当前位置:文档之家› 第6章频率合成

第6章频率合成

精处理题库

1、精处理在凝结水系统中的主要作用是(处理水中的无机盐)、(有 机物)及(铁的氧化物)。 2、请说明#5机精处理温度测点的位置(前置过滤器入口处)、(高 速混床入口处)。 3、精处理系统主要检测哪些指标(钠)、(硅)、(电导)、(PH值)。 4、三期精处理前置过滤器额定处理流量为(1333T/H)。 5、三期精处理高速混床额定处理流量为(900T/H) 6、三期精处理阴树脂的型号为(001×7)。 7、三期精处理阳树脂的型号为(201×7)。 8、#5精处理再循环泵的动力电源在(0.4KV公用PC E段)。 9、#6精处理再循环泵的动力电源在(0.4KV公用PC F段)。 10、三期精处理冲洗水泵动力电源在(三期0.4KV凝结水精处理MCC 段)。 11、三期精处理反洗水泵动力电源在(三期0.4KV凝结水精处理MCC 段)。 12、#5机精处理电动门电源在(#5机8米层电动门配电箱)。 13、#6机精处理电动门电源在(#5机8米层电动门配电箱)。 14、#5机精处理气动门气源在(#5机仪用气母管取)。 15、三期精处理仪用气储气罐仪用气的用户有(#5、#6机高混树脂 输入、输出);(三期精处理再生压力排水)。 1、三期精处理气动门气源为三期精处理仪用储气罐来气(错)。 2、三期精处理再生系统气源为三期精处理仪用储气罐来气(对)。

3、三期精处理再生系统气动门气源为三期精处理仪用储气罐来气(错)。 4、三期精处理再循环泵出口为电动门(错) 5、三期精处理高速混床进压缩空气气动门前有一手动门(错) 6、三期精处理树脂均为进口树脂(错) 7、三期精处理再生系统树脂捕捉器排水均排至精处理废水池(错) 8、三期机组排水槽有减温水(对) 9、三期精处理与一、二精处理一样都有大旁路(错) 10、#5、#6机精处理再循环泵电源均在三期0.4KV精处理MCC上带(错) 1、请简述三期精处理系统有哪些联锁保护? 答:1、前置过滤器入口母管压力不大于4MPA 2、前置过滤器旁路压差不大于300KPA 3、前置过滤器入口压差不大于200KPA 4、前置过滤器入口温度不大于55℃ 5、混床入口混度不大于55℃ 6、混床入口压力不大于4MPA 7、混床旁路压差不大于500KPA 8、混床出口树脂捕捉器压差不大于70KPA 2、请简述三期精处理联锁保护动作后系统有哪些措施变化? 答:1、前置过滤器入口母管压力大于4MPA;精处理旁路全开,系统解列。

频率合成技术及其实现

第16卷 第6期V ol.16 N o.6重庆工学院学报 Journal of Chongqing Institute of T echnology 2002年12月 Dec.2002 文章编号:1671—0924(2002)06—0045—05 频率合成技术及其实现 Ξ 张 建 斌 (常州技术师范学院电信系,江苏常州 213001) 摘要:综述了两种频率合成技术的原理、特点、工程设计应注意的问题及各种实现方法。关键 词:频率合成;锁相环;直接数字频率合成;FPG A ;DSP 中图分类号:T N925+16 文献标识码:A 0 引言 高性能频率源是通信、广播、雷达、电子侦察和对抗、精密测量仪器的重要组成部分。现代通信技术的飞速发展对频率源提出了越来越高的要求。性能卓越的频率源均通过频率合成技术来实现。频率合成技术是指将一个高稳定度和高精确度的标准频率经过一定变换,产生同样稳定度和精确度的大量离散频率的技术。按频率合成技术的发展过程,可将频率合成的方法按其型式分为三大类:直接式频率合成器、锁相式频率合成器和直接数字式频率合成器。在直接式频率合成器中,基准信号直接经过混频、分频、倍频、滤波等频率变换,最后产生大量离散频 率的信号。这种方法虽然频率转换时间短、并能产生任意 小数值的频率间隔,但由于其频率范围有限,而更重要的是由于其中采用了大量的混频、分频、倍频、滤波等电路,使频率合成器不仅带来了庞大的体积和重量,耗电多、成本高,而且输出的谐波、噪声及寄生频率多且难以抑制,因而现在已很少使用。 1 频率合成器的原理 1.1 锁相频率合成器[1] 锁相频率合成器基于锁相环(P LL )进行工作,其基本组成如图1所示 : 图1 P LL 的基本组成 图1中,f r 为标准频率,发射系统中为晶体振荡器产生的标准频率信号,接收系统中为收到的标准频率信号。 f 0为锁相环路输出信号的频率。当环路锁定时,则有f 0=Nf r 。因此,通过频率选择开关改变分频比N ,可使压控振 荡器的输出信号频率被控制在不同的频道上,其频道间隔即频率分辨率为f r 。这便是锁相频率合成器的基本工作原理,图1所示也称为单环频率合成器。图1的单环频率合成器存在一些缺陷,以致于难于同时满足合成器在频带宽 度、频率分辨率和频率转换时间等多方面的性能要求。因此,实际常采用多环频率合成器、双模分频频率合成器或小数分频频率合成器等方法来解决这些矛盾。 1.2 直接数字频率合成器(Direct Digital Frequency Synthesis ———DDS )1. 2.1 DDS 的基本原理 直接数字式频率合成技术是根据周期信号的波形特点(一个周期内不同的相位处对应不同的电压幅度)、 Nyquist 取样定律及数字计算技术,把一系列事先对模拟周 Ξ收稿日期:2002-09-03 作者简介:张建斌(1966-),男(汉族),陕西人,副教授,主要从事频率合成、无线通信研究.

