当前位置:文档之家› 低频电流探头CPL8100AB可替代泰克A622示波器探头

低频电流探头CPL8100AB可替代泰克A622示波器探头

低频电流探头CPL8100AB可替代泰克A622示波器探头
低频电流探头CPL8100AB可替代泰克A622示波器探头

低频电流探头CPL8100A/B概述

AC/DC低频电流探头CPL8100A/CPL8100B电流探头,是一款能够同时测量直流和交流的电流探头。测量电流最大100A峰值(70.7A RMS),CPL8100A带宽为600kHz(-3dB),CPL8100B带宽为2MHz(-3dB)。通常用于工频测量﹑电机驱动﹑电源等场合。

一、产品特点:

1、提供两个量程切换(10A和100A档位),根据电流大小选择合适量程;

2、具有自动调零功能,使用方便;

3、带有电源和电池低电压报警指示灯,过载报警声;

4、可使用电池供电或者外部电源供电,使得测量更加方便;

5、标准的BNC输出接口,方便和示波器等其它设备的连接;

6、可使用BNC转双香蕉插头连接万用表测量AC和DC电流。

二、产品展示:

三、产品参数电气特性

测量条件:23℃,60%RH,附近无载流线,被测导线穿过中心测试,负载阻抗1MΩ。

档位L H 电流范围50mA~10A峰值1A~100A峰值

量程灵敏度0.1V/A0.01V/A

典型DC精度3%±50mA 500mA~40A峰值:4%±

50mA;40A~100A峰值:±15%最大值

带宽(-3dB)CPL8100A DC-600kHz 参考典型幅频特性(图1)CPL8100B DC-2MHz 参考典型幅频特性(图2)

最大电流VS频率特性

曲线

参考图3

相移DC~65Hz:<1.5°DC~65Hz:<1°

典型的DC线性度在H档位(0.01V/A)时典型的DC线性度参考图4

上升时间CPL8100A ≤583ns CPL8100B ≤175ns

最大工作电流见电压及电流额定值表

最大工作电压见电压及电流额定值表

最大浮动电压见电压及电流额定值表

工作电压RMS CATI 600V CATII 600V CATIII 300V 共模电压RMS CATI 600V CATII 600V CATIII 300V 典型电池类型和寿命9V碱性层叠电池/ 15小时

低电池指示功能当电池电压<6.5V时, 电池指示灯红色报警过载指示功能被测电流超过量程,蜂鸣器响

电压及电流额定值表

参数

最大工作电流(A) 最大工作

电压(V)

最大浮动

电压(V) H(0.01V/A) L(0.1V/A)

DC 100 10 600 600 DC+AC峰值100 10 600 600 AC峰值100 10 600 600

AC峰峰值200 20 1200 - - RMS CAT III 70.7 7.07 300 300 RMS CAT II 70.7 7.07 600 600 RMS CAT I 70.7 7.07 600 600

机械特性

前端电流钳尺寸约100*20*60mm

后端输出盒尺寸约137*33*35mm

操作高度 0~2000米

被测导体最大尺寸直径约12mm

电流钳和输出盒连接线长度 1米

双端BNC同轴线缆长度 1米

重量约223g(不含电池)

机械特性

前端电流钳尺寸约100*20*60mm

后端输出盒尺寸约137*33*35mm

操作高度 0~2000米

被测导体最大尺寸直径约12mm

电流钳和输出盒连接线长

1米

双端BNC同轴线缆长度 1米

重量约223g(不含电池)

环境特性

操作温度 0℃~+50℃保存温度 -20℃~+80℃

操作相对湿度 0℃至+40℃,湿度95%RH; +40℃~+50℃,湿度45%RH

污染程度 2级

四、产品细节

源开关

OFF:探头处于关状态,电池或者外部电源不供电。

ON:探头处于开状态,电池或者外部电源供电。

?电源指示灯:电源开关ON状态,电源指示灯点亮绿色。

?电池低电量指示灯:当电池电压低于6.5V时,电源指示灯点亮

红色,提示更换电池。

?量程按键: H或者L量程切换按键。

?量程指示灯:指示当前量程选择。H档位:100A;L档位:10A。

?自动调零按键:为了能够精确测量,测量之前需要调零可以避免

地球磁场,温漂,等环境因素的影响。

?调零指示灯:调零时点亮为绿色,调零结束后熄灭。

?钳口:测量电流钳口,被测导线最大直径12mm。

?外部供电插口:外部DC供电

?电池盒:电池使用常规的9V碱性电池,更换电池时,要求电流探

头未连接被测导体和示波器,开关处于OFF位置。

图1 CPL8100A典型增益频率关系曲线

图2 CPL8100B典型增益频率关系曲线

图3最大电流VS频率特性曲线

图4典型的DC线性度(0.01V/A档位) 五、产品附件

同轴电缆输出线(CK-310):1米

电源适配器(CK-612):DC12V/1.2A

六、使用方法

1、将示波器的耦合方式设置为DC;示波器输入阻抗设置为1M Ω;为方便读数,可以把示波器的显示单位由电压改为电流显示。如果示波器没有此功能,用户只能手工换算。设置相应的衰减倍数,比如探头选择H档位(0.01V/A),示波器设置100X,选择L档位(0.1V/A),示波器设置10X;通过标配的双端BNC同轴线缆将探头BNC输出接口与示波器的输入端连接。

2、按下自动调零按键,实现探头自动调零。调零成功后,蜂鸣器会发出“滴滴”两声;否则发出“滴”一声长响,表示调零失败。注意外界的磁场可能对本探头的直流零位有轻微的影响,调零完成后请不要再挪动。

