当前位置:文档之家› 《仪器分析》教案5- 分子发光分析法

《仪器分析》教案5- 分子发光分析法

《仪器分析》教案5- 分子发光分析法
《仪器分析》教案5- 分子发光分析法

第8章分子发光分析法

8.1教学建议

一、从光谱定性分析和定量分析的依据和方法入手,在了解分子发光分析特点的基础上,介绍分子荧光与磷光光谱分析法的基本原理、仪器结构组成、常规测定方法及应用。

二、在比较分子荧光与磷光光谱分析法的基础上,介绍化学发光分析方法的基本原理及分析特点与应用。

8.2主要概念

一、教学要求:

(一)、掌握分子荧光与磷光光谱分析方法的基本原理;

(二)、掌握荧光与磷光分析仪器的结构组成、常规测定方法及应用;

(三)、掌握化学发光法的基本原理及应用;

二、内容要点精讲

第一节荧光分析法

一、概述

分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

荧光分析的特点:

灵敏度高:视不同物质,检测下限在0.1~0.001mg/mL之间。可见比UV-V is的灵敏度高得多。

选择性好:可同时用激发光谱和荧光发射光谱定性。

结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。

应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。

二、基本原理

1、分子荧光的产生

处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。

处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫( VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。

2、去活化过程(Deactivation)

处于激发态分子不稳定,通过辐射或非辐射跃迁等去活化过程返回至基态。这些过程包括:

(1)振动弛豫(V ibrational Relaxation, VR)

在液相或压力足够高的气相中,处于激发态的分子因碰撞将能量以热的形式传递给周围

的分子,从而从高振动能层失活至低振动能层的过程,称为振动弛豫。

(2)内转化(Internal Conversion,IC )

对于具有相同多重度的分子,若较高电子能级的低振动能层与较低电子能级的高振动能层相重叠时,则电子可在重叠的能层之间通过振动耦合产生无辐射跃迁,如S2-S1;T2-T1。

(3)荧光发射

处于第一激发单重态中的电子跃迁至基态各振动能级时,将得到最大波长为λ3的荧光。注意:基态中也有振动驰豫跃迁。很明显,λ3的波长较激发波长λ1或λ2都长,而且不论电子开始被激发至什么高能级,最终将只发射出波长为λ3的荧光。荧光的产生在10-7-10-9s内完成。

三、荧光与有机化合物的结构

1、跃迁类型

对于大多数荧光物质,首先经历p?p*,然后经过振动弛豫或其他无辐射跃迁,再发生p*?p跃迁而得到荧光。p*?p跃迁常能发出较强的荧光(较大的量子产率)。这是由于p?p*跃迁具有较大的摩尔吸光系数(一般比n?p*大100-1000倍)。

其次,p?p*跃迁的寿命约为10-7—10-9s,比n?p*跃迁的寿命10-5—10-7s要短。在各种跃迁过程的竞争中,它是有利于发射荧光的。此外,在p?p*跃迁过程中,通过系间窜跃至三重态的速率常数也较小(S1?T1能级差较大),这也有利于荧光的发射。总之,p?p*跃迁是产生荧光的主要跃迁类型。

2、共轭效应

容易实现p?p*激发的芳香族化合物容易发生荧光,能发生荧光的脂肪族和脂环族化合物极少(仅少数高度共轭体系化合物除外)。此外,增加体系的共轭度,荧光效率一般也将增大。例如:

在多烯结构中,Ph(CH=CH)3 Ph和Ph(CH=CH)2 Ph在苯中的荧光效率分别为0.68和0.28。

共轭效应使荧光增强的原因:增大了摩尔吸光系数

3、刚性平面结构

多数具有刚性平面结构的有机分子具有强烈的荧光。因为这种结构可以减少分子的振动,使分子与溶剂或其它溶质分子的相互作用减少,也就减少了碰撞去活的可能性。

4、取代基效应

芳香族化合物苯环上的不同取代基对该化合物的荧光强度和荧光光谱有很大的影响。给电子基团,如-OH、-OR、-CN、-NH2、-NR2等,使荧光增强。因为产生了p-p共轭作用,增强了p电子共轭程度,使最低激发单重态与基态之间的跃迁几率增大。

吸电子基团,如-COOH、-NO、-C=O、卤素等,会减弱甚至会猝灭荧光。

卤素取代基随原子序数的增加而荧光降低。这可能是由所谓“重原子效应”使系间窜跃速率增加所致。在重原子中,能级之间的交叉现象比较严重,因此容易发生自旋轨道的相互作用,增加了由单重态转化为三重态的概率。取代基的空间障碍对荧光也有影响。立体异构现象对荧光强度有显著的影响。

四、金属螯合物的荧光

除过渡元素的顺磁性原子会发生线状荧光光谱外,大多数无机盐类金属离子,在溶液中只能发生无辐射跃迁,因而不产生荧光。但是,在某些情况下,金属螯合物却能产生很强的荧光,并可用于痕量金属元素分析。

1、螯合物中配位体的发光

不少有机化合物虽然具有共轭双键,但由于不是刚性结构,分子处于非同一平面,因而

不发生荧光。若这些化合物和金属离子形成螯合物,随着分子的刚性增强,平面结构的增大,常会发生荧光。

如8-羟基喹啉本身有很弱的荧光,但其金属螯合物具有很强的荧光。

2、螯合物中金属离子的特征荧光

这类发光过程通常是螯合物首先通过配位体的p*?p跃迁激发,接着配位体把能量转给金属离子,导致d?d*跃迁和f?f*跃迁,最终发射的是d?d*跃迁和f?f*跃迁光谱。

五、影响荧光强度的因素

1、溶剂对荧光强度的影响

增大溶剂的极性,p?p*跃迁的能量减小,而导致荧光增强,荧光峰红移。但也有相反的情况,例如,苯胺、萘磺酸类化合物在戊醇、丁醇、丙醇、乙醇和甲醇中,随着醇的极性增大,荧光强度减小,荧光峰蓝移。因此荧光光谱的位置和强度与溶剂极性之间的关系,应根据荧光物质与溶剂的不同而异。

