

3.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用PSI-Blast搜索Swiss-Prot

数据库,找出人珠蛋白家族成员脑红蛋白(Neuroglobin)。

4.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用DELTA-Blast搜索Swiss-Prot

数据库,找出人珠蛋白家族成员脑红蛋白(Neuroglobin)。

5.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,用tBlastN搜索RefSeq数据

库中人珠蛋白家族mRNA序列,提取其编码区序列,进行多序列比对,分析结果。6.以人血红蛋白alpha亚基(HBA_HUMAN)为检测序列,搜索RefSeq数据库中人、小

鼠和大鼠三个物种珠蛋白家族mRNA序列,提取其编码区序列,进行多序列比对,分析结果。

7.查阅Blast网站帮助文档和相关文献,结合Blast算法,归纳总结Blast数据库相似性搜

索的用法

8.结合本人课题研究中的实例,说明Blast具体应用。

9.本地BLAST(选做题)

1)下载玉米转录因子蛋白质序列和编码区核苷酸序列数据,构建本地BLAST数据库。

2)以拟南芥转录因子SPL3蛋白质序列为检索序列,用BlastP搜索玉米转录因子蛋白

质序列中相似序列,用tBlastN搜索玉米转录因子编码区序列中相似序列,分析结

果。

3)以拟南芥转录因子SPL3编码区序列为检索序列,用BlastN搜索玉米转录因子编码

区序列中相似序列,用BlastX搜索玉米转录因子蛋白质序列中相似序列,分析结

果。

1

生物信息学论文

生物信息学的进展综述 韩雪晴 (生物工程1201班,学号:201224340124) 摘要:生物信息学是一门研究生物和生物相关系统中信息内容和信息流向的综合性系统科学。80年代以来新兴的一门边缘学科,信息在其中具有广阔的前景。伴随着人类基因组计划的胜利完成与生物信息学的发展有着密不可分的联系,生物信息学的发展为生命科学的发展为生命科学的研究带来了诸多的便利,对此作了简单的分析。 关键词:生物信息学;进展;序列比对;生物芯片 A review of the advances in Bioinformatics Han Xueqing (Bioengineering, Class1201,Student ID:201224340124) Abstract: Bioinformatics is the science of comprehensive system of information content and information flows to a study on the biological and bio related in the system. The edge of an emerging discipline since 80, has broad prospects in which information. With the human genome project was completed and the development of bioinformatics are inextricably linked, for the life science research development of bioinformatics for the development of life science has also brought a lot of convenience, has made the simple analysis. Keywords: bioinformatics;progress;Sequence alignment;biochip 1、生物信息学的产生背景 生物信息学是20世纪80年代末开始,随着基因组测序数据迅猛增加而逐渐兴起的一门学科[1]。应用系统生物学的方法认识生物体代谢、发育、分化、进化以及疾患发生规律的不可或缺的工具[2]。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。 2、生物信息学研究内容 主要是利用计算机存储核酸和蛋白质序列,通过研究科学的算法,编制相应的软件对序列进行分析、比较与预测,从中发现规律。白细胞介素-6(IL-6)是机体重要的免疫因子,但在两栖类中未见报道。采用生物信息学方法对两栖类模式动物非洲爪蟾IL-6进行分析[3]。以人IL-6基因对非洲爪蟾数据库进行搜索、分析,并采用RT-PCR方法对所得序列进行验证。结果表明,非洲爪蟾IL-6基因位于scaffold_52基因架上,具有保守的IL-6家族基序[4]。采用生物信息新方法进行不同物种的免疫基因挖掘、克隆,是一种有效的方法[5]。 2.1序列比对 比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA[6]。序列数据库搜索最著名且最常用的工具之一便是BLAST算法。FASTA算法是另一族常用的序列比对及搜索工具[7]。 2.2结构比对 比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。 2.3蛋白质结构预测 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构[8]。 3、生物信息学的新技术