3、打开电流探头的钳口并夹住被测导体。

4、适当的调节示波器垂直灵敏度以获得稳定的波形。示波器设置DC耦合时,将同时看到电流的DC和AC分量;设置AC耦合时,只能看到AC分量。

七、产品维护

钳口:保持钳口干净整洁,长时间使用后,如果钳口有污垢,可用用柔软的布配合酒精擦拭去除污垢。不要把钳口放在潮湿的环境下保

存,更不能直接接触到水。

手柄:请用干净的布或者海绵把手柄擦拭干净。请勿用水,可用少量的酒精去除污垢并烘干处理。

为了保证产品的性能,每年可进行一次检查或者校准。

八、异常时的处理方法

问题可能原因处理方法

不能测定直流、或该频段振幅小

电源未打开打开电源

示波计测器设置成AC耦

请设置成DC耦合方

钳口未完全闭合

检测钳口,使完全闭

打开后电源指示灯不

电池电压低于6.5V 更换电池

在整个频段内振幅偏小

示波器等其他测试器的输

电阻为50Ω

请调到1MΩ以上。

八、产品清单

电流探头本体1个

9V电池1个

DC12V/1.2A适配器(CK-612) 1个BNC输出线(CK-310) 1根

高档工具箱 1个

说明书1册保修卡1张检测报告1页

如何校准x10示波器探头

如何校准x10示波器探头 为了尽量减少对被测器件的容性负载,大多数探头使用一个X10(也称为10:1)衰减器。我们往往可以对它进行校准或补偿,以提高频率响应。下面以Pico公司的MI103(250 MHz)的探头为例介绍的校准技术。这些校准方法可以应用到任何可调的无源探头,但并不是这里介绍的所有的校准方法都是必须的。 有两种补偿的类型:低频补偿和高频补偿。校准按键通常设置在探头的两端,如图1所示。 图1:MI103探头微调器位置 低频补偿 低频补偿(LFC)需要在kHz范围内调整X10探头的频率响应。低频补偿必须在高频补偿(HFC)之前进行。 图2显示了一个典型的探头模型。Cp是在放置在探头尖端的耗散电容。R1是一个9MΩ的串行电阻,用来隔离电缆电容和被测设备的输入。其组成示波器的一个带有1MΩ输入阻抗的10:1 Rscope衰减器。 图2:示波器探头模型

Ccomp1是一个可变电容,组成探头低频补偿的调整部分。Cp是用来调整R1和Ccomp1的时间常数来匹配Cscope、Ccable和Rscope设定的时间常数。实际上,我们在高频段(100 kHz以上)有一个直流电阻分压器和一个电容分压器。Ccomp1置放在MI103探头的顶部实现微调,靠近衰减开关。Ccomp2和Rcomp是用在探头的高频补偿(HFC)部分,详细情况将在下一节讨论。 最简单的对探头进行低频补偿的方法是输入一个相对边沿变化较慢的方波,但重要的是,不能过冲。 图3显示的是如何通过波形判断低频补偿是否合理。低频补偿过多,探头的高频(HF)增益将会比它的低频(LF)增益高。低频补偿过少,高频增益将会低于低频增益。 图3:低频补偿 高频补偿 影响探头的高频率响应的两个不定因素:电缆阻抗以及示波器的输入阻抗。示波器的输入端通常不是一个理想的电容,它会带有一些串联电感使得电路不具有非线性。 图4显示了在示波器的输入端放置一个陶瓷芯片电容器时的典型特征。由于电容的串联电感在存在,阻抗在它开始再次增加之前会随着频率变化有一个微降的过程。最低阻抗点的频率就是电抗和容性阻抗相等时的共振频率。 图4:陶瓷电容器特性

示波器的使用

—本帖被yjm2000 执行置顶操作(2010-11-15) — 在家电维修的过程中使用示波器已十分普遍。通过示波器可以直观地观察被测电路的波形,包括形状、幅度、频率(周期)、相位,还可以对两个波形进行比较,从而迅速、准确地找到故障原因。正确、熟练地使用示波器,是初学维修人员的一项基本功能。 虽然示波器的牌号、型号、品种繁多,但其基本组成和功能却大同小异,本文介绍通用示波器的使用方法。 一、面板介绍 1.亮度和聚焦旋钮 亮度调节旋钮用于调节光迹的亮度(有些示波器称为"辉度"),使用时应使亮度适当,若过亮,容易损坏示波管。聚焦调节旋钮用于调节光迹的聚焦(粗细)程度,使用时以图形清晰为佳。 2.信号输入通道 常用示波器多为双踪示波器,有两个输入通道,分别为通道1(CH1)和通道2(CH2),可分别接上示波器探头,再将示波器外壳接地,探针插至待测部位进行测量。 3.通道选择键(垂直方式选择) 常用示波器有五个通道选择键: (1)CH1:通道1单独显示; (2)CH2:通道2单独显示; (3)ALT:两通道交替显示; (4)CHOP:两通道断续显示,用于扫描速度较慢时双踪显示; (5)ADD:两通道的信号叠加。维修中以选择通道1或通道2为多。 4.垂直灵敏度调节旋钮 调节垂直偏转灵敏度,应根据输入信号的幅度调节旋钮的位置,将该旋钮指示的数值(如0.5V/div,表示垂直方向每格幅度为0.5V)乘以被测信号在屏幕垂直方向所占格数,即得出该被测信号的幅度。