频率合成技术

频率合成技术 一、频率合成技术简述 频率合成技术起步于上世纪30年代,至今已有七十年的历史。其原理是通过一个或多个参考信号源的线性运算,在某一频段内,产生多个离散频率点。基于此原理制成的频率源称为频率合成器。 频率合成器是现代电子系统的重要组成部分,是决定整个电子系统系统性能的关键设备,不仅在通信、雷达、电子对抗等军事领域,更在广播电视、遥控遥测、仪器仪表等民用领域得到了广泛的应用。随着电子技术在各领域内占有越来越重要的地位,现代雷达和精确制导等高精尖电子系统对频率合成器的各项指标提出了越来越高的要求,推动了频率合成技术的发展。 频率合成器的主要性能指标包括: (1).输出频率范围,是频率合成器输出的最低频率和最高频率之间的变化范围。一般来说,输出的带宽越高越容易满足系统对于频率源的需求。 (2).频率分辨率,是输出频率两个相邻频率点之间的最小间隔。作为标准信号源的频率合成器,频率分辨率越精细越好。 (3).频率切换时间,是输出频率由一个频率切换到另一个指定的频率的时间,电子对抗时的频率跳变对此有着极高的要求。 (4).频谱纯度,频谱的噪声包括杂散分量和相位噪声两方面,杂散又称为寄生信号,主要由频率合成过程中的非线性失真产生;相位噪声是衡量输出信号相位抖动大小的参数。 (5).频率稳定度,是指在规定的时间间隔内,频率合成器输出频率偏离指定值的数值,由作为参考信号源的时钟和各种随机噪声决定。 (6).调制性能,频率合成器是否具有调幅(AM)、调频(FM)和调相(PM)功能。 初期的频率合成技术采用一组晶体组成的晶体振荡器,输出频率点由晶体个数决定,频率准确度和稳定度由晶体性能决定,频率切换由人工手动完成。随着时间的推移,频率合成技术理论的完善和微电子技术的发展,后来的科学家不断的提出了若干频率合成方法,现代的频率合成技术主要经历了三个阶段:直接模拟频率合成、间接频率合成和直接数字频率合成。 直接模拟频率合成(Direct Frequency Synthesis,DS)技术也是一种早期的频率

直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

直接数字频率合成知识点汇总(原理_组成_优缺点_实现) 直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。 直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。 直接数字频率合成原理工作过程为: 1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。 2、两种方法可以改变输出信号的频率: (1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。 (2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。步长即为对数字波形查表的相位增量。由累加器对相位增量进行累加,累加器的值作为查表地址。 3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。 直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。 直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽 输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。 (2)频率转换时间短

一文看懂频率合成原理与特点

一文看懂频率合成原理与特点 频率合成(Frequeney Synthesis)是指以一个或数个参考频率为基准,在某一频段内,综合产生并输出多个工作频率点的过程。本文主要介绍频率合成原理与特点,首先介绍了频率合成的分类,其次介绍了频率合成的特点,最后我们以直接数字频率合成来介绍原理,具体的跟随小编一起来了解一下。 频率合成的分类1、直接频率合成 用混频器、倍频器和分频器实现频率间的加、减、乘、除来产生新频率,并靠滤波器选择使信号纯净。图1是直接合成式频率合成器的原理图,用插入除10的分频器来获得十进位。当开关S1、S2都在1位时,频率合成器输出频率为 频率合成当开关S1、S2都在10位时,频率合成器输出频率为 由此可知,频率合成器的输出频段为0~9.9fr。fR是参考源频率,n1、n2、m根据电路实现的可能和有利情况来选择。直接合成的分辨率高,转换时间短,频段宽,相位噪声小,但设备大而且复杂,成本高。全数字化的直接合成利用计算机技术,其分辨率高,转换速度可小到1纳秒,但最高频率仅为参考源频率的四分之一,而且还与所采用器件的转换速度有关。 2、间接频率合成 用锁相环迫使压控振荡器(VCO)的频率锁定在高稳定的参考频率上,从而获得多个稳定频率,故又称锁相式频率合成。图2是数字锁相式频率合成器的基本形式,它由压控振荡器、鉴相器、可变分频器和环路滤波器组成。压控振荡器的输出信号经可变分频器分频后在鉴相器内与参考信号比相。当压控振荡器发生频率漂移时,鉴相器输出的控制电压也随之变化,从而使压控振荡器频率始终锁定在N倍的参考频率上。锁定条件为因得从上式可以看出,改变可变分频器的分频比n,便可改变频率合成器的输出频率。在实用中为了提高分辨率,间接式频率合成器常采用多个锁相环的形式。间接频率合成器的体积小、成