生物信息学复习资料

第一章 1.生物信息学:用数学的、统计的、计算的方法来解决生物问题,这基于用DNA、氨基酸及相关信息。即生物+信息学,其中生物是指从基因型到表型:DNA/基因组→RNA→蛋白质→分子网络→细胞→生理学/疾病。信息学是指从数据到发现:数据管理→数据计算→数据挖掘→模型/模拟 2.人类基因组计划:①前基因组时代(1990年前):通过序列之间的对比,寻找序列变化,确定序列功能。②基因组时代(1990年后~2001年)迅猛发展:标志性的工作包括基因寻找和识别,数据库系统的建立。③后基因组时代(2001年至今)功能基因组研究:研究内容发展到基因和基因组的功能分析,即功能基因组,学研究。从传统的还原论研究生命过程转到了整体论思想。 2001年,中美日德法英6国科学家耗费十年,联合公布人类基因组草图 3.基因芯片:又称DNA芯片,由大量DNA或寡聚核苷酸探针密集排列形成的探针阵列。原理:杂交测序方法,在一定条件下,载体上的核酸分子可以与来自样品的序列互补的核酸片段杂交,如果把样品中的核酸片段进行标记,在专用的芯片阅读仪上就可以检测到杂交信号。药物处理细胞总mRNA用Cy5标记,未处理的细胞总mRNA用Cy3标记,颜色?将两者杂交形成固相探针,包含cDNA和寡核苷酸,最后进行结果观察和信息分析。 、EMBL、DDBJ 5.数据挖掘:①理解数据和数据的来源②获取相关知识与技术③整合与检查数据④去除错误或不一致的数据⑤建立模型和假设⑥实际数据挖掘工作⑦测试和验证挖掘结果⑧解释和应用。数据挖掘中的常见算法思想:判断、聚类、关联。数据挖掘模型:①监督模型、预测模型②无监督模型:聚类分析和关联分析②数据降维:主成分分析和因子分析。 第二章: 1.Sanger法:①1977年,提出了“双脱氧核苷酸末端终止测序方法”②技术基础:PCR扩增;双脱氧核苷酸的扩增终止;电泳分离扩增片段③优点1.读取片段长 2.准确率高99.9% 缺点:1.测序通量低2.成本高、流程多④方法、原理:每个反应含有所以四种dNTP使之扩增,并混入限量的一种不同的ddNTP使之终止,由于ddNTP缺乏延伸所需要的3’-OH基团,使延长的寡聚核苷酸选择性地在G,A,T或 C 处终止,终止点由反应中相应的双脱氧而定,每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可以X-光胶片放射性自显影或非同位素标记进行检测 2. 第2代测序技术(2005)①特点:1.PCR反应空间限定在特定的微小载体中。降低成本,实现高通量2.边合成边测序以及平行测序②第一代测序就出现了自动化测序③Solexa步骤:(1)制备模板,单链片断固定到载片表面(2)DNA簇群生成(3)循环合成反应+荧光成像④技术基础:基于芯片或其他载体、3’受保护的荧光标记碱基、PCR ⑤优点:高通量、没有电泳的步骤,成本降低缺点:读取片段长度短、准确率下降 3.Read contig Scaffold ①Read:测序读到的碱基序列片段,测序的最小单位②contig:由reads通过对overlap区域拼接组装成的没有gap的序列段③Scaffold:通过pair ends信息确定出的contig排列,中间有gap 4.测序的应用:①遗传多样性分析②甲基化分析③研究与蛋白质结合的DNA序列特征④转录组测序 5. 转录组测序(RNA Seq):①定义:把mRNA, non-codingRNA(ncRNA) 和smallRNA全部或者其中一些用高通量测序技术进行测序分析的技术②ncRNA主要包括有:tRNA、rRNA、snRNA、核仁小分子RNA(snoRNA)、细胞质小分子RNA(scRNA)、不均一核RNA(hnRNA)、小RNA(microRNA, miRNA) ③方法:获得cell总RNA,然后根据实验需要,对RNA样品进行处理,处理好的RNA再进行片段化,然后反转录形成cRNA,获得cDNA文库,然后在cDNA片段接上接头,最后用新一代高通量测序进行测序④作用:(1)通过RNA-seq来分析基因表达量(2)通过RNA-seq分析基因表达网