5.垂直移动调节旋钮 用于调节被测信号光迹在屏幕垂直方向的位置。 6.水平扫描调节旋钮 调节水平速度,应根据输入信号的频率调节旋钮的位置,将该旋钮指示数值(如0.5ms/div,表示水平方向每格时间为0.5ms),乘以被测信号一个周期占有格数,即得出该信号的周期,也可以换算成频率。 7.水平位置调节旋钮 用于调节被测信号光迹在屏幕水平方向的位置。 8.触发方式选择 示波器通常有四种触发方式: (1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形; (2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形; (3)电视场(TV):用于显示电视场信号; (4)峰值自动(P-P AUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。该方式只有部分示波器(例如CALTEK卡尔泰克CA8000系列示波器)中采用。 9.触发源选择 示波器触发源有内触发源和外触发源两种。如果选择外触发源,那么触发信号应从外触发源输入端输入,家电维修中很少采用这种方式。如果选择内触发源,一般选择通道1(CH1)或通道2(CH2),应根据输入信号通道选择,如果输入信号通道选择为通道1,则内触发源也应选择通道1。

利用数字示波器测试开关电源的方法

利用数字示波器测试开关电源的方法 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

示波器探头基础知识

示波器探头基础知识 示波器探头原理---示波器探头工作原理 示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其特性,以适应各种不同的专门工作的需要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。 我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。 屏蔽 示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一普通导线来代替探头,那么它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,这类噪声甚至还能注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。 一.探头构造图:

4. 一个探头,就算它只是简单的一条电线,它也可能是一个很复杂的电路。a)对于DC 信号( 0 Hz 频率),探头作为一对导线与一系列电阻,就向一个终端电阻一样。 b) AC 信号的特性变化是因为:电线具有分布电感(L),电线具有分布电容(C)。分布电感反作用于AC信号,在信号频率增加时,阻止AC信号通过。分布电容反作用于AC信号,在信号频率增加时,减小 AC信号电流通过的阻抗。这些反作用元件(L 和 C )的交互作用,与电阻元件(R)一起,成为随信号频率不同而变化的探头阻抗。

示波器探头基础系列之一《示波器探头浅谈之无源探头》

示波器探头基础系列之一《示波器探头浅谈之无源探头》 作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数 字示波器进行相关电气信号量的量测。与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、 有源差分探头等),电流探头、光探头等。每种探头各有其优缺点,因而各有 其适用的场合。其中,有源探头因具有带宽高,输入电容小,地环路小等优点 从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静 电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。最常见的500Mhz 的无源电压探头适用于一般的电路测量和快速诊断,可 以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。一、10 倍无源探头的模型以及输入负载设定图1.探头原理图图1 是工程师常用的10 倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp 位于探头尖端内,Rp 为探头输入阻抗, Cp 为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1 表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。为了精确地测量,两个RC 时间常量(RpCp 和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。因此,在测量前需要校准示波器的探头的工作以保证测量结果的 准确性。从探头的信号模型我们可以分析,对于信号的DC 量测,输入容性Cp 和C1 等效为开路。信号通过Rp 和R1 进行分压,最终示波器的输入为:Vout=[R1/Rp+R1]*Vin=1/10* Vin 示波器输入信号衰减为待测输入信号的1/10。对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。例如,一个

示波器操作规程

示波器操作规程 产品名称:示波器 一、功能键说明: 1、示波器面板功能键、钮的标示及作用(电源开关):接通或关断整机输入电源。 2、FOCUS(聚焦)和ASTIG(辅助聚焦):为套轴电位器,用于调整波形的清晰度。 3、ROTATION(扫描轨迹旋转控制):调整此旋钮可以使光迹和座标水平线平行。 4、ILLUM (坐标刻度照明):用于照亮内刻度坐标。 5、A/B INTEN(A/B亮度控制):通常为套轴电位器,作用是调节A和B扫描光迹的亮度。 6、CAL (校正信号输出):提供且从0电平开始的正向方波电压,用于校正示波器。 7、VOLTS/div(电压量程选择):通常电压量程和幅度微调为套轴电位器,外调节旋钮是电压量程选择,转动此旋钮以改变电压量程;中间带开关的电位器为电压量程微调,顺时针旋到底为校正位置,逆时针调节,波形幅度,变化范围在电压/格两档之间。 8、CH1和CH2(输入信号插座):为示波器提供输入信号。 9、AC GND DC(输入耦合开关):用于选择输入信号的耦合方式。 10、GRIG SEL(内同步选择):按下此键,以CH1和CH2分别作为内同步信号源。 11、CH POL(信号倒相):按下此键,输入信号倒相180°。 12、VERTICAL MODE(垂直工作方式选择):分别按下CH1、CH2、ALT、COHP、ADD、X-Y键,屏幕显示依次为CH1、CH2、CH1和CH2交替、CH1和CH2断续、CH1和CH2代数和、CH1垂直/CH2水平等方式。 13、POSITION(位移调节):调节CH1和CH2输入信号0电平在屏幕的起始位置。 14、UNCAL(不校正指示):当CH1和CH2电压量程微调不在校正位置时,对应的不校正指示灯点亮。 15、TIME(扫描时间调整):外旋钮调节A扫描速度,内旋钮调节B扫描速度。 16、、TRACE SEP (B扫描微调和A/B扫描轨迹分离):一般情况下,涂有红色的旋钮为B扫描微调,提供连续可变的非校正B扫描速度。 17、DELAY TIME(扫描延迟时间调节):选择A和B扫描启动之间的延迟时间。 18、POSITION

示波器探头原理

示波器探头原理 示波器因为有探头的存在而扩展了示波器的应用围,使得示波器可以在线测试和分析被测电子电路,如下图: 图1 示波器探头的作用 探头的选择和使用需要考虑如下两个方面: 其一:因为探头有负载效应,探头会直接影响被测信号和被测电路; 其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果 一、探头的负载效应 当探头探测到被测电路后,探头成为了被测电路的一部分。探头的负载效应包括下面3部分: 1. 阻性负载效应; 2. 容性负载效应; 3. 感性负载效应。 图2 探头的负载效应 阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的作用,影响被测信号的幅度和直流偏置。有时,加上探头时,有故障的电路可能变得正常了。一般推荐探头的电 . .