如果溶剂和荧光物质形成了化合物,或溶剂使荧光物质的状态改变,则荧光峰位和强度都会发生较大的变化。

2、温度对荧光强度的影响

温度上升使荧光强度下降。其中一个原因是分子的内部能量转化作用。当激发分子接受额外热能时,有可能使激发能转换为基态的振动能量,随后迅速振动弛豫而丧失振动能量。另一个原因是碰撞频率增加,使外转换的去活几率增加。

3、溶液pH值对荧光强度的影响

带有酸性或碱性官能团的大多数芳香族化合物的荧光与溶液的pH有关。

具有酸性或碱性基团的有机物质,在不同pH值时,其结构可能发生变化,因而荧光强度将发生改变;对无机荧光物质,因pH值会影响其稳定性,因而也可使其荧光强度发生改变。

4、顺磁性物质的存在,使激发单重态的体系间窜越速率增大,因而会使荧光效率降低。

六、溶液荧光猝灭

荧光物质分子与溶剂分子或其它溶质分子的相互作用引起荧光强度降低的现象称为荧光猝灭。能引起荧光强度降低的物质称为猝灭剂。

导致荧光猝灭的主要类型:

(1)碰撞猝灭

碰撞猝灭是指处于激发单重态的荧光分子与猝灭剂分子相碰撞,使激发单重态的荧光分子以无辐射跃迁的方式回到基态,产生猝灭作用。

(2)静态猝灭(组成化合物的猝灭)

由于部分荧光物质分子与猝灭剂分子生成非荧光的配合物而产生的。此过程往往还会引起溶液吸收光谱的改变。

(3)转入三重态的猝灭

分子由于系间的跨越跃迁,由单重态跃迁到三重态。转入三重态的分子在常温下不发光,它们在与其它分子的碰撞中消耗能量而使荧光猝灭。

溶液中的溶解氧对有机化合物的荧光产生猝灭效应是由于三重态基态的氧分子和单重激发态的荧光物质分子碰撞,形成了单重激发态的氧分子和三重态的荧光物质分子,使荧光猝灭。

(4)发生电子转移反应的猝灭

某些猝灭剂分子与荧光物质分子相互作用时,发生了电子转移反应,因而引起荧光猝灭。

(5)荧光物质的自猝灭

在浓度较高的荧光物质溶液中,单重激发态的分子在发生荧光之前和未激发的荧光物质

分子碰撞而引起的自猝灭。有些荧光物质分子在溶液浓度较高时会形成二聚体或多聚体,使它们的吸收光谱发生变化,也引起溶液荧光强度的降低或消失。

七、胶束增敏荧光

加入临界浓度以上的表面活性剂,如十二烷基硫酸钠。

1、溶液的荧光强度

(1)荧光强度与溶液浓度的关系

荧光强度If正比于吸收的光量Ia与荧光量子产率j 。

If =j Ia

式中j为荧光量子效率,又根据Beer定律

Ia = I0 - It = I0(1- e -A)

I0和It分别是入射光强度和透射光强度。代入上式得

If =j I0(1- 10 -A) =j I0(1- e -2.3A)

整理得:

If =2.3j I0kbc

当入射光强度I0和I一定时,上式为:

If = K c

即荧光强度与荧光物质的浓度成正比,但这种线性关系只有在极稀的溶液中,当A£0.05时才成立。对于较浓溶液,由于猝灭现象和自吸收等原因,使荧光强度和浓度不呈线性关系。

2、荧光激发光谱与发射光谱

任何荧(磷)光都具有两种特征光谱:激发光谱与发射光谱。它们是荧(磷)光定性分析的基础。

(1)激发光谱

改变激发波长,测量在最强荧(磷)光发射波长处的强度变化,以激发波长对荧光强度作图可得到激发光谱。

激发光谱形状与吸收光谱形状完全相似,经校正后二者完全相同!这是因为分子吸收光能的过程就是分子的激发过程。

激发光谱可用于鉴别荧光物质;在定量时,用于选择最适宜的激发波长。

(2)发射光谱

发射光谱即荧光光谱。一定波长和强度的激发波长辐照荧光物质,产生不同波长和强度的荧光,以荧光强度对其波长作图可得荧光发射光谱。

由于不同物质具有不同的特征发射峰,因而使用荧光发射光谱可用于鉴别荧光物质。

(3)激发光谱与发射光谱的关系

a 波长比较

与激发(或吸收)波长相比,荧光发射波长更长,即产生所谓Stokes位移。(振动弛豫失活所致)

b 形状比较

荧光光谱形状与激发波长无关。尽管分子受激可到达不同能级的激发态,但由于去活化(内转换和振动弛豫)到第一电子激发态的速率或几率很大,好像是分子受激只到达第一激发态一样。

换句话说,不管激发波长如何,电子都是从第一电子激发态的最低振动能层跃迁到基态的各个振动能层。

七、荧光仪器(光源与检测器处于相互垂直的位置)

1、光源:氙灯、高压汞灯、激光;

2、样品池:石英(低荧光材料);

3、两个单色器:选择激发光单色器,分离荧光单色器;

4、检测器:光电倍增管。

八、荧光分析法的应用

荧光测定必须在极稀的溶液中才可用于定量测定。标准曲线法测定荧光物质的含量

九、荧光分析法的应用

1、无机化合物的分析

大多数无机离子与溶剂之间的相互作用很强,其激发态多以非辐射跃迁方式返回基态,发荧光者甚少。然而很多无机离子可以与一些有机化合物形成有荧光的络合物,利用这一性质可对其进行荧光测定。能够同金属离子形成荧光络合物的有机试剂绝大多数是芳香族化合物,通常含有两个或两个以上的官能团,能与金属离子形成五元环或六元环的螯合物。由于螯合物的生成,分子的刚性平面结构增大,使原来不发荧光或荧光较弱的化合物转变为强荧光化合物。