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

生物信息学课后题及答案-推荐下载

生物信息学课后习题及答案 (由10级生技一、二班课代表整理) 一、绪论 1.你认为,什么是生物信息学? 采用信息科学技术,借助数学、生物学的理论、方法,对各种生物信息(包括核酸、蛋 白质等)的收集、加工、储存、分析、解释的一门学科。2.你认为生物信息学有什么用?对你的生活、研究有影响吗?(1)主要用于: 在基因组分析方面:生物序列相似性比较及其数据库搜索、基因预测、基因组进化和分 子进化、蛋白质结构预测等 在医药方面:新药物设计、基因芯片疾病快速诊断、流行病学研究:SARS 、人类基因组计划、基因组计划:基因芯片。 (2)指导研究和实验方案,减少操作性实验的量;验证实验结果;为实验结果提供更多的支持数据等材料。 3.人类基因组计划与生物信息学有什么关系? 人类基因组计划的实施,促进了测序技术的迅猛发展,从而使实验数据和可利用信息急剧增加,信息的管理和分析成为基因组计划的一项重要的工作 。而这些数据信息的管理、分析、解释和使用促使了生物信息学的产生和迅速发展。 4简述人类基因组研究计划的历程。 通过国际合作,用15年时间(1990-2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA 的全部核苷酸序列,定位约10万基因,并对其他生物进行类似研究。 1990,人类基因组计划正式启动。 1996,完成人类基因组计划的遗传作图,启动模式生物基因组计划。 1998完成人类基因组计划的物理作图,开始人类基因组的大规模测序。Celera 公司加入,与公共领域竞争启动水稻基因组计划。 1999,第五届国际公共领域人类基因组测序会议,加快测序速度。 2000,Celera 公司宣布完成果蝇基因组测序,国际公共领域宣布完成第一个植物基因组——拟南芥全基因组的测序工作。 2001,人类基因组“中国卷”的绘制工作宣告完成。 2003,中、美、日、德、法、英等6国科学家宣布人类基因组序列图绘制成功,人类基因组计划的.目标全部实现。2004,人类基因组完成图公布。 2.我国自主知识产权的主要基因组测序计划有哪些?水稻(2002),家鸡(2004),家蚕(2007),家猪(2012),大熊猫(2010) 2.第一章 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

NCBI在线BLAST使用方法与结果详解

N C B I在线B L A S T使用方法与结果详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

N C B I在线B L A S T使用方法与结果详解 BLAST(BasicLocalAlignmentSearchTool)是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST程序能迅速与公开数据库进行相似性序列比较。BLAST结果中的得分是对一种对相似性的统计说明。 BLAST采用一种局部的算法获得两个序列中具有相似性的序列。 Blast中常用的程序介绍: 1、BLASTP是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。 2、BLASTX是核酸序列到蛋白库中的一种查询。先将核酸序列翻译成蛋白序列(一条核酸序列会被翻译成可能的六条蛋白),再对每一条作一对一的蛋白序列比对。 3、BLASTN是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序列比对。 4、TBLASTN是蛋白序列到核酸库中的一种查询。与BLASTX相反,它是将库中的核酸序列翻译成蛋白序列,再同所查序列作蛋白与蛋白的比对。 5、TBLASTX是核酸序列到核酸库中的一种查询。此种查询将库中的核酸序列和所查的核酸序列都翻译成蛋白(每条核酸序列会产生6条可能的蛋白序列),这样每次比对会产生36种比对阵列。 NCBI的在线BLAST: 下面是具体操作方法 1,进入在线BLAST界面,可以选择blast特定的物种(如人,小鼠,水稻等),也可以选择blast所有的核酸或蛋白序列。不同的blast程序上面已经有了介绍。这里以常用的核酸库作为例子。 2,粘贴fasta格式的序列。选择一个要比对的数据库。关于数据库的说明请看NCBI在线blast数据库的简要说明。一般的话参数默认。 3,blast参数的设置。注意显示的最大的结果数跟E值,E值是比较重要的。筛选的标准。最后会说明一下。 4,注意一下你输入的序列长度。注意一下比对的数据库的说明。 5,blast结果的图形显示。没啥好说的。 6,blast结果的描述区域。注意分值与E值。分值越大越靠前了,E值越小也是这样。7,blast结果的详细比对结果。注意比对到的序列长度。评价一个blast结果的标准主要有三项,E值(Expect),一致性(Identities),缺失或插入(Gaps)。加上长度的话,就有四个标准了。如图中显示,比对到的序列长度为1405,看Identities这一值,才匹配到1344bp,而输入的序列长度也是为1344bp(看上面的图),就说明比对到的序列要长一