阻R>10倍被测源电阻,以维持小于10%的幅度误差。 图3 探头的阻性负载 容性负载相当于在被测电路上并联了一个电容,对被测信号有滤波的作用,影响被测信号的上升下降时间,影响传输延迟,影响传输互连通道的带宽。有时,加上探头时,有故障的电路变得正常了,这个电容效应起到了关键的作用。一般推荐使用电容负载尽量小的探头,以减小对被测信号边沿的影响。 图4 探头的容性负载 感性负载来源于探头地线的电感效应,这地线电感会与容性负载和阻性负载形成谐振,从而使显示的信号上出现振铃。如果显示的信号上出现明显的振铃,需要检查确认是被测信号的真实特征还是由于接地线引起的振铃,检查确认的方法是使用尽量短的接地线。一般推荐使用尽量短的地线,一般地线电感=1nH/mm。 . .

图5 探头的感性负载 二、探头的类型 示波器探头大的方面可以分为:无源探头和有源探头两大类。无源有源顾名思义就是需不需要给探头供电。 无源探头细分如下: 1. 低阻电阻分压探头; 2. 带补偿的高阻无源探头(最常用的无源探头); 3. 高压探头 有源探头细分如下: 1. 单端有源探头; 2. 差分探头; 3. 电流探头 最常用的高阻无源探头和有源探头简单对比如下: 表1 有源探头和无源探头对比 低阻电阻分压探头具备较低的电容负载(<1pf),较高的带宽(>1.5GHz),较低的价格, . .

示波器如何校正波器校准步骤

示波器如何校正波器校准步骤

————————————————————————————————作者:————————————————————————————————日期:

示波器如何校正?示波器校准步骤 示波器与其它仪器一样(如万用表等),在使用之前都必需要先对其进行校正。而所谓对示波器的校正,是将示波器的原来波形在测试之前正确调试出来。也就是说,校正出来的波形要与示波器本身所设定的参数一致(这些参数通常会在校正的测试点标志出来)。以GW GOS-602示波器为例(左图):在其面板的左下角就是要求校正波形的参数,如电压值为2V、频率是1KHz等(右图),就是要求示波器的校正波形(或正、余弦波、方波)的电压峰峰值为2V、频率为1KHz。但示波器通常不能直接显示波形的频率,而是根据频率与周期的转换(T=1/f)来将频率化为周期,再用周期波表示频率(频率1KHz的等效周期为1mS)。 在校正波形过程中,为了方便观察波形,应首先将波形的中心位置调节好,这就要将输入之间的连接模态信号的开关拨到GND位置上(左下图)。这时若正常接通电源,应该能够显出一条水平亮线;如果没有显示,那就要上下调节POSITION、DC BALT和INTER了。其中,POSITION是波形上下调节按钮(中图),DC BAL是水平亮线的中心调

整,INTER是亮度调整,如果现出亮线不平衡(相对于X轴)时,则要用无感螺丝刀调节在FOCUS附近的TEACE ROTATION(右下图),之后通过FOCUS的调节把会聚调至最佳状态。 第一步工作完成后,将GND转换为AC挡(图a);在输入校正波形时,要把衰减或扩大按钮调到原始位置上,如果拨错了会严重影响被测波形数值的准确性;对输入踪道的选择,完全操纵在MODE选择键上(图b);调试出来的波形如果是闪烁不定的,那就要考虑到同步功能键,即LEVEL(水平同步调节)(图C)和TRIG. ALT、ALT.CHOP(图d)。 图a 图b 图c 图d 而通常需要校正的主要是电压峰峰值和周期数的调节,这也是我们对波形的测试内容。这些调节由按钮VOLTS/DIV、TIME/DIV、SWP.VAR,VOLTS/DIV共同配合完成,各按钮上的标志指向哪一个数值,表示这一数值就是显示屏的坐标轴上每一格的单位数值。横坐标表示周期,纵坐标表示电压幅值,例如:VOLTS/DIV白色指定点拨在1V(左下图),即表示纵坐标的每一小格的电压幅值为2V;在TIME/DIV上将指定点

CP8000A系列 示波器电流探头说明书

深圳市知用电子有限公司 SHENZHEN ZHIYONG ELECTRONICS CO.,LTD 高频电流探头说明书 CP8000A系列 CP8030A 30A/D C~40MHz CP8150A 150A/D C~12MHz CP8300A 300A/D C~6MHz

目录 首先、注意事项 (3) CP8000A系列构成 (4) 概述 (5) 应用 (5) 产品及附件说明 (6) 探头主体说明 (6) 附件说明 (8) 产品电气规格 (9) 机械规格 (12) 环境特性 (13) 操作方法 (13) 使用时的注意事项 (13) 测量前准备 (14) 消磁、调零 (14) 测量方法 (14) 异常时的处理方法 (15) 常见问题解答 (15) 装箱单 (16) 订购方式 (16)