直接数字式频率合成器

实验八 直接数字式频率合成器(DDS )程序设计与仿真实验 1 实验目的 (1) 学习利用EDA 技术和FPGA 实现直接数字频率合成器的设计。 (2) 掌握使用Quartus Ⅱ原理图输入设计程序。 2 实验仪器 (1)GW48系列SOPC/EDA 实验开发系统 (2)配套计算机及Quartus II 软件 3 实验原理 直接数字频率合成技术,即DDS 技术,是一种新型的频率合成技术和信号产生方法。其电路系统具有较高的频率分辨率,可以实现快速的频率切换,并且在改变时能够保持相位的连续,很容易实现频率、相位和幅度的数控调制。 传统的生成正弦波的数字是利用—片ROM 和一片DAC ,再加上地址发生计数器和寄存器即可。在ROM 中,每个地址对应的单元中的内容(数据)都相应于正弦波的离散采样值,ROM 中必须包含完整的正弦波采样值,而且还要注意避免在按地址读取ROM 内容时可能引起的不连续点,避免量化噪音集中于基频的谐波上。时钟频率f clk 输入地址发生计数器和寄存器,地址计数器所选中的ROM 地址的内容被锁入寄存器,寄存器的输出经DAC 恢复成连续信号,即由各个台阶重构的正弦波,若相位精度n 比较大,则重构的正弦波经适当平滑后失真很小。当f clk 发生改变,则DAC 输出的正弦波频率就随之改变,但输出频率的改变仅决定于f clk 的改变。 为了控制输出频率更加方便,可以采用相位累加器,使输出频率正比于时钟频率和相位增量之积。图1所示为采用了相位累加方法的直接数字合成系统,把正弦波在相位上的精度定为n 位,于是分辨率相当于1/2n 。用时钟频率f P 依次读取数字相位圆周上各点,这里数字值作为地址,读出相应的ROM 中的值(正弦波的幅度),然后经DAC 重构正弦波。这里多了一个相位累加器,它的作用是在读取数字相位圆周上各点时可以每隔M 个点读一个数值,M 即力图1中的频率字。这样,DAC 输出的正弦波频率f sin 就等于“基频” f clk 1/2n 的M 倍,即DAC 输出的正弦波的频率满足下式: )2(sin n clk f M f (1) 这里,f clk 是DDS 系统的工作时钟,式(6-1-1)中的n 通常取值在24~32之间,由图1可知,

直接数字频率合成器开题报告

毕业设计(论文)开题报告 题目基于FPGA的直接数字频率合成 专业名称通信工程 班级学号09042138 学生姓名周忠 指导教师刘敏 填表日期2013 年 1 月8 日

一、选题的依据及意义: 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。其电路系统具有较高的频率分辨率,可以实现快速的频率切换(<20ns),频率分辨率高(0.01HZ),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点。DDS技术很容易实现频率、相位和幅度的数控调制,广泛用于接收本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合调频无线通信系统 本课题使用可编程器件实现直接数字频率合成设计,它比传统的数字频率合成方式有着显著的优越性,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。 二、国内外研究概况及发展趋势(含文献综述): 直接数字频率合成(DDS)技术是第三代频率合成技术。20世纪70年代以来,随着数字集成电路和电子技术的发展,出现了一种新的合成方法——直接数字频率合成。它从相位的概念出发进行频率合成,采用了数字采样存储技术,具有精确的相位,频率分辨率,快速的转换时间等突出优点,是频率合成技术的新一代技术。直接数字频率合成作为新一代数字频率技术发展迅速,并显示了很大的优越性,已经在军事和民用领域得到广泛的应用,例如在雷达(捷变频雷达、有源相控雷达、低截获概率雷达)、通信(跳频通信、扩频通信)、电子对抗(干扰和反干扰)、仪器和仪表(各种合成信号源)、任意波形发生器、产品测试、冲击和振动、医学等方面的应用。 DDS技术作为一项具有广泛前景和生命力的频率合成技术,越来越受到人们的重视。随着微电子技术的飞速发展,国外一些大公司Qualcomm、ADI等竞相推出DDS芯片,来满足设计人员的要求。许多性能优良的DDS产品不断的推向市场。 Qualcomm公司推出了DDS系列Q2220Q2230等其中Q2368的时钟频率