最新生物信息学考试复习

——古A.名词解释 1. 生物信息学:广义是指从事对基因组研究相关的生物信息的获取,加工,储存,分配,分析和解释。狭义是指综合应用信息科学,数学理论,方法和技术,管理、分析和利用生物分子数据的科学。 2. 基因芯片:将大量已知或未知序列的DNA片段点在固相载体上,通过物理吸附达到固定化(cDNA芯片),也可以在固相表面直接化学合成,得到寡聚核苷酸芯片。再将待研究的样品与芯片杂交,经过计算机扫描和数据处理,进行定性定量的分析。可以反映大量基因在不同组织或同一组织不同发育时期或不同生理条件下的表达调控情况。 3. NCBI:National Center for Biotechnology Information.是隶属于美国国立医学图书馆(NLM)的综合性数据库,提供生物信息学方面的研究和服务。 4. EMBL:European Molecular Biology Laboratory.EBI为其一部分,是综合性数据库,提供生物信息学方面的研究和服务。 5. 简并引物:PCR引物的某一碱基位置有多种可能的多种引物的混合体。 6. 序列比对:为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。

7. BLAST:Basic Local Alignment Search Tool.是通过比对(alignment)在数据库中寻找和查询序列(query)相似度很高的序列的工具。 8. ORF:Open Reading Frame.由起始密码子开始,到终止密码子结束可以翻译成蛋白质的核酸序列,一个未知的基因,理论上具有6个ORF。 9. 启动子:是RNA聚合酶识别、结合并开始转录所必须的一段DNA序列。原核生物启动子由上游调控元件和核心启动子组成,核心启动子包括-35区(Sextama box)TTGACA,-10区(Pribnow Box)TATAAT,以及+1区。真核生物启动子包括远上游序列和启动子基本元件构成,启动子基本元件包括启动子上游元件(GC岛,CAAT盒),核心启动子(TATA Box,+1区帽子位点)组成。 10. motif:模体,基序,是序列中局部的保守区域,或者是一组序列中共有的一小段序列模式。 11. 分子进化树:通过比较生物大分子序列的差异的数值重建的进化树。 12. 相似性:序列比对过程中用来描述检测序列和目标序列之间相似DNA碱基或氨基酸残基序列所占的比例。 13. 同源性:两个基因或蛋白质序列具有共同祖先的结论。

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学(第二版)

《精要速览系列-先锋版生物信息学(第二版)》 D.R.Westhead,J.H.Parish & R.M.Twyman 科学出版社2004 A生物信息学概述 相关学习网站https://www.doczj.com/doc/7f14945230.html,/inbioinformatics B数据采集 DNA,RNA和蛋白质测序 1.DNA测序原理 DNA中核苷酸的顺序是通过链式终止测序【也称为脱氧测序(dideoxy sequencing)或以发明人命名的Sanger方法】来确定。 2.DNA序列的类型 基因组DNA,是直接从基因组中得到,包括自然状态的基因 复制DNA(copy DNA, cDNA),通过反转录mRNA得到的 重组DNA,包括载体序列如质粒,修饰过的病毒和在实验室使用的其他遗传元件等 3.基因组测序策略 散弹法测序(shotgun sequence)包括随机DNA片段的生成,通过大量片段测序来覆盖整个基因组 克隆重叠群测序(clone contig)DNA片段用推理的方法亚克隆,并且进行系统的测序直到整个序列完成 4.序列质量控制 通过在DNA双链上进行多次读取完成高质量序列数据的测定 可使用如Phred等程序对最初的跟踪数据(trace data)进行碱基识别和质量判断。 载体序列和重复的DNA片段被屏蔽后,使用Phred等程序将序列拼接成重叠群 (contigs),剩下的不一致部分通过人工修饰解决 5.单遍测序 低质量的序列数据可以由单次读段(read)产生(单遍测序,single-pass sequencing)。 尽管不很准确,但单遍测序如ESTs和GSS s,可以低廉的价格快速大量的产生 6.RNA测序 因为有大量的小核苷酸(minor nucleotide)(化学改变的核苷)存在于转移RNA (tRNA)和核糖体RNA(rRNA)中,所以RNA测序不能像DNA测序那样直接进行。 需要用特殊的方法来识别被改变的核苷,包括生化实验,核磁共振谱(NRM spectroscopy)和质谱(MS)技术 7.蛋白质测序 蛋白质序列可以通过DNA序列推断得到,而RNA测序不能提供有关已改变残基或其他类型的翻译后蛋白质修饰(比如剪接或二硫键的形成) 大部分蛋白质测序是通过质谱(MS)技术进行的