首先,感谢您购买我公司的产品。 本使用说明书,是介绍关于我公司CP8000A 系列产品的功能、使用方法、操作注意事项等方面内容的。使用前,请仔细阅读说明书,并正确使用。 阅读完后请妥善保存,以便在测量过程中遇到问题,可及时翻阅。 说明书中,注释将用以下的符号进行区分。 安全使用本产品 使用该产品时请务必严格遵守以下安全注意事项。否则有可能会损害产品的保护功能。此外,违反注意事项进行操作所产生的问题,本公司概不负责 z 为避免短路及人体伤害,被测电压要求CAT I 300V 以下。 z 请避免接触裸导体。因为探头前端传感器头没有绝缘,危险! z 测量时不要接触被测导体和传感器头。 z 测量使用的示波器,请使用带有保护接地的双重绝缘结构。 z 当示波器连接其它测试终端时,该测试终端会因为连接了其他输入部分,使得本产品的连接端子和内部线路产生某种隐患,此时必须注意以下几点: ·连接本产品的测试终端和其他测试终端之间,请使用带有符合过电压范畴及污染 度的基础绝缘设备 ·若测试终端的基本绝缘无法满足的话,请不要输入超出安全电压。 ·请参照连接电器的触电等安全性相关的注意事项,进行使用。 z 避免在潮湿环境中进行测量,以免发生触电事故,请注意。 指出错误的操作可能会造成人身伤害或危及生命安全。 指出错误的操作可能会造本产品或者其他财产损坏。 记载着使用该产品时的重要说明 。 该符号表示对人体和仪器有危害,必须参照说明书操作。

示波器探头的详细使用

别看一个示波器探头很简单,其实还是很有讲究的。以下是 圈圈使用示波器探头的一点小经验,供大家使用时参考一下。 首先是带宽,这个通常会在探头上写明,多少MHz。如果探头 的带宽不够,示波器的带宽再高也是无用,瓶颈效应。 另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗 匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。它们是用来调 节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波 形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波 器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的 水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模 拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。数字示波器不用调节)。然后,再将示波器的输入选择打到直流 耦合上,并将示波器探头接在示波器的测试信号输出端上(一般 示波器都带有这输出端子,通常是1KHz的方波信号),然后调节 扫描时间旋钮,使波形能够显示2个周期左右。调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。然后观察方波的上、下两边,看是否水平。如果出现过冲、倾斜等现象,则说明需要调节 探头上的匹配电容。用小螺丝刀调节之,直到上下两边的波形都 水平,没有过冲为止。当然,可能由于示波器探头质量的问题, 可能调不到完全无失真的效果,这时只能调到最佳效果了。 另外就是示波器上还有一个选择量程的小开关:X10和X1。 当选择X1档时,信号是没经衰减进入示波器的。而选择X10档时,信号是经过衰减到1/10再到示波器的。因此,当使用示波器的X10 档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器 端可选择X10档,以配合探头使用,这样在示波器端也设置为X10 档后,直接读数即可)。当我们要测量较高电压时,就可以利用 探头的X10档功能,将较高电压衰减后进入示波器。另外,X10档 的输入阻抗比X1档要高得多,所以在测试驱动能力较弱的信号波 形时,把探头打到X10档可更好的测量。但要注意,在不确信号电压高低时,也应当先用X10档测一下,确认电压不是过高后再选用正确有量程档测量,养成这样的习惯是很有必要的,不然,哪天 万一因为这样损坏了示波器,要后悔就来不及了。经常有人提问,为什么用示波器看不到晶振引脚上的波形?一个可能的原因就是 因为使用的是探头的X1档,这时相当于一个很重的负载(一个示 波器探头使用×1档具有上百pF的电容)并联在晶振电路中,导致电路停振了。正确的方法应该是使用探头的X10档。这是使用中应当注意的,即或不停振,也有可能因过度改变振荡条件而看不到 真实的波形了。 示波器探头在使用时,要保证地线夹子可靠的接了地(被测

了解示波器探头,并不是任何探头都适用所有这些指标

了解示波器探头,并不是任何探头都适用所有这些指标 本文按字母顺序列明了各个指标;并不是任何探头都适用所有这些指标。例如,插入阻抗指标仅适用于电流探头;其它指标( 如带宽) 则是通用指标,适用于所有探头。希望本文可以帮助您更好地了解示波器探头。 1、畸变(通用指标) 畸变是输入信号预计响应或理想响应的任何幅度偏差。在实践中,在快速波形转换之间通常会立即发生畸变,其表现为所谓的“振铃”。 畸变作为最终脉冲响应电平±百分比进行测量或指定。这一指标可能还包括畸变的时间窗口,例如: 在前30ns内,畸变不应超过峰峰值的±3% 或5%。在脉冲测量上看到畸变过多时,在认为畸变是探头故障来源时,一定要考虑所有可能的来源。例如,畸变实际上是信号源的一部分吗?还是探头接地技术导致的? 观察到的畸变最常见的来源之一,是疏于检查及正确调节电压探头的补偿功能。严重过度补偿的探头会在脉冲边沿之后立即导致明显的峰值。 2、精度(通用指标) 对电压传感探头,精度一般是指探头对DC信号的衰减。探头精度的计算和测量一般应包括示波器的输入电阻。因此,只有在与拥有假设输入电阻的示波器一起使用探头时,探头精度指标才是正确的或适用的。精度指标实例如下: 在3%范围内10X ( 对1兆欧±2%的示波器输入) 对电流传感探头,精度指标是指电流到电压转换的精度。这取决于电流变压器线圈比及端接电阻的值和精度。使用专用放大器的电流探头的输出在安培/格中直接校准,精度指标用电流/格设定值百分比的衰减器精度指定。 3、安培秒乘积(电流探头) 对电流探头,安培秒乘积规定了电流变压器磁芯的能量处理功能。如果平均电流和脉宽的乘积超过额定安培秒乘积,磁芯会饱和。这种磁芯饱和会导致在饱和过程中发生的波形部