2、有机化合物的分析

脂肪族有机化合物的分子结构较为简单,本身能发生荧光的很少,一般需要与某些试剂反应后才能进行荧光分析,如丙三醇与苯胺在浓硫酸介质中反应生成发射蓝色荧光的喹啉,据此可以测定0.1~2μg?mL?1的丙三醇。

芳香族化合物因具有共轭的不饱和体系,多数能发生荧光,可直接用荧光法测定。

第二节磷光分析

一、概述

磷光分析法是以分子磷光光谱来鉴别有机化合物和进行定量分析的一种方法。磷光分析法在药物分析,临床分析等领域的应用日益发展。

二、基本原理

1、磷光的产生和磷光强度

磷光是处于激发三重态的分子跃迁返回基态时所产生的辐射。

(1)磷光的特点:

①磷光波长比荧光的长(T1

(2)磷光强度:

IP=2.3jPI0kbc

式中IP为磷光强度,jP为磷光效率,I?为激发光的强度,K为磷光物质的摩尔吸收系数,b为试样池的光程,C为磷光物质的浓度。

在一定的条件下,jp、Ip、k、b均为常数,因此上式可写成:

Ip=Kc

2、温度对磷光强度的影响

(1)随着温度降低,分子热运动速率减慢,磷光逐渐增强。

(2)低温磷光(液氮)

由于磷光寿命长,T1的非辐射跃迁(内转换)几率增加,碰撞失活(振动弛豫)的几率、光化学反应几率都增加,从而降低磷光强度。因此有必要在低温下测量磷光。同时要求溶剂:①易提纯且在分析波长区无强吸收和发射;②低温下形成具有足够粘度的透明的刚性玻璃体。

常用的溶剂:

① EPA——乙醇+异戊烷+二乙醚(2+2+5)

② IEPA——CH3I+EPA(1+10)。

3、重原子效应

使用含有重原子的溶剂(碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。前者称为外部重原子效应,后者称为内部重原子效应。

机理:重原子的高核电荷使得磷光分子的电子能级交错,容易引起或增强磷光分子的自旋轨道偶合作用,从而使S1→T1的体系间窜跃概率增大,有利于增大磷光效率。

4、室温磷光

低温磷光需低温实验装置且受到溶剂选择的限制,1974年后发展了室温磷光(RTP)。

(1)固体基质:在室温下以固体基质(如纤维素等)吸附磷光体,可增加分子刚性、减少三重态猝灭等非辐射跃迁,从而提高磷光量子效率。

(2)胶束增稳:利用表面活性剂在临界浓度形成具多相性的胶束,改变磷光体的微环境、增加定向约束力,从而减小内转换和碰撞等去活化的几率,提高三重态的稳定性。

利用胶束增稳、重原子效应和溶液除氧是该法的三要素。

5、敏化磷光:其过程可以简单表示为:

6、磷光发射

从单重态到三重态分子间发生系间跨跃跃迁后,再经振动弛豫回到三重态最低振动能层,最后,在10-4-10s内跃迁到基态的各振动能层所产生的辐射。

三、磷光仪器

在荧光仪样品池上增加磷光配件:低温杜瓦瓶和斩光片。如右图所示。

斩光片的作用是利用其分子受激所产生的荧光与磷光的寿命不同获取磷光辐射。

第三节化学发光分析法

一、概述

某些物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光。这种吸收化学能使分子发光的过程称为化学发光。利用化学发光反应而建立起来的分析方法称为化学发光分析法。化学发光也发生于生命体系,这种发光称为生物发光。

二、化学发光分析的基本原理

化学发光是吸收化学反应过程产生的化学能,而使反应产物分子激发所发射的光。任何一个化学发光反应都应包括化学激发和发光两个步骤,必须满足如下条件:

(1)化学反应必须提供足够的激发能,激发能主要来源于反应焓。

(2)要有有利的化学反应历程,使化学反应的能量至少能被一种物质所接受并生成激发态。

(3)激发态能释放光子或能够转移它的能量给另一个分子,而使该分子激发,然后以辐射光子的形式回到基态。

三、化学发光效率和发光强度

化学发光反应效率jCL,又称化学发光的总量子产率。它决定于生成激发态产物分子的化学激发效率jce和激发态分子的发射效率jem。定义为:

jcl =发射光子的分子数/参加反应的分子数=jce·jem

化学反应的发光效率、光辐射的能量大小以及光谱范围,完全由参加反应物质的化学反应所决定。每个化学发光反应都有其特征的化学发光光谱及不同的化学发光效率。

化学发光反应的发光强度Icl以单位时间内发射的光子数表示。它与化学发光反应的速率有关,而反应速率又与反应分子浓度有关。即

Icl (t)=jcl· dc/dt=Kc

式中Icl(t)表示t时刻的化学发光强度,是与分析物有关的化学发光效率dc/dt是分析物参加反应的速率。

四、化学发光反应类型

1、直接化学发光和间接化学发光

直接发光是被测物作为反应物直接参加化学发光反应,生成电子激发态产物分子,此初始激发态能辐射光子。

A + B? C* + D

C*? C + hn

式中A或B是被测物,通过反应生成电子激发态产物C*,当C*跃迁回基态时,辐射光子。

间接发光是被测物A或B,通过化学反应生成初始激发态产物C*,C*不直接发光,而是将其能量转移给F,使F跃迁回基态,产生发光。

A + B? C* + D

C*+F? F* + E

F*? F + hn

式中C*为能量给予体,而F为能量接受体

2、气相化学发光和液相化学发光

按反应体系的状态分类,如化学发光反应在气相中进行称为气相化学发光;在液相或固相中进行称为液相或固相化学发光;在两个不同相中进行则称为异相化学发光。

(1)气相化学发光

主要有O3、NO、S的化学发光反应,可用于监测空气中的O3、NO、SO2、H2S、CO、NO2等。

臭氧与乙烯的化学发光反应;一氧化氮与臭氧的化学发光反应。

(2)液相化学发光

用于此类化学发光分析的发光物质有鲁米诺、光泽碱、洛粉碱等。例如,利用发光物质鲁米诺,可测定痕量的H2O2以及Cu、Mn、Co、V、Fe、Cr、Ce等金属离子。

五、化学发光的测量装置

化学发光分析法的测量仪器主要包括样品室、光检测器、放大器和信号输出装置。

化学发光反应在样品室中进行,样品和试剂混合的方式有不连续取样体系,加样是间歇的。将试剂先加到光电倍增管前面的反应池内,然后用进样器加入分析物。另一种方法是连续流动体系,反应试剂和分析物是定时在样品池中汇合反应,且在载流推动下向前移动,被检测的光信号只是整个发光动力学曲线的一部分,而以峰高进行定量测量。