高频电子线路最新版课后习题解答第九章 频率合成技术习题解答

第九章思考题与习题 9.1 利用图 9.T.1所示两种方法将20~50MHz频率变换为0~30MHz,指出哪一种方案更合理,为什么?图中?符号表示由混频器和带通滤波器构成的边带选频电路。 a) b) 图9.T.1 题9.1图 解:(a)利用混频器的频率加减功能,得到50MHz ±(20~50)MHz,由带通滤波器取出50MHz -(20~50)MHz=(30~0)MHz,这种方法电路简单。但组合频率特别是50-(40~100)会对有用信号(30~0)MHz形成干扰。 (b)首先将(20~50)MHz的频率提升至(120~150)MHz,在经过第二次混频将频率降为(70~100)MHz,经过第三次混频后得到(30~0)MHz的有用信号,电路虽然复杂,但避免了组合频率的干扰,所以第二种方案(b)图更合理。 9.2频率合成方法有哪几种?它们各有什么特点? 解:频率合成器有三种:直接式频率合成器、锁相频率合成器(包括倍频锁环、混频锁相环、除法降频锁相环)、直接数字式频率合成器。 直接式频率合成器是直接对参考频率源进行混频分频和倍频得到所需频率是一个开环系统; 锁相频率合成器是锁相环进行频率合成,是一个闭环譏数字频率合成器是一种全数字化的频率合成器,是一个开环系统。 频率合成器的主要性能指标有:频率准确度和频率稳定度、频率分辨率(频率步长)、频率范围、频率转换时间(或频率时间)、相位噪声和杂散、功耗和体积等. 9.3 设计一个能产生14.8 ×106Hz信号的直接频率合成器,设参考频率为l×106Hz。 解:由已知条件求得总分频比为 14.8 14.8 2 o r f n f === 根据式9.2.1知,取 1 2 M'=, 1 1 N'=, 1 14 M=, 1 2 N=, 2 4 M=, 2 10 N=,代入式中得到: 112 o r 112 2144 =()()1MHz14.8MHz 1210 M M M f f N N N ' +=+?= ' 实现的框图如下图所示

第4章数字频率合成器的设计讲解

第4章数字频率合成器的设计 随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。 频率合成是通信、测量系统中常用的一种技术,它是将一个或若干个高稳定度和高准确度的参考频率经过各种处理技术生成具有同样稳定度和准确度的大量离散频率的技术。频率合成的方法很多,可分为直接式频率合成器、间接式频率合成器、直接式数字频率合成器( DDS)。直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。该方法频率转换时间快(小于100ns),但是体积大、功耗大,目前已基本不被采用。 锁相式频率合成器是利用锁相环(PLL)的窄带跟踪特性来得到不同的频率。该方法结构简化、便于集成,且频谱纯度高,目前使用比较广泛。 直接数字频率合成器(Direct Digital Frequency Synthesis简称:DDS)是一种全数字化的频率合成器,由相位累加器、波形ROM,D/A转换器和低通滤波器构成,DDS技术是一种新的频率合成方法,它具有频率分辨率高、频率切换速度快、频率切换时相位连续、输出相位噪声低和可以产生任意波形等优点。但合成信号频率较低、频谱不纯、输出杂散等。 这里将重点研究锁相式频率合成器。本章采用锁相环,进行频率

合成器的设计与制作。 4.1 设计任务与要求 1.设计任务:利用锁相环,进行频率合成器的设计与制作 2.设计指标: (1)要求频率合成器输出的频率范围f0为1kHz~99kHz; (2)频率间隔 f 为1kHz; (3)基准频率采用晶体振荡频率,要求用数字电路设计,频率稳定度应优于10-4; (4)数字显示频率; (5)频率调节采用计数方式。 3.设计要求: (1)要求设计出数字锁相式频率合成器的完整电路。 (2)数字锁相式频率合成器的各部分参数计算和器件选择。 (3)画出锁相式数字频率合成器的原理方框图、电路图 (4)数字锁相式频率合成器的仿真与调试。 4.制作要求: 自行装配和调试,并能发现问题解决问题。测试主要参数:包括晶体振荡器输出频率;1/M分频器输出频率;1/N可编程分频器的测试;锁相环的捕捉带和同步带测试。 5.课程设计报告要求。 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 6.答辩要求

精处理培训资料

嘉兴发电厂二期4×600MW机组中压凝结水精处理系统 培训材料 嘉兴发电有限责任公司 二零零二年十月

目录 一、概述 二、主要设备规范及结构特点 三、系统工艺说明 四、系统操作程序说明 1 混床运行程序 2 混床停运程序 3 再生程序 4 空气擦洗程序 五、运行建议事项

