当前位置:文档之家› Soft X-ray Spectroscopy of the Cygnus Loop Supernova Remnant

Soft X-ray Spectroscopy of the Cygnus Loop Supernova Remnant

Soft X-ray Spectroscopy of the Cygnus Loop Supernova Remnant
Soft X-ray Spectroscopy of the Cygnus Loop Supernova Remnant

a r X i v :0801.4552v 1 [a s t r o -p h ] 29 J a n 2008Soft X-ray Spectroscopy of the Cygnus Loop Supernova Remnant

R.L.McEnta?er and W.Cash

Center for Astrophysics and Space Astronomy,University of Colorado,Boulder,CO 80309randall.mcentaffer@https://www.doczj.com/doc/7613982692.html, ABSTRACT The Cygnus X-ray Emission Spectroscopic Survey (CyXESS)sounding rocket payload was launched from White Sands Missile Range on 2006November 20and obtained a high resolution spectrum of the Cygnus Loop supernova remnant in the soft X-rays.The novel X-ray spectrograph incorporated a wire-grid collima-tor feeding an array of gratings in the extreme o?-plane mount which ultimately dispersed the spectrum onto Gaseous Electron Multiplier (GEM)detectors.This instrument recorded 65seconds of usable data between 43-49.5?A in two promi-nent features.The ?rst feature near 45?A is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX -Si XII in ?rst order,while the second feature near 47.5?A is ?rst order S IX and S X .Fits to the spectra give an equilibrium plasma at log(T )=6.2(kT e =0.14keV)and near cosmic abundances.This is consistent with previous observations,which demonstrated that the soft x-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity surrounding the Cygnus Loop and that this interaction can be described using equilibrium conditions.Subject headings:instrumentation:spectrographs —ISM:individual (Cygnus

Loop)—line:identi?cation —supernova remnants —X-rays:individual (Cygnus

Loop)

1.Introduction

Supernovae greatly in?uence the dynamics within the interstellar medium (ISM).Their ubiquitous nature and the size of their remnants allow them to in?uence multiple phases of the ISM while in?uencing the evolution and structure of the galaxy.They are responsible for chemical enrichment of the ISM,play a major role in energy input,and are dominant sources for hot ionized gas,which ?lls much of the galaxy (McKee &Ostriker 1982).

One of the most studied SNRs is the Cygnus Loop.It is a nearby remnant at540pc (Blair et al.1975),quite large,?lling~3?×3?(Levenson et al.1997),and is relatively unabsorbed(E(B?V)=0.08;Fesen et al.(1982)).The blast wave is currently encoun-tering the surrounding ISM leading to bright emission at all wavelengths.Therefore,the Cygnus Loop serves as an excellent test bed for SNR evolution theory.A comprehensive and detailed imaging study of the remnant’s X-ray and optical emission was performed by Levenson et al.(1997,1998).One of the major?ndings of these studies is that the Cygnus Loop morphology is not indicative of the typical theoretical picture of a blast wave propa-gating through a uniform medium(Sedov1993;Spitzer1998),but instead is an interaction of the blast wave with an inhomogeneous medium.The precursor formed cavity is nearly spherical and surrounded by high density clumps and lower density gas.This causes most emission to originate from a limb-brightened shell.The optical emission occurs when the shock is decelerated rapidly in high density clumps.The X-ray emission occurs in these clumps as the blast wave interacts with the cloud and hardens toward the interior as a re-?ection shock propagates inward reschocking the already shocked gas.X-rays also originate as expected in the lower density gas that follows the theoretical model more closely.

The Cygnus Loop has been spectroscopically observed in the soft X-ray to some extent. Vedder et al.(1986)obtained a high resolution(E/?E~50)spectrum at energies below1 keV using the Focal Plane Crystal Spectrometer(FPCS)on the Einstein Observatory,which observed a3′×30′bright northern section midway between the center and the limb.They detected O VIII Lyman-αat653eV,the resonance line in the He-like triplet of O VII at 574eV and a blend of Ne IX lines between905-920eV.They do not detect the forbidden or intercombination lines of the O VII triplet.Even though the detected?uxes are consistent with an equilibrium plasma with solar abundances at T~3×106K,the authors argue that the plasma is not yet in collisional ionization equilibrium(CIE)due to the lack of forbidden O VII emission.

ROSAT Position Sensitive Proportional Counter(PSPC)observations by Levenson et al. (1999)and Miyata&Tsunemi(2001)show results consistent with the previous imaging studies.A Levenson et al.(1999)spectrum of the decelerated cloud shock was best?t by a Raymond-Smith equilibrium plasma at cosmic abundances(Raymond&Smith1977)with kT e=0.06(+0.04,?0.02)keV and absorbing column N H=7×1020(±4×1020)cm?2.A spectrum extracted from a region interior to the cloud shock had a similar low temperature component,but also included a high temperature contribution,kT e1=0.25(+0.14,?0.06) keV,from the re?ected shock,which hardens the interior emission.The low temperature corresponds to a shock velocity of v s=230km s?1,which has slowed considerably from the initial blast wave velocity of v s~500km s?1(Levenson et al.1998)resulting in an equi-librium plasma.Miyata&Tsunemi(2001)also?nd that equilibrium plasmas with cosmic

abundances?t the low temperature components of their extracted spectra(kT e=0.043to 0.067keV)and that these contributions are greatest toward the limb.However,they use ASCA data and a nonequilibrium model with depleted abundances to?t the interior harder spectra(kT e=0.27to0.34keV).