1、分立取样式仪器

2、流动注射式仪器

六、化学发光分析的应用

1、广泛应用于大气中O3、NO、NO

2、H2O、SO2、CO等组分的检测。

2、鲁米诺—H2O2体系

三、重点、难点

(一)重点内容

1、分子荧光与磷光光谱分析方法的基本原理;

2、荧光与磷光分析常规测定方法及应用;

3、化学发光法的基本原理及应用;

(二)难点

荧光、磷光与分子结构的关系,荧光、磷光的猝灭机理,化学发光类型。

8.3 例题

例3.1 容器中有4.4 g CO 2,14 g N 2,12.8g O 2,总压为2.026×105Pa ,求各组分的分压。

分析:题意中给出了三种气体的质量和总压强,可以直接求得各组的摩尔数,利用道尔顿分压定律求得。本题涉及本章一个重要的知识点。 解:混合气体中各物质的摩尔数为: m o l m o l g g n CO 1.0)(44/4.41

2=?=-

mol mol

g g n N 5.0)(28/1412=?=-

mol mol

g g n O 4.0)(32/8.121

2=?=-

由道尔顿分压定律,可求得: Pa 10026.20.4

0.50.10.110×2.0264

5

2

222

2?=++?

=++?

=O N CO CO tol CO n n n n p p

Pa 10013.10.4

0.50.10.5

10×2.0264

5

2

222

2?=++?

=++?

=O N CO N tol N n n n n p p

Pa 10104.80.4

0.50.10.410×2.0264

5

2

222

2?=++?

=++?

=O N CO O tol O n n n n p p

【评注】本题给定条件明了、直接,解题思路清晰。

例3.2有一高压气瓶,容积为30 dm 3,能承受2.6×107Pa ,问在293K 时可装入多少

千克O 2而不致发生危险?

分析:这是一个应用实例,已知体积,压强,温度,可以直接利用式(1.1)理想气体状态方程求出氧气的质量。

解:

Kg

25.10293

314.8032

.003.0106.27

=????==

==RT

PVM m RT

M m nRT pV

【评注】本题给定条件明了、直接,解题思路清晰。

例3.3 水的汽化热为40 kJ ·mol -1,求298K 时水的饱和蒸汽压。

分析:由题可知,水的蒸发热即汽化热,温度从298K 至沸腾状态373K ,大气压强已知,因此可以由克劳修斯-克拉贝龙方程(式2.15)求得水在298K 时的饱和蒸汽压。

解:????

??-?=

122

111303.2lg

T T R H p p m v ??

? ??-?=

37312981

314.8303.240000

101325lg

2

p

求得:P 2=3945Pa

8.4习题精选详解

(题号)2.1. 某气体在293K与9.97×104Pa时占有体积1.910-1dm3其质量为0.132g,试求这种气体的相对分子质量,它可能是何种气体?

解:该题为理想气体状态方程的运用,将理想气体状态方程进行变量变换,即将物质的量变换为摩尔质量即可。

2.2. 一敞口烧瓶在280K时所盛的气体,需加热到什么温度时,才能使其三分之一逸出?

解该题为理想气体状态方程的应用,由题意可知,一敞口烧瓶即在相同压力下,两种气体状态参数的相关性(采用理想气体状态方程关联)进行计算。

2-3.温度下,将1.013×105Pa的N2 2dm3和0.506 5Pa的O23 dm3放入6 dm3的真空容器中,求O2和N2的分压及混合气体的总压。

解:本题为理想气体状态方程的应用及总压与分压关系。

2.5. 在300K,1.013×105Pa时,加热一敞口细颈瓶到500K,然后封闭其细颈口,并冷却至原来的温度,求这时瓶内的压强。

解:由题意知,当瓶内温度升为500K时,其气体体积将变为原来的5/3倍,因此瓶内气体的物质的量只占全部气体的3/5,对应的压力为1.013×105Pa降温前瓶内的气体的物质的量不变。

2.6. 在273K和1.013×105Pa下,将1.0 dm3洁净干燥的空气缓慢通过H3C-O-CH3液体,在此过程中,液体损失0.0335 g,求此种液体273K时的饱和蒸汽压。

2.8. 在291K和总压为1.013×105Pa时,2.70 dm3含饱和水蒸汽的空气,通过CaCl2干燥管,完全吸水后,干燥空气为

3.21 g,求291K时水的饱和蒸汽压。

2.10. 在273K时,将同一初压的4.0 dm3 N2和1.0dm3 O2压缩到一个容积为2 dm3的真空容器中,混合气体的总压为

3.26×105 Pa,试求:

(1)两种气体的初压;

(2)混合气体中各组分气体的分压;

(3)各气体的物质的量。

解:

2.13.已知乙醚的蒸汽热为25900J·mol-1,它在293K的饱和蒸汽压为7.58×104Pa,试求在308K时的饱和蒸汽压。

2.15.如图所示是NaCl的一个晶胞,属于这个晶胞的Cl (用表示)和Na+(用表示)各多少个?