力科示波器探头使用指南

示波器探头基础系列之五 ——示波器探头使用指南 美国力科公司 概述: 本文旨在帮助读者对常用的示波器探头建立一个基本认识。此外,我们通过一系列的例子说明探头的不正确使用如何影响测量的结果。 理解探测问题 注意!连接示波器和待测物会给被测波形带来失真。 示波器上应该贴上上面类似的警告标签吗?或许是的。示波器同其它测量仪器一样,受制于各种测量问题——显然,示波器和待测物的连接会影响到测量,使用者理解这样的影响是非常重要的。随着示波器技术的发展,连接示波器和待测物的工具和技术已经变得非常成熟。 早期的示波器,测量带宽只有几百KHz数量级,常使用电缆连接电路。现代示波器使用各种连接技术以最小化测量误差。使用者应该熟悉示波器本身以及示波器连接电路的各种方法的特性和限制。 考虑示波器连接待测电路的方式如何影响测量,待测电路可以等效为包含内置电阻和电容的戴维宁等效电压源。同样,示波器输入电路和连接部分可以被等效为负载电阻和旁路电容。该模型如图1所示。当示波器连接信号源时,示波器的负载效应会减小测量到的电压。低频的损耗取决于电阻比率Rs和Ro。对于高频时的损耗,Cs和Co成了主要因素。另外一个影响是系统带宽由于示波器的容性负载而变小,这也会影响到动态时间量的测量,如脉冲上升时间Risetime。 图1 包括信号源和示波器的简单测量模型 示波器的设计者需要从两个方面入手来减少负载效应的影响: a.高阻探头,利用有源和无源电路来减少负载效应,这些电路包括补偿衰减器或者低容值场效应晶体管缓冲放大器。 b.对于高频应用的直接连接,示波器的输入电路采用50ohm的内部端接。在这些场合,示波器输入电路被设计成常数的50ohm负载阻抗。低电容的探头被设计为50ohm端接来减少负载效应。 如何选择合适的探头 通常,探头可以被分成三大类。1、无源高阻探头;2、无源低阻探头;3、有源探头。

示波器探头校准的重要意义

示波器无源高阻电压探头具有通用性,通常一个探头可以与不同的示波器搭配使用。但不同的示波器,甚至同一示波器的不同输入通道,输入阻抗会有差异,这样当探头切换到带衰减的档位时,由于示波器输入阻抗的差异,势必导致衰减系数出现偏差,最终造成测量结果错误。为了解决这个问题,就要考虑探头与示波器输入通道之间的阻抗匹配和频率补偿。探头补偿是针对有衰减的档位设计的,当探头切换到无衰减档位时,补偿调节无效。 示波器的输入阻抗可以等效为一个电阻与一个电容的并联。电阻的阻值比较好控制,一般偏差不大,而寄生电容则与电路设计相关,会有一定的差异。为了补偿输入电容,需要在探头的衰减档位上设计相应的补偿电路,通过调节可调电容,补偿输入电容的差异,这就是低频补偿,所有的探头都具有该功能。然而,由于电路设计方案不同,该可调电容的位置也不一样,但通常在探尖端,如图1所示。 图1低频补偿调节孔 调整补偿电容时需接入示波器上的1kHz校准信号,调整补偿电容,直到方波的顶部最平坦,而不应出现欠补偿或过补偿的情况。当探头欠补偿时,高频信号的测量结果偏小,反之,高频信号的测量结果偏大。若示波器上的1kHz的校准信号损坏,也可以采用外部的1KHz的标准方波进行校准,但应特别注意以下几点。 首先,信号波形要接近理想的方波,不应出现过冲或上升沿过缓的情况,以免调节时影响判断,信号质量可通过探头无衰减档评估。 其次,信号频率应为1kHz,频率过高或过低都会影响补偿的正常操作,例如出现调整补偿时,信号波形形状不变,而幅度变化的情况。之所以选择校准信号频率为1kHz,是与探头本身的频率特性相关的,在该频率下,最有利于观察补偿情况。当然,在补偿时对校准信号的幅度并无严格要求,以方便观察为佳。低频补偿前后的波形如图2所示。 图2低频补偿前后波形对比 为了降低探头的负载效应并扩大补偿范围,通常会将补偿电容放置在探尖端。然而,对于带宽较高的探头,该补偿电容并不能在整个通频带内都起作用,往往还需要做额外的高频补偿,如图3所示。

示波器探头补偿

课题研究报告 示波器探头补偿 学院:信息工程学院班级:电子 10-1 班姓名:学号:201010203008 201010203009 201010203012 完成时间:2011年12月26日

示波器探头补偿 ——讨论探头中串联的RC并联电路参数对测量结果的影响 课题背景 示波器探头不仅仅是把待测信号引入示波器输入端的一端导线,而且是测量系统的的重要组成部分。探头有很多种类型,以适应各种不同的专门工作需要。其中一类为有源探头,探头内包含有源电子元件,具有放大能力;不含有源原件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。为了有效抑制外界干扰信号,示波器探头通过屏蔽电缆与示波器输入连接,如图所示 当被测信号频率很高时,上图中与探头相连的屏蔽电缆的电容就不能忽略,探头的容性负载效应就非常明显,有可能导致探头在高频下无法使用。为此,可以在探头中增加一个和示波器输入端电路模型相串联的RC并联电路,以减小探头的容性负载效应,如下图所示,其中Ci为探头电缆的电容和示波器输入电路模型中电容合并后的等效电容。Rcmp和Ccmp分别为补偿电阻和补偿电容。