一概述 嘉兴发电厂二期工程4×600MW机组采用中压凝结水精处理系统,每台机组设置一套3 50%凝结水量的高速混床单元及100%容量的旁路系统,每两台机组共用一套的体外再生单元。两套凝结水精处理系统共用7份树脂。凝结水精处理控制系统采用可编程序控制器(PLC)进行顺序控制,控制系统对整个工艺系统进行集中监视、管理和自动顺序控制,并可实现远方手操。 凝结水精处理系统混床单元布置于汽机房零米层,再生单元的再生床部分布置于集控楼零米层,酸碱贮存与计量部分布置在集控楼室外,系统控制室位于汽机房零米。 本系统由武汉凯迪电力股份有限公司总承包,其中混床单元采用国内设计和制造,再生系统全套引进英国Kennicott公司锥斗分离(CONESEP’S)技术。 二主要设备规范及结构特点 2.1高速混床进、出口设计水质

2.2 系统参数 (1) 每台机组混床数量3台/球形立式 (2) 每台混床额定/最大出力774 / 943 t/h (3) 额定/最大流速100 / 120 m/h (4) 设计工作温度/压力~ 40 ℃/ 4.0 MPa (5) 额定/最大压降0.175~0.35 MPa (6) 阳/阴树脂型号550A/650C (7) 阳/阴树脂装载比例 3 :2 (8) 每台混床阳、阴树脂总体积7.8 m3 (9) 每台混床正常运行周期~12天(H+/OH-型) (10)再生设备设计压力0.70MPa (11)一周期再生酸量(每台混床) 约1550 kg 30% HCl (12)一周期再生碱量(每台混床) 约1050 kg 30% NaOH (13)混合树脂的送出率≥99.9% (14)树脂分离率阳中阴(体积比)<0.4% 阴中阳 (体积比)<0.07% 2.3 主要设备规范 (1)精处理混床 规格:φ3056/球型立式 额定/最大出力774 / 943m3/h 额定/最大流速100 / 120 m/h 额定/最大出力压差0.175~0.35 MPa 阳/阴树脂型号550A/650C 阳阴树脂比例: 3 : 2 树脂总层高/ 总体积:1100 mm / 7.8 m3 运行周期:~12天 进水装置型式多孔板配水帽 出水装置型式多孔板配水帽

精处理系统

3 凝结水精处理 3.1 盛源热电厂精处理概述 盛源热电厂一期2×350MW超临界双抽间接空冷抽凝式汽轮发电机组,设置了中压凝结水精处理系统。每台机组设置2×50%凝结水量的前置过滤器和3×50%中压高速混床系统,并设置、2套100%的旁路,系统由混床单元,再生单元,再循环泵单元,电热水箱单元,冲洗水泵单元,罗茨风机单元,压缩空气单元,酸、碱贮存及计量单元,废水排放单元,有关阀门、管系等组成。二台机组共用一套体外再生系统和全部辅助系统(应该在化学而不在机房)。凝结水精处理装置直接串联在凝结水泵与低压加热器之间。 两台机组的凝结水精处理系统配备一台CRT站,正常运行时CRT站监控同一单元内两台机组的凝结水精处理系统和两台机组公用的再生系统。处在同一控制室的两台机组的CRT 站可互为备用,即可在任一台CRT站上监视和操作两台机组公用的再生系统和每台机组的凝结精处理系统。 3.2 精处理系统旁路说明 3.2.1 凝结水精处理系统设置两级旁路,即总旁路系统和混床旁路系统,两级旁路均能通过100%的凝结水量。 3.2.2 总系统旁路只有在机组启动初期,水质较差,不能进入凝结水精处理系统时使用,待机组正常运行后,总系统旁路始终保持关闭状态,即凝结水必须100%经过处理。 3.2.3 混床旁路有自动调节功能,在遇到下列情况之一,旁路系统能自动打开,并进行相应的操作 3.2.4 进口凝结水水温超过设定值50℃或系统进出水压差超过0.5MPa时,旁路混床系统,凝结水精处理系统只投运前置过滤器。 3.2.5 当机组正常运行,凝结水水质较好时,可旁路混床系统,凝结水精处理系统以前置过滤器系统运行。 3.3 前置过滤器系统说明 3.4 系统流程 3.4.1 混床单元流程 主凝结水泵出口凝结水→前置过滤器→→ 旁路 3.4.2 树脂再生流程

直接数字频率合成器

电子线路课程设计直接数字频率合成器 学号: 姓名: 2011年11月

摘要 本篇论文主要讲了用eda设计dds。用quartus 软件模拟仿真电路,并下载到芯片。使电路能输出正余弦波,并可调节频率和相位。并在这基础上进行一部分扩展,如能输入矩形三角形波。 关键词eda设计 dds quartus Abstract: This report introduces the EDA design is completed with Direct Digital Synthesis DDS process. This design uses DDS QuartusII 7.0 software design, and downloads SmartSOPC experimental system hardware. Key word eda design dds quartus

目录 设计要求 (4) 方案论证 (4) 各子模块设计原理 (6) 调试,仿真及下载 (12) 结论 (13)