解:

第五章分子发光分析法习题答案

第五章分子发光分析法 2、简述影响荧光效率的主要因素 答:荧光效率(Ψ?)=发荧光的分子数/激发态分子总数。荧光效率越高,辐射跃迁概率越大,物质发射的荧光也就越强,则Ψ?=K?/( K?+∑Ki), 一般来说,K?主要取决于物质的化学结构,而∑Ki则主要取决于化学环 境,同时也与化学结构有关,其影响因素有: ①分子结构:发荧光的物质分子中必须含有共轭双键这样的强吸收基 团,且共轭体系越大,л电子的离域性越强,越易被激发而产生荧光。 随着共轭芳环增大,荧光效率提高,荧光峰向长波方向移动。 ②a其次,分子的刚性平面结构有利于荧光的产生,有些有机配位剂与金属离子 形成螯合物后荧光大大增强;b给电子取代基如-OH、-NH 2、-NR 2 和-OR等可 使共轭体系增大,导致荧光增强;吸电子基如-COOH、-NO和-NO 2 等使荧光减弱,c随着卤素取代基中卤素原子序数的增加,物质的荧光减弱,而磷光增强。 ③环境a溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大;b对于大多数荧光物质,升高温度会使非辐射跃迁概率增大,荧光效率降低;c大多数含酸性或碱性取代基团的芳香族化合物的荧光性质受溶液PH的影响很大;d溶液中表面活性剂的存在减小非辐射跃迁的概率,提高荧光效率;e溶液中溶解氧的存在,使激发态单重态分子向三重态的体系间窜跃速率加大,会使荧光效率减低。 3、试从原理和仪器两方面比较吸光光度法和荧光分析法的异同,并说明为什么 荧光法的检出能力优于吸光光度法 答:原理:紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,而荧光分析法是由于处于第一激发单重态最低能级的分子以辐射跃迁的形成返回基态各振动能级时产生的荧光的分析方法,两者的区别在于前者研究的是吸收光谱,且电子跃迁为激发态的振动能级到基态的振动能级间的跃迁。 仪器:荧光分析仪器与分光光度计的主要差别有:a 荧光分析仪器采用垂直测量方式,即在与激发光相垂直的方向测量荧光,以消除透射光的影响;b 荧光分析器有两个单色器,分别用于获得单色器较好的激发光和用于分出某一波长的荧光,消除其它杂散光干扰。 因为荧光分析法的灵敏度高,其检出限通常比分光光度法低2~4个数量级,选择性也比分光光度法好,这是由于:a 荧光分析仪器在与激发光相垂直的方向测量荧光,与分光光度在一直线上测量相比,消除了透射光的影响,测量更为准确,灵敏度高;b 吸光光度法只采用一个单色器,而荧光分析仪器有两个单色器,

分子发光分析试卷

分子发光分析 中国·武汉 二O 一五 年 六 月

华中农业大学本科课程考试试卷 考试课程与试卷类型:分子发光分析姓名: 学年学期:2014-2015-2 学号: 考试时间:班级: 一、选择题(选出一个正确答案,将序号填写在【】里。每小题2分,共24分。) 1.非辐射跃迁的衰变过程中,不包括那个过程?【】 A 振动松弛B内转化C 系间窜越D系间转化 2.下面那个不是有效的荧光猝灭剂。【】 A 对二氰基苯 B N,N-二甲基苯胺 C N,N-二乙基苯胺 D 苯胺 3 下列那个不是市场上常见的荧光分光光度计。【】 A 美国Cary Eclipse(瓦里安) B 日本Hitachi(日立) C 岛津CF-5301PC等系列 D 上海F95/96等系列 4 常规的荧光分析法中,间接测量法不包括下面中的那个? 【】 A 荧光衍生法 B 荧光猝灭法 C 荧光吸收法 D 敏化荧光法 5 下列哪位人物没有提出同步荧光分析法。【】 A Clack B Inman C Winefordner D Stern 6 延迟荧光的主要类型不包括下面哪种?【】 A E-型迟滞荧光 B 简单荧光 C P-型迟滞荧光 D 复合荧光 7 动力学分析法不包括下面哪个类型。【】 A 酸催化法 B 非催化法 C 催化法 D 酶催化法 8 下列哪种检测方式不属于单分子荧光检测形式。【】 A 光子爆发检测 B 多分子图像记录 C 单分子图像记录 D 单分子光谱测绘 9 下列哪个不是测定铜的荧光分析方法?【】 A 直接荧光法 B 间接荧光法 C 荧光猝灭法 D 荧光滴定法 10 下列哪个物质不曾用于钒的荧光测定?【】 A 间苯二酚 B 苯甲酸-锌汞齐 C 1-氨基-4-羟基蒽醌 D 桑色素 11 下列哪个pH值会使铁离子与氨基酚反应的产物具有相对较强的荧光?【】

分子发光分析法总结

第12章分子发光分析法 12.1.0发射光谱 物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或基态时产生发射光谱,多余能量以光的形式发射出来:M*→M+hν 通过测量物质的发射光谱的波长和强度来进行定性和定量分析的方法叫做发射光谱分析法。分子荧光和磷光分析法属于发射光谱法。 12.1.1分子荧光和磷光分析法 1.荧光和磷光的产生 1)Jablonski能级图 2)多重度:M=2s+1(s为电子自旋量子数的代数和,其值为0或1) 单重态(S):分子中全部轨道里的电子自旋配对,即s=0,M=1 三重态(T):电子在跃迁过程中自旋方向改变,分子中出现两个自旋不配对的电子,即s=1,M=3 三重态能级比相应单重态能级略低。

3)去活化:处在激发态的不稳定分子返回基态的过程。 振动弛豫:分子吸收光辐射后从基态的最低振动能级跃迁到激发态的较高振动能级,然后失活到该电子能级的最低振动能级上。 内转换:相同多重度等能态间的无辐射跃迁。 外转换(猝灭):激发分子通过与溶剂或其他溶质间的相互作用导致能量转换而使荧光或磷光强度减弱或消失。 系间跨越:不同多重度等能态间的无辐射跃迁。 荧光发射:单重激发态最低振动能级至基态各振动能级的跃迁。 磷光发射:三重激发态最低振动能级至基态各振动能级的跃迁。 2.激发光谱和发射光谱及其特征 激发光谱:以激发波长为横坐标,荧光强度为纵坐标作图。 发射光谱:以发射波长为横坐标,荧光强度为纵坐标作图。 荧光发射光谱的特点: 1)Stokes位移:在溶液中,分子荧光的发射峰相比吸收峰位移到较长的波长。 2)荧光发射光谱与激发波长的选择无关。 3)镜像规则:荧光发射光谱和激发光谱镜像对称。 12.1.2荧光量子产率和分子结构的关系 荧光量子产率(荧光效率/量子效率):表示物质发射荧光的能力,