通过课题背景,我们知道在使用示波器时,当被测信号频率很高时,,探头的容性负载效应就会明显,导致探头在高频下无法使用。所以在探头中增加一个串联的RC并联电路,来减小探头的容性负载效应。 结合所学知识,电容具有通高频阻低频的性质,当低频信号通过时,电容对其阻碍作用非常明显,探头的负载主要是阻抗作用,所以容性负载效应不明显。当电路通有高频信号时,探头的负载主要是容抗作用,从而电路中容性负载效应很大,致使被测电路的信号发生变化,所以就不能准确地进行波形测量。为了减轻探头对被测电路的负载作用,应选择高阻抗、低容抗的探头。 当通有高频信号时,我们需要对其进行衰减,使得电路中容性负载效应减小,保证测量结果的准确性。 为此我们有了如下研究想法:示波器探头补偿电路可以简化为一个简单的RC串并联电路,用一标准示波器对电路信号进行检测,因为任何的不平衡将会带来波形的失真,通过改变RC电路的相关参数来观察波形的变化,从而来确定RC的哪些参数对测量结果的影响。再结合一阶电路时域分析中电路的零状态响应和全响应方面的知识,进行理论上的具体分析。

常见的电流探头选择方案

是德科技 如何选择正确的电流探头 应用指南

概述 示波器电流探头让示波器能够测量电流,扩展了测量电压以外的用途。基本上而言,电流探头通过导体感应电流流动,并将电流转化为探头可以在示波器上查看并测量的电压。最常用的电流测量方式是对带电导体的磁场感应。然而,还有多种可以选择的电流探头类型,且每种探头都有最佳应用领域。当正确用于设计的应用情况时,可以获得最佳的结果。 本应用指南介绍常见的电流探头解决方案类型、基本原理、每种电流探头类型的优势和局限性,以及将电流探头用于示波器应用时的实际考虑因素,从而充分利用这些探头。

电流探头类型 电流探头广泛用于功率设备或电源电流测量,它们已经成为使用示波器进行精确的电流测量不可或缺的工具。为了满足电流测量需求,有很多不同的技术可用来测量电流,但最常见的配合示波器使用的方法有: 1. 检测电阻或分流器:基于欧姆定律 2. 夹合式电流探头 - 交流电流互感器或混合霍尔效应传感器/交流电流互感器 3. 罗氏线圈:用于大交流电流测量的便捷探头 检测电阻或分流器 测量 DUT 电流的一种直接方式是在电流中使用分流电阻,测量电阻两端的压降,并使用欧姆定律方程式(即,I = V/R)将电压转换为电流。此方法是有创测定法,其中检测/分流电阻和电压测量电路或探头通过电气连接,并且是待测设备的一部分。因此,有很多因素需要考虑。 选择检测电阻 电阻值、精度、温度系数和物理尺寸的选择均取决于待测量的电流量及其特征。电阻值越大,SNR 越大,测量精度也越高。但是,较大的电阻值将导致电阻上功耗的增加,从而产生不需要的电压骤降,其也被称为负担电压。在负担电压损失以外,还存在检测电阻值和测量噪声、灵敏度和带宽之间的权衡。为了降低负担电压的影响,用户可能需要尽可能使用最小的检测电阻值,但较低的检测电阻会对测量产生不利影响。较大的检测电阻值意味着检测电阻上压力骤降的增加,以及负载的低电压,从而引起系统性能和效率问题。这是一项需要平衡的操作。 图 1. 在检测电阻值和测量噪声、灵敏度和带宽之间进行权衡。

各类仪器的校准方法

各类仪器的校准方法 数字万用表 一、范围 本标准适用本单位所有用于测量电信、电压的计量器具在使用的量程范围内的首次检定,后续检定和使用中检验。 二、技术要求 1.工作环境 环境温度为20℃±5,相对湿度不大于75%RH。无电磁场干扰。 2.检定标准 以K E I T H L E Y-2000型6位半数字万用表为基准,进行比对检定。 3.检定周期 新购的此类仪器须进行首次检定,使用中的此类仪器须每年检定一次,检定合格的方可使用。 4.误差范围 在量程范围内,测量相对误差应小于0.5%。 5.检定人员 须指定专业人员进行检定并作好检定记录。 三、检定方法 1.外观检查受检仪器的外观是否完好,各功能键和旋钮无松动,工作正常,电源充足。 2.受控仪器在切换测量标准后,先须校零,将输入两端短接,显示值应为0,不为零时,可调 整到零。 3.将信号源与基准万用表和受检仪器进行连接,检定电压时,须并联连接,检定电流时,须 串联连接。 4.受检仪器在各测量标位至少取3个点进行比对,记录3次测量平均值。 5.受检仪器的相对误差按以下公式计算。 基准表示值-受检表示值 相对误差= ×100% 测量范围 四、记录 将检验结果记录,并填写“数字万用表内校记录”表。