生物信息学 实验三 数据库搜索-BLAST

实验三数据库搜索—BLAST 1. Nucleotide BLAST 在Nucleotide中输入登录号搜索人类MAPK9(NM_139069.2)基因,send to 为coding sequences,作为Query 序列,或者下载complete sequences,在Blastn 中限制序列搜索范围为272-1420(编码区)。分别用megablast, discontiguous megablast 和 blastn 进行搜索。 这三个搜索的参数不同之处,主要体现在单词单位,megablast的单词单位默认为28,可选范围从16-256, discontiguous megablast的单词单位默认为11,可选为11和12, blastn单词单位默认为11,可选范围为7,11和15。Megablast 可以快速搜索到与query 高度相似的序列;discontiguous megablast用于寻找与 query 高度相似的序列; blastn则用于寻找与 query 有一定相似度的序列。单词单位越小,敏感度越高,也就是说,Megablast敏感度最差,discontiguous megablast 居中,blastn 最高。 Megablast的搜索速度最快,discontiguous megablast居中,blastn最差。三个搜索所搜索到的相似序列的数量,相似性范围和分值范围都有很大差异,具 Methods Number Identity(%)Max score Megablast154172-10073.1-2122 discontiguous megablast652763-10044.6-2073 blastn116676310044.6-2073 截取30bp的片段进行blastn搜索,默认参数设置如下图: 搜索后,实际参数如下图,主要对word size, expect value进行了调整,这是因为我们了选中automatically adjust parameters for short input sequences,在所搜索的片段长度比较小时,数据库中随机情况下找到高度相似甚至相同的局部比对(HSPs)的可能性非常高,系统自动将 word size 调小,

生物信息学分析

生物信息学分析 生物信息学难吗? 经常有人向我问这个问题,这有什么疑问吗?如果不难学,根本就不用问我这个问题。也无需投入那么多时间精力就能掌握,更无需花费三四千元参加线下的培训班,也不会月薪过万。所以,答案很肯定,道理很简单:生物信息比较难学。 为什么难学? 我总结里几点原因。首先,这是一个交叉学科,要求你既要有生物学的基础,又要有很强的计算机操作技能。这个就有点困难了。因为只是一个生物学就包括多个门类,有很多东西需要去学习,还需要学习计算机知识。很多人一门内容还没学明白,现在还得在加一门,这就属于祸不单行,雪上加霜,屋漏偏逢连夜雨。因此,这种既懂生物学,又懂计算机的复合型人才就比较短缺。而且,生物信息本质上属于数据挖掘,除了生物,计算机,到后面还需要极强的统计学知识才能做好数据分析,所以,还得加上统计学,也就是生物信息学=生物学+计算机科学+统计学三门学科的知识,这也就是为什么生物信息学比较难学。 第二个原因,生物信息本身就包括很多内容,比如DNA的分析,RNA的分析,甲基化的分析,蛋白质的分析等方面,每一

门类又完全不同,从物种方面来分,动物,植物,微生物,医学等有差别很大,很难有一劳永逸,放之四海而皆准的分析方法。 第三个原因就是生物信息是一门快速发展的学习,会出现很多新的测序方法,比如sanger测序,illumina,BGIseq,PacBio,IonTorrent,Nanopore等,每一个平台技术原理完全不同,因此数据特点也完全不同,这就需要针对每一个平台的数据做专门的学习,而且每个平台又在不断的推陈出现,可能今天你刚开发好的方法,产品升级了,都得推倒重来。还有很多新的技术,例如现在比较火的单细胞测序,Hi-C测序,Bionano测序等等内容,以后还出现更多新技术新方法,足够让你活到老,学到老。当然,你先要能活到老,吾生也有涯,而知也无涯。以有涯随无涯,殆已! 高风险才有高收益 当然啦,虽然你已经看到学习生物信息肯定是不容易了,门槛很高,但是呢,门槛高也有很多好处,就是挡住了一部分人,当你学会了,迈过门槛,你的身价就提高了。如果人人都很容易掌握了,那么也就不值钱了。所以,生物信息,前途是光明的,道路是曲折的。