四川大学仪器分析第八章-分子发光分析法答案讲课教案

四川大学仪器分析第八章-分子发光分析法 答案

第八章分子发光分析法 基本要求:了解荧光的产生和影响荧光强度的因素, 掌握分子荧光光谱法的定量关系和应用特点, 重点:荧光光谱法的定量关系、应用特点。 难点:荧光的产生和影响荧光强度的因素。 参考学时:3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光? 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失 活、系间窜跃、荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。

分子发光分析法(精)

第五章分子发光分析法 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。光致发光按激发态的类型又可分为荧光和磷光两种。本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。 第一节荧光分析法 一、概述 分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。 早在16世纪,人们观察到当紫外和可见光照射到某些物质时。这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。1867年

Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。 荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。 二、基本原理 (一)分子荧光的产生 大多数分子含有偶数电子。根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。处于电子激发态的分子是不稳定的,它会很快地通过无辐射跃迁和辐射跃迁释放能量而返回基态。辐射跃迁发生光子的发射,产生分子荧

四川大学仪器分析第八章分子发光分析法答案

第八章分子发光分析法 基本要求:了解荧光的产生和影响荧光强度的因素, 掌握分子荧光光谱法的定量关系和应用特点, 重点:荧光光谱法的定量关系、应用特点。 难点:荧光的产生和影响荧光强度的因素。 参考学时:3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、 荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其他溶质间的相互作用和能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。 3.溶液中,溶剂的极性、pH值及温度是如何影响荧光强度的。 答:溶剂的影响:随着溶剂极性增加,荧光物质的n—π*跃迁能量增大,π—π*跃迁的能量降低,从而导致荧光强度增加,荧光波长红移。溶剂若能和荧光物质形成氢键或使荧光物质的电离状态改变,会使荧光强度、荧光波长改变。含重原子的溶剂(碘乙烷、四

仪器分析作业03参考答案(第三、五章紫外可见分光光度法+分子发光分析法)华南理工大学仪器分析

01. 溶液有颜色是因为它吸收了可见光中特定波长范围的光。若某溶液呈蓝色,它吸收的是什么颜色的光?若溶液无色透明,是否表示它不吸收光? 答:溶液呈蓝色,表明其吸收了蓝光的互补光,即黄光(若答是吸收了黄光外的所有可见光,不能说错,但是这样的情况过于巧合,少见!)。若溶液无色透明,仅能说明其不吸收可见波段的光。 2. 分别在己烷和水中测定某化合物UV-Vis 光谱,发现该化合物的某个吸收峰由285 nm (己烷)蓝移至275 nm (水),(1)判断产生该吸收峰的跃迁类型;(2)试估算该化合物与水生成氢键的强度。 答:(1)溶剂极性增大,λmax 蓝移,表明该吸收峰是由n →π*跃迁产生的。 (2)()()? ?? ? ??λ-λ??=己烷氢键max O H max A 1 1hc N E 2 ? ?? ??????????=--99834-23102851-102751100.31063.61002.6 1mol J 28.15-?= 3. 按从小到大顺序对下列化合物的λmax 排序,并简单说明理由(不要想得太复杂) A. NO 2 B. NO 2 t-C 4H 9 t-C 4H 9 C. NO 2CH 3 D. NO 2 C 2H 5 答:B

分子发光分析法

1. 下列说法中错误的是( ) A 荧光和磷光都是发射光谱 B 磷光发射发生在三重态 C 磷光强度IP与浓度C的关系与荧光一致 D 磷光光谱与最低激发三重态的吸收带之间存在着镜像关系 2. 分子荧光分析中,含重原子(如Br和I)的分子易发生:( ) [ID: 1291] A 振动弛豫 B 内部转换 C 体系间窜跃 D 荧光发射 3. 三线态的电子排布应为( ) [ID: 1303] A 全充满 B 半充满 C D 4. 下列说法正确的是( ) [ID: 1307] A 分子的刚性平面有利于荧光的产生 B 磷光辐射的波长比荧光短 C 磷光比荧光的寿命短 D 荧光猝灭是指荧光完全消失 5. 分子荧光与化学发光均为第一激发态的最低振动能级跃至基态中各振动能级产生的光辐射,他们的主要区别在于( ) [ID: 1309] A 分子的电子层不同 B 跃至基态中的振动能级不同 C 产生光辐射的能源不同 D 无辐射弛豫的途径不同 6. 根据下列化合物的结构,判断哪种物质的荧光效率最大( ) [ID: 1310] A 苯 B 联苯 C 对联三苯 D 9-苯基蒽 7. 欲测定污水中痕量三价铬与六价铬应选用哪种方法( ) [ID: 1312] A 原子发射光谱法 B 原子吸收光谱法 C 荧光光度法 D 化学发光法