一.设计要求 基本要求: 1、利用QuartusII软件和SmartSOPC实验箱实现DDS的设计; 2、DDS中的波形存储器模块用Altera公司的Cyclone系列FPGA芯片中的RAM 实现,RAM结构配置成212×10类型; 3、具体参数要求:频率控制字K取4位;基准频率fc=1MHz,由实验板上的系统时钟分频得到; 4、系统具有使能功能; 5、利用实验箱上的D/A转换器件将ROM输出的数字信号转换为模拟信号,能够通过示波器观察到正弦波形; 6、过开关(实验箱上的Ki)输入DDS的频率和相位控制字,并能用示波器观察加以验证; 提高部分: 1、通过按键(实验箱上的Si)输入DDS的频率和相位控制字,以扩大频率控制和相位控制的范围;(注意:按键后有消颤电路) 2、能够同时输出正余弦两路正交信号; 3、在数码管上显示生成的波形频率; 4、充分考虑ROM结构及正弦函数的特点,进行合理的配置,提高计算精度; 5、设计能输出多种波形(三角波、锯齿波、方波等)的多功能波形发生器; 6、基于DDS的AM调制器的设计; 7、自己添加其他功能。 二、方案论证 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基

直接数字频率合成(DDS)方法

摘要 多功能信号发生器是信号发生器中的一种,广泛应用于电子测量、电力工程、物矿勘探、医疗、振动分析、声学分析、故障诊断及教学科研等多方面,是工程师进行产品研发和生产的必备仪器之一。它的主要功能是为待测设备提供稳定、可靠并可以人工调节和控制的信号源。 本文采用由美国学者J.TierncyC.M.Rader和B.Gold1971年提出来的直接数字频率合成(DDS)方法,在CPLD可编程逻辑器件利用VHDL编写波形发生程序,实现多功能信号发生器。 本课题设计的多功能信号发生器利用CPLD可在线编程的特点、DDS的原理,可以实现多种频率、相位的方波、正弦波、三角波、锯齿波,甚至任意波形。在输出端接入可编程运放后,还能实现多种幅值的波形。 关键词:多功能信号发生器 DDS 可编程逻辑器件 VHDL 数字系统设计

Abstract The multi-function signal take place the machine to is in the signal occurrence machine a kind of, being apply in the electronics to measure extensively, the electric power engineering, the thing mineral 勘 explore, medical treatment, vibration analysis, the voice learns analysis, breaks down to examine a patient and the teaching research etc. is various, is one of the essential instruments that the engineer carries on the product development and produce.Its main function is for treat to measure the equipments to provide the stability, the credibility is also can with the signal of artificial regulate and control source. The direct numerical frequency that this literary grace use to be put forward by the American scholar J.TierncyC.M.Rader and B.Gold1971 year synthesize( DDS) the method, making use of the VHDL plait to write a form occurrence procedure in the CPLD programmable logic machine piece, carrying out the multi-function signal occurrence machine. Multi-function signal the occurrence machine of this topic design make use of CPLD can on-line plait distance of principle of characteristics, DDS, can carry out various frequencies, mutually the square wave, sine wave, triangle wave, the teeth of a saw wave of, even arbitrarily a form.After exportation carry connect to go into the programmable luck to put, can still carry out a form for be worth of various. Keywords:Multi-functional signal generator DDS CPLD VHDL The design of digital system

精处理安运维说明书讲解

新疆东方希望有色金属有限公司动力站2X350MW工程 凝结水精处理系统(工艺部分) 安装运行维护说明书SB-XDFH-S0101-01 批准: 审核: 校核: 编制:

目录 系统设计、安装、运行、维护手册 (2) 第一章设计说明 (3) 第二章系统运行操作程序说明 (10) 第三章安装及工艺系统调试 (11) 第四章安全指南 (15)

系统设计、安装、运行、维护手册 本凝结水精处理系统适用于对空冷机组的冷凝水的处理,该系统可除去热力系统中腐蚀产物铁等氧化物,以及系统中有可能带入凝结水中的盐份。 本工程为新疆东方希望有色金属有限公司动力站2×350MW工程国产燃煤亚临界直接空冷机组的凝结水精处理系统,本系统对于凝结水进行100%精处理,每台机组设置一套。 整个凝结水精处理系统分为两部分,即:凝结水精处理粉末覆盖过滤器部分和爆膜反洗铺膜部分。凝结水精处理粉末覆盖过滤器设计成单列并联布置,每台机组设置两台粉末覆盖过滤器,以及相应的阀门、管道和护膜管路等组成,每台过滤器可处理100%的凝结水流量,正常运行一运一备,系统设有100%旁路,凝结水精处理的旁路系统有自动调节功能,在遇到下列情况之一时,旁路系统能自动打开,并切除凝结水精处理系统: 进水水温≥85oC 进出水母管两端差压≥0.175MPa PLC工控系统在接受以上信号后会自动开启旁路门,100%的凝结水经系统旁路回到汽机凝结水系统,此时,同步启动护膜泵,关闭粉末树脂覆盖过滤器的进、出水门。确保机组安全运行及过滤器膜层稳定。当一台过滤器运行至失时后,会自动解列,备用过滤器会即升压,准备投运。 爆膜反洗铺膜部分由爆膜反洗单元、铺膜单元、相应的箱罐、水泵、阀门、管道等组成。