生物信息学分析

4、生物信息学分析 通过核苷酸序列数据库和基因序列同源性在线分析途径初步对Rv2029c基因进行分类整理。由于结核分枝杆菌耐利福平野生株与核苷酸序列数据库KEGG GENES中的结核分枝杆菌标准株H37Rv的匹配率为100%,以下对基因的分析按照结核分枝杆菌标准株H37Rv的数据库信息进行,即完全匹配的1020bp长度序列(本次提取基因中包含上下游引物等序列,较长,1346bp)。 4.1基本信息 表1 基因基本信息 4.2基因组信息 表2 基因组信息

5、PLN02341(PfkB型碳水化合物激酶家族蛋白),位点208-294 6、PTZ0029(核糖激酶),位点205-301 药物靶点1、同源基因没有药物靶点 2、非同源但序列相似基因没有药物靶点 图3 蛋白结构域 4.3蛋白表达 4.3.1 二级结构分析 预测结果显示,PfkB蛋白的二级结构中β转角占46.61%,α螺旋占33.63%,β折叠占19.76%。转角结构和螺旋结构构成了结核分枝杆菌PfkB蛋白二级结构的骨架。

图4 蛋白二级结构 4.3.2 跨膜区分析 Tuberculist跨膜蛋白预测结果表明:蛋白长度339aa,预测跨膜蛋白数0。 图5 蛋白跨膜区分析 4.3.3 信号肽预测 Predict Protein分析表明PfkB蛋白氨基酸残基没有信号肽,由此推断此蛋白不包含信号肽,不是分泌型蛋白质。

图6 蛋白信号肽预测 4.3.4 疏水性分析 分析结果显示,蛋白最大疏水指数为2.411,最小疏水指数为-2.372。

图7 蛋白疏水性分析 4.3.5 DNA同源性分析 表3 基因同源性分析 菌株序列覆盖 率 E值一致性 Mycobacterium tuberculosis strain Beijing-like, complete genome 100% 0.0 100% Mycobacterium bovis subsp. bovis AF2122/97 complete genome 100% 0.0 100% Mycobacterium tuberculosis 18b genome 100% 0.0 100% Mycobacterium tuberculosis H37RvSiena, complete genome 100% 0.0 100% Mycobacterium tuberculosis str. Kurono DNA, complete genome 100% 0.0 100% Mycobacterium tuberculosis 49-02 complete 100% 0.0 100%

生物信息学期末考试重点总结

第一章DNA、RNA和蛋白质序列信息资源 生物信息学的概念:专指应用信息技术储存和分析基因组测序所产生的分子序列及其相关数据,也称分子生物信息学。 三大核酸序列数据库GenBank(NCBI)美国国家生物技术信息中心,EMBL欧洲分子生物学实验,DDBJ日本DNA序列资料库 序列信息通常用FASTA和GenBank两种格式显示 第二章双序列比对 数据库查询:指对序列、结构以及各种二次数据库中的注释信息进行关键词匹配。 数据库搜索:通过特定相似性比对算法,找出核酸或蛋白质序列数据库中与检测序列具有一定程度相似性的序列。 区别:数据库搜索专门针对核酸和蛋白质序列数据库而言,其搜索对象不是数据库的注释信息,而是序列信息。 检测序列:新测定的,希望通过数据库搜索确定其性质或功能的序列 目标序列:通过数据库搜索得到的和检测序列具有一定相似性的序列 同源性的意义:具有共同祖先。 两个物种中有两个性状满足下列任一条件,就可称为同源性状: (1)它们与这些物种的祖先类群中所发现的某个性状相同 (2)(2)它们是具有祖先一后裔的不同性状 同源(homology)-具有共同的祖先同源序列:共同祖先趋异进化形成 垂直同源(ortholog)种系形成过程中起源于一个共同祖先的不同种系中的DNA或蛋白质序列 水平同源(paralog)由序列复制事件产生的 相似(similarity)用来描述检测和目标序列之间相同DNA/蛋白质序列占比高低。 同源序列一般是相似的,但相似序列不一定是同源的。 相似性:大于50%可认为是同源性序列,小于20%无法确定同源性 目的:通过数据库搜索,推测该未知序列可能属于哪个基因家族,具有哪些生物学功能。 可能找到已知三维结构的同源蛋白质而推测其可能的空间结构。在序列数据库中对查询序列进行同源性比对. 整体比对:从全长序列出发(分子系统学)局部比对:序列部分区域相似性(分子结构与功能性研究) 数据库搜索的基础是序列的相似性比对,即双序列比对(pairwise alignment)。 核酸打分矩阵: 等价矩阵表:考虑碱基的同一性,即两个序列之间完全相同的匹配碱基数目(相同打1,不相同打0); BLAST打分矩阵:完全相同得五分,不相同减四分; 转换—颠换矩阵:完全匹配得1分,G(鸟嘌呤)--A(腺嘌呤),C(胞嘧啶)—T(胸腺嘧啶)相转换得-1分,不匹配不转换,得-5分。