8. 若需要测定生物试样中的伟良氨基酸应选用哪种分析方法( ) [ID: 1315] A 荧光光度法 B 化学发光法 C 磷光光度法 D X荧光光谱法 9. 若需检测尿液中的对-硝基苯酚刻采用哪种方法( ) [ID: 1319] A 荧光光度法 B 化学发光法 C 磷光光度法 D X荧光光谱法 10. 若需测定生物体中的磷酸三腺甙(ATP),其浓度为-时,应采用下述哪种方法( ) [ID: 1326] A X荧光光谱法 B 荧光光度法 C 磷光光度法 D 化学发光法 DCDAC DDACD 第五章分子发光分析法[填空题测试] 1. 分子荧光分析法试根据物质的_________________进行定性,以_______进行定量的一种分析方法。答案 分子荧光光谱荧光强度 2. 分子的外层电子在辐射能的照射下,吸收能量跃迁至激发态,再以无辐射弛豫转入最低三重态,然后跃回基态的各个振动能级,并产生光辐射。这种发光现象应称为________。[ID: 1334] 答案 分子磷光 3. ________类型的化学反应可以产生化学发光,化学发光反应自由能的变化(ΔG)一般应在________(kJ/mol)。[ID: 1337] 答案 氧化还原170-300 4. ________溶剂对荧光的光谱干扰最小,荧光光谱分析中的主要干扰是________。[ID: 1339] 答案 极性溶剂产生的散射光 5. 在极稀的溶液中,荧光物质的浓度________,荧光强度________,在高浓度时荧光物质的浓度增加,荧光强度________。[ID: 1340] 答案

第7章分子发光分析法

第7章分子发光分析法 7.1 内容提要 7.1.1 基本概念 分子发光分析法——分子吸收一定的能量跃迁到较高的电子激发态后,在返回基态的过程中伴随有光辐射,这种现象称为分子发光,以此建立起来的分析方法称为分子发光分析法。 光致发光——物质吸收光能而激发发光的现象,称为光致发光。 电致发光——物质吸收电能而激发发光的现象,称为电致发光。 化学发光——物质若吸收化学反应能激发发光,称为化学发光。 生物发光——发生在生物体内有酶类物质参与的化学发光称为生物发光。 单重态——一个所有电子自旋都配对的分子的电子态称为单重态,用“S”表示。 三重态——在激发态分子中,两个价电子自旋平行的电子态称为三重态,用“T”表示。 图7-1 单重态系三重态激发示意图 无辐射跃迁——当激发态分子返回基态时,如果不伴随发光现象,则此过程称为无辐射去激或无辐射跃迁。它包括:振动驰豫、内转换和系间窜跃。 振动驰豫——同一电子能级内,激发态分子以热能交换形式将多余的能量传递给周围的分子,并由高能级回到低能级的跃迁,称为振动驰豫。 内转换——同一多重态的不同电子能级间发生的无辐射跃迁称为内转换(或内转移)。 系间窜跃——不同多重态之间的无辐射跃迁称为系间窜跃。 分子荧光——分子从S 1态的最低振动能级跃迁至S 态各振动能级时

所产生的辐射光称为分子荧光。 图7-2分子荧光、磷光光谱产生过程示意图 斯托克斯位移——分子发射荧光的波长总比激发光长,能量比激发光小,这种现象称为斯托克斯位移。 分子磷光——当受激分子降至S 1 的最低振动能级后,如果经系间窜 跃至T 1态,并经T 1 态的最低振动能级回到S 态的各振动能级,此过程辐 射的光称为分子磷光。 延迟荧光——某些物质的分子跃迁至T1态后,因相互碰撞或通过激活作用又回到S1态,经振动驰豫(VR)到达S1态的最低振动能级再发射荧光,这种荧光称为延迟荧光,也叫慢速荧光。 荧光激发光谱——固定发射光(第二单色器)波长,改变第一单色器(激发光)波长,获得以激发光波长为横坐标,荧光发射光强度为纵坐标的谱图,即为荧光激发光谱。 荧光发射光谱——固定激发光(第一单色器)波长,使激发光波长和强度保持不变,然后改变第二单色器(荧光发射)波长,从200~700nm 进行扫描,获得以发射光波长为横坐标,发射光强度为纵坐标的谱图,即为荧光发射光谱。 荧光猝灭——荧光分子与容剂或其他物质作用使荧光强度减弱的现象称为荧光猝灭,能使荧光强度降低的物质称为荧光猝灭剂。 瑞利散射光、拉曼散射光——溶剂分子吸收能量较低的光线后,不

分子发光分析法

第7章分子发光分析法 【7-1】解释下列名词。 (1)单重态;(2)三重态;(3)荧光;(4)磷光;(5)化学发光;(6)量子产率;(7)荧光猝灭;(8)振动弛豫;(9)系间跨越;(10)内转换;(11)重原子效应。 答:(1)单重态:在给定轨道中的两个电子,必定以相反方向自旋,自旋量子数分别为1/2和-1/2,其总自旋量子数s=0。电子能级的多重性用M=2s+1=1,即自旋方向相反的电子能级多重性为1。此时分子所处的电子能态称为单重态或单线态,用S表示。 (2)三重态:当两个电子自旋方向相同时,自旋量子数都为1/2,其总自旋量子数s=1。电子能级的多重性用M=2s+1=3,即自旋方向相同的电子能级多重性为3,此时分子所处的电子能态称为三重态或三线态,用T表示。 (3)荧光:分子受到激发后,无论处于哪一个激发单重态,都可通过振动弛豫及内转换,回到第一激发单重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光。 (4)磷光:分子受到激发后,无论处于哪一个激发单重态,都可通过内转换、振动弛豫和体系间跨越,回到第一激发三重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光(5)化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。 表示。(6)量子产率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比,常用 f (7)荧光猝灭:指荧光物质分子与溶剂分子之间发生猝灭,荧光猝灭分为静态猝灭和动态猝灭。(8)振动弛豫:处于激发态最高振动能级的外层电子回到同一电子激发态的最低振动能级以非辐射的形式将能量释放的过程。 (9)系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程。即分子由激发单重态以无辐射形式跨越到激发三重态的过程。 (10)内转换:相同多重态的两个电子态之间的非辐射跃迁。 (11)重原子效应:使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。 【7-2】试从原理和仪器两方面比较分子荧光、磷光和化学发光的异同点。 答:(1)在原理方面:荧光分析法和磷光分析法测定的荧光和磷光是光致发光,均是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,测量的是由激发态回到基态产生的二次辐射,不同的是荧光分析法测定的是从单重激发态向基态跃迁产生的辐射,磷光分析法测定的是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的辐射,二者所需的激发能是光辐射能。而化学发光分析法测定的是化学反应物或反应产物受反应释放的化学能激发而产生的光辐射,所需的激发能是化学能。