示波器 示波器探头校准规范 使用的技术要求指标:电压衰减 误差应小于±5% ,频带宽度大于30MHz 1.外观检查。 被检100:1示波器探头外观应完整无损,有无接触不良现象。 2.电压衰减校准。 2.1.将数字示波器与校准仪通过100:1探头相连接好。 2.2.设置数字示波器增益控制旋钮校准位置,置示波器校准 仪脉冲输出方式,使显示波形与数字示波器的刻度相对应(数字示波器输入幅度衰减应设置在100:1状态),此时,调节“V”误差旋钮,直到脉冲的上下基线与示波器水平刻度完全重合,读出示波器校准仪表头误差读数。 2.4.误差应小于±5%。 3.频带宽度的校准 4.1将示波器与合成信号发生器通过100:1探头连接好。 4.2.合成信号发生器输出频率置100KHz调节输出电压,使示波器屏幕显示高度为 Ho为检验工作的80%左右(通常为6div)。 4.3.保持发生器输出电压不变,均匀地改变发生器的频率,记下各频率点的波形高度 Hi则频带宽度下降的dB数,(频带宽度下降的dB数=20lgHi/Ho(dB))。 其中:Hi─各频率点显示的幅度高度。 Ho─基准频率点显示幅度的高度。 4.4.当合成信号发生器的频率向示波器上限频率继续升高时,显示高度下降为 0.707Ho(即4.2div)时对应的频率为100:1示波器探头带宽实测值,应大于30MHz。 6.校准条件 6.1.环境温度:(20±5)℃ 6.2.相对湿度:≤80% 7.标准器具: 7.1.示波器校准仪型号:S06 机身编号:08047 7.2合成信号发生器型号:6061A 机身编号:9646914 数字示波器型号:HP-54600B 机身编号:38421026 8.校准结果的处理和校准周期 8.2.经校准合格的100:1示波器探头,发给并在机身上加贴校准合格证标识;校 准有部分超差,给准用证,并注明准用范围;不合格的贴上“禁止使用”标识

示波器常用的探头有哪些(电压、电流、逻辑、差分详解)

示波器常用的探头有哪些(电压、电流、逻辑、差分详解) 示波器探头种类比较多,那么常用示波器探头种类有哪些?示波器探头的种类大体上可以分为电压、电流、逻辑等几大类,如下图所示: 1 无源电压探头1.1 无源探头 无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。探头中没有有源器件(晶体管或放大器),因此不需为探头供电。无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。 1.2 高阻无源电压探头 从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。无源电压探头为不同电压范围提供了各种衰减系数1,10和100。在这些无源探头中,10无源电压探头是最常用的探头。对信号幅度是1V峰峰值或更低的应用,1探头可能要比较适合,甚至是必不可少的。在低幅度和中等幅度信号混合(几十毫伏到几十伏)的应用中,可切换1/10探头要方便得多。但是,可切换1/10探头在本质上是一个产品中的两个不同探头,不仅其衰减系数不同,而且其带宽、上升时间和阻抗(R和C)特点也不同。因此,这些探头不能与示波器的输入完全匹配,不能提供标准10探头实现的最优性能。 1.3 低阻无源电压探头 大多数高阻无源探头的带宽范围在小于100MHz到500MHz或更高的带宽之间。而低阻无源电压探头(又称为50欧姆探头、Zo探头、分压器探头)的频率特性很好,采用匹配同轴电缆的探头,带宽可达10GHz和100皮秒或更快的上升时间。这种探头是为用于50欧姆环境中设计的,这些环境一般是高速设备检定、微波通信和时域反射计(TDR)。 1.4 无源高压探头 高压是相对的概念。从探头角度看,我们可以把高压定义为超过典型的通用10无源探头可以安全处理的电压的任何电压。高压探头要求具有良好的绝缘强度,保证使用者和示波

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

数字示波器DPO-4034操作规程

中国长城计算机深圳股份有限公司电源事业部 操作规程 标题:多功能数字示波器DPO-4034操作规程 编号:WI-ED-YQ*** 版本号: A 修改号: 01 第 1 页共 7 页1.0 适用范围: 适用于维修人员对泰克数字示波器DPO-4034操作指导。 2.0 规程: 2.1 面板说明 2.1.1 按键说明 →Power:即电源键,示波器电源开关 →通用a旋钮:通用选择与设置旋钮 →通用b旋钮:通用选择与设置旋钮 →Measure:即测量键,用于开启测量操作见面 1 2 3 4

→平移◎缩放旋钮:水平方向放大显示波形 →水平位置旋钮:用于调节示波器波形的水平位置 →水平标度旋钮:用于调节示波器波形水平标度,使波形周期呈现放大或缩小的效果 →垂直位置旋钮:分别用于调节示波器各通道波形的垂直位置 →垂直标度旋钮:分别用于调节示波器各通道波形的垂直方向的标度,使波形峰值呈现放大或缩小的效果 →通道数字键(1/2/3/4):打开或关闭相应通道 →触发Menu :即触发菜单键,用于调出触发设置界面 →触发Level :用于调整触发位置 →Set to 50%:自动设置触发点为最大值的50% →Autoset :即自动设置键,根据通道所接探头自动设置为示波器对应的预 参数 →Single :即信号键,用于开启或关闭信号波形显示 →Run/Stop :即运行/停止键,用于开启或停止示波器信号触发 →Save :即存储键,用于把示波器界面当前显示波形保存到存储介质中 →Menu :即系统设置菜单键,用于文件保存设置和波形显示等 →Default Setup :即默认设置键,用于恢复默认设置 →Utility :即系统设置键,用于设置界面显示语言和系统时间和日期等,同 时提供示波器当前配置信息显示 →Menu Off :即关闭菜单键,用于关闭显示界面设置菜单 →显示界面菜单中各选项对应按键 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 6 7 8

相关主题
文本预览
相关文档 最新文档