频率合成技术有哪些_频率合成技术的应用盘点

频率合成技术有哪些_频率合成技术的应用盘点 频率合成技术的发展过程频率合成技术的理论起源于二十世纪30年代左右,至今己有八十多年的历史。早期的频综是由一组晶振组成,需要多少个输出频点,由晶体的数目所决定。需要由人工来实现频率切换,主要由晶体来决定频率的准确度和稳定度,很少与电路有关。现在这种频率合成方式已经被非相干合成的方法所取代,尽管非相干合成同样使用了晶体,但其工作方式是由少量晶体来产生多种频率的。对比早期的频率合成方式,非相干合成器不仅降低了成本,而且提高了所合成频率的稳定性。但是研制这种由几块晶体所构成的晶振是一个非常复杂的过程,而且成本较高。因此随着频率合成技术的发展,相干合成法也就被科学家提了出来。 最初的相干合成法主要是直接频率合成(Direct Frequency Synthesis简称DFS)。此合成方法是利用倍频、分频、混频的方法对一个或几个参考源频率经过加、减、乘、除运算直接产生所需要频率的方法。这种方法由于频率转化时间短,相位噪声低等优点,因此在频率合成领域也占有一定的地位,但由于所生成的频率是采用大量的倍频、分频、混频所得,使得直接式频率合成器体积大、杂散多且难于抑制、结构复杂、成本及功耗高,故该DFS 己基本被淘汰。 在DFS之后出现了间接频率合成(Indirect Frequency Synthesis)。间接频率合成主要是指锁相环PLL(Phase-Locked Loop)频率合成。此合成方法是把相位反馈和锁相技术用于频率合成中,这种合成方法具有输出频率高、相位噪声低、抑制杂散好、成本低和易于集成等优点,因此在频率合成领域占有一席之地。但是传统PLL的频率合成器由于采用闭环控制,因此输出频率改变后,要想重新达到稳定则所需的时间较长。所以PLL频率合成器同时做到较高的频率分辨率和较快的频率切换时间是很困难的。 频率合成技术简介频率合成技术是电子对抗与电子系统实现高性能指标的关键,很多现代电子设备和系统的功能实现都直接依赖于所用频率合成器的性能,频率合成器的性能好坏直接影响雷达、导航、通信、空间电子设备及仪器、仪表等现代设备的性能。 频率合成技术有哪些1、直接数字式频率技术,即DDS技术。

直接数字频率合成芯片AD9832原理及其典型应用设计

《测控技术》2004年第23卷第12期·68· 文章编号:1000–8829(2004)12–0068–03 直接数字频率合成芯片AD9832原理及其典型应用设计DDS AD9832 and It’s Typical Application (同济大学交通信息工程系,上海 200331)沈拓,董德存 摘要:直接数字式频率合成技术可以提供快速的信号建立时间,纯净的信号频谱,方便地产生各种波形,实现各种调制方式,在通信与电子系统中广泛应用。笔者介绍了直接数字频率合成芯片AD9832的组成结构、转换原理和典型应用电路,分析了与80C51的接口时序,并给出了C驱动源代码。 关键词:直接数字频率合成;AD9832;开关电容滤波器; 80C51 中图分类号:TN74 文献标识码:B Abstract:Direct digital synthesis can offer high converting speed,pure singal spectrum,and generate many types of wave-form,realize some modulations. It is widely used in communica-tion and electronic systems because of these special advantages. The composition,operational principle and typical application circuit of AD9832 are introduced. AD9832 to 80C51 interface,timing and C driver source code are discussed. Key words:direct digital synthesis ; AD9832 ; switched capacitor filter ; 80C51 直接数字式频率合成(DDS,direct digital synthesis)是近年出现的新一代频率合成方法,采用全数字化VLSI技术设计,与传统的直接频率合成及PLL锁相环频率合成相比,信号建立时间快,一般在几ns到几μs;频率分辨率高;频率转换时相位保持连续;容易实现QAM、FSK、PSK和GMSK等各种调制方式[1]。AD9832是一款完备的DDS芯片,只需要1个外部参考时钟、2个电阻和几个退耦电容就可以产生高达12.5 MHz的正弦波,并且采用串行接口设计,使用方便,已经越来越多地应用到各种通信与电子系统中。 1 DDS基本转换原理 DDS的基本转换原理见图1。 系统初始化时,首先设置频率控制字和起始相位。相位累加器在每个时钟周期与频率控制字K累加一次,当累加器数值 收稿日期:2004–03–22 作者简介:沈拓(1976—),男,安徽五河县人,工学学士,助教,主要从事嵌入式系统开发研究;董德存(1960—),男,上海人,教授,博士生导师,主要从事通信与电子系统研究。 图1 DDS原理图 大于2N 则溢出,累加器仅保留后面的N位数字。该N位数字作为地址信息输入到正弦查找表。正弦查找表包含一个周期正弦波的数字幅度信息,每个地址对应0~2π范围内一个相位点,存放该相位点的幅度数值。从正弦查找表取出的幅度数值被送到高速数字模拟转换器中转换成模拟量(阶梯波),通过后级的低通滤波器滤除杂散高次谐波加以平滑,就可以得到正弦波。综上所述,可以看出DDS具有几个突出特点: ①输出频率f out 由时钟频率f clk 和频率控制字K决定。 f out =(K/2N)f clk(1)N为相位累加器的位数。频率控制字K 由N 位的二进制数组成,0 f out > f clk/2N,高的频率转换速度(μs 至ns 量级),极高的频率分辨率,以及频率转换时相位保持连续,可以输出宽带的正交信号,易单片集成,易实现FSK、PSK数字调制,可以产生一般频率合成器难以产生的波形,易于微处理器控制。 ④优秀的频率稳定性,输出频率只受频率控制字和时钟频率f clk 频率的稳定性完全取决于时钟频率。DDS系统中时钟频率通常由独立的石英晶体振荡器提供。在0~70 ℃温度范围内,普通石英晶体振荡器输出频率漂移≤100×10-6,如果使用温度补偿型晶体振荡器,则漂移还可以降低一个数量级。因此DDS的输出频率可以达到很高的稳定性。 ⑤影响DDS主要技术性能的因素:其一,根据取样定理,输输出信号基波的最高频率将低于参考时钟的一半,故若要提高输出频率将受到内部器件(如包括DAC、正弦查找表