四川大学仪器分析第八章 分子发光分析法答案

四川大学仪器分析第八章分子发光分析法答案 简述荧光法产生的基本原理。具有什么样结构的物质最容易 发荧光?答:物质受电磁辐射激发后,被激发的分子从第一电子 激发单重态的最低振动能级回到基态而发射荧光,基于测量化合 物的荧光而建立起来的分析方法即为荧光分析法。芳香族化合 物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。2、解释下列名词:单重态、三重态、荧光、振动弛豫、内 转换、外转换、失活、系间窜跃、荧光量子产率、激发光谱、荧 光光谱答:单重态:电子自旋都配对的分子的电子状态称为单重态。三重态:有两个电子自旋不配对而同方向的状态。荧光:受 光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射;振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的 振动能以热的形式失去的过程。内转换:在相同激发多重态的两 个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的 分子内过程。外转换:激发态分子与溶剂或其他溶质间的相互作 用和能量转换而使荧光或磷光强度减弱甚至消失的过程。失活: 激发态分子不稳定,他要以辐射跃迁或无辐射跃迁的方式回到基态,这就是激发态分子的失活。系间窜跃:激发态分子的电子自 旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。荧光 量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射

荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。3、溶液中,溶剂的极性、pH值及温度是如何影响荧光强度的。答:溶剂的影响:随着溶剂极性增加,荧光物质的nπ*跃迁的能量降低,从而导致荧光强度增加,荧光波长红移。溶剂若能和荧光物质形成氢键或使荧光物质的电离状态改变,会使荧光强度、荧光波长改变。含重原子的溶剂(碘乙烷、四溴化碳)能使荧光减弱。溶剂纯度对荧光强度的影响也很大。当溶剂中含卤素或重金属原子时,荧光强度降低。pH值的影响:pH值对荧光强度的影响是可逆的,含酸、碱性取代基的芳香化合物的荧光一般都与pH值有关,一些荧光物质在酸性或碱性溶液中会发生水解。而不会离解的荧光物质在任何pH值均产生荧光。温度的影响:温度降低会增加荧光强度,因为降低了碰撞与非辐射失活的概率。4、荧光物质浓度高时,为什么会发生荧光强度偏离F=2、3K’I0εbc光系式的情况?答:由Lambert-Beer定律可知,F=K’I0(1-e-2、 303εbc),将此式中的指数项展开,当εbc<0、05、I0一定时,荧光强度F=Kc,所以低浓度时,溶液的荧光强度与荧光物质浓度呈线性关系。当c变得足够大使得吸光度、超过0、05时,F

四川大学仪器分析第八章 分子发光分析法答案

第八章分子发光分析法 基本要求: 了解荧光的产生与影响荧光强度的因素, 掌握分子荧光光谱法的定量关系与应用特点, 重点: 荧光光谱法的定量关系、应用特点。 难点: 荧光的产生与影响荧光强度的因素。 参考学时: 3学时 作业参考答案 1.简述荧光法产生的基本原理。具有什么样结构的物质最容易发荧光? 答:物质受电磁辐射激发后,被激发的分子从第一电子激发单重态的最低振动能级回到基态而发射荧光,基于测量化合物的荧光而建立起来的分析方法即为荧光分析法。 芳香族化合物、带有平面刚性结构的化合物、带稠环结构的化合物容易发荧光。 2.解释下列名词:单重态、三重态、荧光、振动弛豫、内转换、外转换、失活、系间窜跃、 荧光量子产率、激发光谱、荧光光谱 答:单重态:电子自旋都配对的分子的电子状态称为单重态。 三重态:有两个电子自旋不配对而同方向的状态。 荧光:受光激发的分子从第一激发单重态(S1)的最低振动能级回到基态(S0)所发出的辐射; 振动弛豫:由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级失活至较低振动能级,多余的振动能以热的形式失去的过程。 内转换:在相同激发多重态的两个电子能级间,电子由高能级以无辐射跃迁方式进到较低能级的分子内过程。 外转换:激发态分子与溶剂或其她溶质间的相互作用与能量转换而使荧光或磷光强度减弱甚至消失的过程。 失活:激发态分子不稳定,她要以辐射跃迁或无辐射跃迁的方式回到基态,这就就是激发态分子的失活。 系间窜跃:激发态分子的电子自旋发生倒转而使分子的多重态发生变化的无辐射跃迁过程。 荧光量子产率:表示物质分子发射荧光的能力。荧光量子产率=发射荧光的分子数/激发态的分子数=发射的光子数/吸收的光子数 激发光谱:在荧光最强的波长处测量随激发光波长的改变而变化的荧光强度,将荧光强度对激发光波长作图,即得到激发光谱,实际为荧光物质的吸收光谱。 荧光光谱:如果将激发光的波长固定在最大激发波长处,测量不同荧光波长处荧光的强度,将荧光强度对荧光波长作图便得到荧光光谱(或称发射光谱)。 3.溶液中,溶剂的极性、pH值及温度就是如何影响荧光强度的。 答:溶剂的影响:随着溶剂极性增加,荧光物质的n—π*跃迁能量增大,π—π*跃迁的能量降低,从而导致荧光强度增加,荧光波长红移。溶剂若能与荧光物质形成氢键或使荧光物质的电离状态改变,会使荧光强度、荧光波长改变。含重原子的溶剂(碘乙烷、四溴化碳)能使荧光减弱。溶剂纯度对荧光强度的影响也很大。当溶剂中含卤素或重金属原子时,荧光强度降低。 pH值的影响:pH值对荧光强度的影响就是可逆的,含酸、碱性取代基的芳香化合物的荧光一般都与pH值有关,一些荧光物质在酸性或碱性溶液中会发生水解。而不会离解的荧光物质在任何pH值均产生荧光。 温度的影响:温度降低会增加荧光强度,因为降低了碰撞与非辐射失活的概率。

相关主题
文本预览
相关文档 最新文档