中国生物医学文献数据库下试题答案

1、以下说法不正确的是()。?*??A.中国生物医学文献数据库(CBM)可以用near、with等位置算符进行检索。 ??B.中国生物医学文献数据库(CBM)的高级检索可以进行第一作者检索。 ??C.主题词检索除了可以进行扩展检索和加权检索外,还可以匹配副主题词进行检索。 ??D.《中国图书馆分类法-医学专业分类表》是中国生物医学文献数据库(CBM)进行分类标引的依据。 2、在中国生物医学文献数据库(CBM)中,检索结果的聚类不包括以下哪项?()?* ??A.基金 ??B.主题 ??C.学科 ??D.期刊 3、《中国中医药学主题词表》由哪个单位研发?()?* ??A.中国医学科学院医学信息研究所 ??B.北京大学医学图书馆 ??C.解放军医学图书馆 ??D.中国中医科学院中医药信息研究所 4、以下说法正确的是()。?* ??A.中国生物医学文献数据库(CBM)和CNKI都有主题词表。 ??B.中国生物医学文献数据库(CBM)和Pubmed数据库均可利用截词符“*”代表任何字符串或空格。 ??C.中国生物医学文献数据库(CBM)和PubMed均采用医学主题词表和中医药学主题词表进行主题标引。 ??D.在中国生物医学文献数据库(CBM)高级检索的检索入口中,常用字段是中文标题、摘要、关键词、主题词的组合项。 5、中国生物医学文献数据库(CBM)中除了可以利用基金名称或者基金项目(“项目名称”或“项 目编号”)直接查找基金,也可通过以下哪项逐级查找浏览?()?* ??A.期刊分类导航 ??B.主题分类导航 ??C.基金分类导航 ??D.分类号 6、中国生物医学文献数据库(CBM)的检索有关某个课题“病例报告”方面的文章可以从以下哪类 限定里选择?()?* ??A.年代范围 ??B.文献类型

NCBI中Blast种类及使用简介

NCBI中Blast种类及使用简介 NCBI中Blast种类简介 1. Blast Assembled Genomes 在一个选择的物种基因组序列中去搜索。 2.Basic Blast 2.1 nucleotide blast--- 用核酸序列到核酸数据库中进行搜索,包括3个程序 2.1.1 Blastn----核酸序列(n)到核酸序列数据库中搜索,是一种标准的搜索。 2.1.2 megablast----该程序使用“模糊算法”加快了比较速度,可以用于快速比较两大系列序列。可以用来搜索一匹ESTs序列和大的cDNA或基因组序列, 适用于由于测序或者其他原因形成的轻微的差别的序列之间的比较 2.1.3 discontiguous megablast----与megablast不同的是主要用来比较来自不同物种之间的相似性较低的分歧序列。 2.2 Protein Blast 2.2.1 Blastp ---蛋白质序列到蛋白质序列数据库中搜索,是一种标准的搜索。 2.2.2 psi-blast---位点特异迭代BLAST —用蛋白查询来搜索蛋白资料库的一个程式。所有被BLAST发现的统计有效的对齐被总和起来形成一个多次对齐,从这个对齐,一个位置特异的分值矩阵建立起来。这个矩阵被用来搜索资料库,以找到额外的显著对齐,这个过程可能被反复迭代一直到没有新的对齐可以被发现。 2.2.3 PHI-BLAST---以常规的表达模型为特别位置进行PSI - BLAST检索,找出和待查询序列具有一样的表达模型且具有同源性的蛋白质序列。 2.3 Translating BLAST 2.3.1 blastx----先将待查询的核酸序列按6 种读框翻译成蛋白质序列,然后将翻译出的蛋白质序列与NCBI 蛋白质序列数据库比较。 2.3.2 tblastn-----先将核酸序列数据库中的核酸序列按6 种读框翻译成