精处理控制系统存在的问题及改进方法

龙源期刊网 https://www.doczj.com/doc/7b14351213.html, 精处理控制系统存在的问题及改进方法 作者:冯东膂 来源:《中国高新技术企业》2016年第02期 摘要:文章从实际运用的角度,阐述了有代表性的六个问题的故障现象,分析了各问题产生的软硬件原因,综述了热工控制方面的解决方案和过程,对问题产生的深层原因进行了剖析,并结合工作经验给出了建设性的意见。 关键词:凝结水精处理;UNITY PRO;Citec;阀门控制;设计处理流量文献标识码:A 中图分类号:TM621 文章编号:1009-2374(2016)02-0030-02 DOI:10.13535/https://www.doczj.com/doc/7b14351213.html,ki.11-4406/n.2016.02.014 1 系统简介 此凝结水精处理设计处理流量为1452t/h,压力为4.0MPa,设计温度不超过55℃。系统由2×50%前置过滤系统加3×50%球形高速混床系统组成,一套高速混床体外再生系统以及过滤器反洗系统(预留与另一扩建机组公用),再生系统运行设计压力值为0.6MPa。采用目前国内先进的“完全分离法”或称“高塔分离法”,树脂界面检测装置光电比色方法。凝结水精处理系统按氨周期运行设计。此系统由两台前置过滤器和三台高混各采用并联形式连接,扩建的两台机共用一套再生装置和反洗装置。正常运行情况下,两台高混运行,一台备用。当一台高混失效时,应首先投入备用高混,确认备用高混投入运行后,再解列失效高混。而一台过滤器失效时,将自动打开50%过滤器旁路门进行50%流量调节,再解列失效过滤器。高混失效退出运 行后,若再生系统处于再生结束状态,即树脂分离罐(SPT)内仅有混脂,阳再生兼储存罐(CRT)内有再生好的备份树脂,则失效高混的树脂输往树脂分离罐(SPT)进行阴、阳树脂的清洗、分离,然后将阳再生兼储存罐中的备份树脂送入高混。阳、阴混合树脂分离采用目前国内较先进的高塔分离技术,此工艺技术可以使阴、阳树脂的交叉污染降低到0.1%以下。设计阳、阴树脂体积比为1∶1。在阴阳树脂界面附近,有一层0.8m的隔离树脂层,即混脂层,其中阳树脂高0.3m、阴树脂高0.5m,混床树脂床层总高度1.1m。当电导率、钠含量、压差、二氧化硅中任何一项升高达设定值时,自动投运第三台备用混床,失效凝结水精处理混床自动退出运行,失效树脂用水/气力输送至体外再生系统,以进行分离和彻底的化学再生。已再生好的备用树脂自储存罐输送至该混床中,并正洗至出水电导率合格后备用。在混床出水电导率合格前,用再循环泵进行循环冲洗。控制系统硬件由Quantam 系列组成。下位组态软件使用Unity Pro XL V3.1。上位机组态软件为CitectScada V7.10,操作系统是windows XP。现场控制执行机构大多为单控气动阀,分离塔稳流调节门、高混旁路阀以及前置过滤器旁路阀为电动调节阀。 此系统自2009年投产以来,多次出现异常,运行人员反映控制系统程序混乱,发生过系统阀门误动,引起凝结水压力波动较大,造成凝结水泵联动等问题。

相关主题
文本预览
相关文档 最新文档