《生物信息学》复习资料

《生物信息学》先锋版中译本第二版科学出版社 打分政策:60% 期末考试(70%掌握内容、25% 熟悉内容、5% 理解内容)(请注意红体与黑体字) A: 生物信息学概述 1. 生物信息学:生物信息学是生物学和信息技术的结合,是现代科学的又一个分支学科,它利用计算机对大量生物数据进行分析处理。生物信息学把用于存储和搜索数据的数据库开发,与用于分析和确定大分子序列、结构、表达模式和生化途径等生物数据集之间的关系的统计工具和算法的开发结合在一起。 数据库 生物信息学主要由三大部分组成算法与统计工具 分析与解释 测序策略:逐个克隆法、全基因组鸟枪法 计算机在生物信息学中的作用:生物信息学需要计算机快速、可靠地执行重复任务的能力以及处理问题的能力。然而,生物信息学中涉及的许多问题仍需要专家的人工处理,同时原始数据的完整性和质量也很关键。 生物信息学课程范围:使初学者理解生物信息学的基本原理,并获得相应的应用能力。具体包括生物信息学的一些关键领域:数据库使用、序列和结构分析工具、注释工具、表达分析以及生化和分子途径分析。 2. 生物信息学实例: ——数据库界面Genbank/EMBL/DDBJ, Medline, SwissProt, PDB, … ——序列搜索与比对BLAST, FASTA, Clustal, MultAlin, DiAlign ——基因搜索Genscan, GenomeScan, GeneMark, GRAIL ——蛋白结构域分析与鉴定pfam, BLOCKS, ProDom, ——基因调控元件的计算机模式识别Gibbs Sampler, AlignACE, MEME ——蛋白折叠预测PredictProtein, SwissModeler 生物信息学网站:包括生物信息学资源、各种数据库和生物信息学分析工具的网站 3. 五个必须知道的生物信息学网站:(详细参考书本p9) NCBI (The National Center for Biotechnology Information)https://www.doczj.com/doc/7f14945230.html,/ EBI (The European Bioinformatics Institute)https://www.doczj.com/doc/7f14945230.html,/ The Canadian Bioinformatics Resource http://www.cbr.nrc.ca/ SwissProt/ExPASy (Swiss Bioinformatics Resource)http://expasy.cbr.nrc.ca/sprot/ PDB (The Protein Databank)https://www.doczj.com/doc/7f14945230.html,/PDB/ B: 数据采集 一、DNA, RNA和蛋白质测序 1. DNA测序原理: DNA测序是采用全自动的链终止反应完成的,这一技术通过加入限量的双脱氧核苷酸来 产生有特定终止碱基的嵌套DNA片段。共有4种反应,每种代表DNA 4个碱基中的一个,每个碱基分别带有不同的荧光标记。DNA片段通过聚丙烯酰胺凝胶电泳(PAGE)分离,当每个片段移动到凝胶的末端时可以通过扫描仪读取序列。 2. DNA序列类型: DNA序列来源主要有3种方式。基因组DNA直接来自基因组,包括基因和基因外核酸序列,真核生物的基因组DNA包含内含子;cDNA由mRNA反转录而来,并且只对应于基因组中能表达的部分,它不包含内含子;最后,重组DNA来自实验室,包含克隆载体等人工

相关主题
文本预览
相关文档 最新文档