The Chandra X-ray Observatory Advanced CCD Imaging Spectrometer(ACIS)also ob-served the Cygnus Loop(Levenson et al.2002;Leahy2004).Levenson et al.(2002)used the Xspec(Arnaud,K.A.1996)spectral?tting software package and more speci?cally the MEKAL equilibrium model(Mewe et al.1985,1986;Kaastra1992;Arnaud&Rothen?ug 1985;Arnaud&Raymond1992;Liedahl et al.1995)to?t the extracted spectra.Again, the softer emission originates near the limb(kT e~0.03keV)while the re?ected shock hard-ens the interior spectrum(kT e=0.12to kT e=0.18keV).The best spectral?ts all required a depletion in oxygen.Attempts were made at nonequilibrium models but they did not im-prove the?t statistics.Furthermore,the?t values for the ionization parameter(n e t,where n e is electron density and t is the elapsed time since the gas was initially shocked)were all >1012cm?3s where values of 3×1011cm?3s signify equilibrium.The authors do not rule out the possibility of nonequilibrium but state that due to low spectral and spatial resolu-tion the low temperature equilibrium plasma is indistinguishable from a higher temperature nonequilibrium https://www.doczj.com/doc/7613982692.html,ing21di?erent extraction regions Leahy(2004)?nds the same result;the spectra are best?t by an equilibrium MEKAL model with variable elemental abundances,and that there is no evidence for nonequilibrium.The author also states that the abundances are considerably depleted and vary on small spatial scales suggesting that the region is geometrically complex with multiple clouds and even more shocks.

The?nal spectrum of note(Miyata et al.2007)was taken using the Suzaku Observa-tory X-ray Imaging Spectrometer(XIS)CCD camera and has the highest spectral resolution other than Vedder et al.(1986).The authors clearly detected O VII at562±10eV,O VIII at653±10eV,C VI at357±10eV and N VI at425±10eV,but the1/4keV band emission is unresolved.Band ratio maps using strong emission features at di?erent radii show that the outermost emission is dominated by the1/4keV emission and therefore a low temperature component.Furthermore,the O VIII/O VII ratio increases inward showing that the ionization state is higher in the interior.The best?t models were two component nonequilibrium plasmas with variable abundances(vnei in Xspec).The lower temperature components of the?ts varied from kT e=0.10?0.15keV and the high temperature com-ponent ranged from kT e=0.18?0.34keV.The temperature of both components increased towards the interior.Column densities ranged from N H=3?6×1020cm?2and abundances were heavily depleted.

The Cygnus Loop is clearly complex both spatially and spectrally.However,spectral

resolution is lagging spatial resolution.Chandra can image?ne structures indicative of dif-ferent physical regions,but the nearly broadband spectra can only show trends.Determining plasma diagnostics from model?ts to these low spectral quality data is uncertain.Higher spectral resolution is required not only to constrain the parameters of a model,but to test the assumed validity of the model.

Currently there is no e?cient,well developed technology that permits high resolution x-ray spectroscopy from large solid angle sources,making spectra of di?use x-ray sources rare. In order to address this issue a soft X-ray spectrometer was designed for a rocket payload, the Cygnus X-ray Emission Spectroscopic Survey(CyXESS).Scienti?cally,the payload was designed to observe emission in the1/4keV bandpass.This is the least understood range of astrophysical soft X-ray energies.A di?use high resolution spectrum has never been achieved even though there is a large amount of?ux in this band.The soft emission from the Cygnus Loop is contained within a narrow shell and is dominated by the early interactions of the initial blast wave with the surrounding cavity.Therefore,a global spectrum of the remnant will be dominated by the physics of this interaction.

2.Sounding Rocket Instrument

Typical X-ray telescopes employ the use of grazing incidence telescopes.However,these are expensive and heavy and thus unattractive for a rocket?ight.CyXESS utilizes a wire grid collimator to constrain the beam of light.The collimator is followed by the o?-plane re?ection grating array which disperses light onto the detectors.The payload is three meters long consisting of nearly a meter to create the converging beam while allowing the gratings to throw the light about two meters.A brief description of the payload design follows,but

a detailed description can be found in McEnta?er(2007);McEnta?er et al.(2008).

2.1.Wire Grid Collimator

Wire grid collimators have wires that are spaced periodically in such a way that only light coming from a speci?ed direction can pass through.If the grids have a spacing that decreases systematically,then it is possible to allow only light that is converging to a line to pass through,simulating the output of a lens.As light travels from front to back in the collimator it will encounter the same number of slits but they will be narrower and closer together,thus sculpting the converging beam.The wires create ba?es between slits which vignette unwanted rays.If thin material is used,these wire spacers serve as knife edges

so that any light striking the metal will be near normal incidence and will be e?ciently absorbed.Such a collimator does not function well for a point source,but for a di?use target,radiation comes from all directions,and the beam is fully illuminated.A grating mounted in the exit beam di?racts just as in a telescope beam.Thus the collimator alone provides the needed beam geometry.

2.2.O?-plane Grating Array

The o?-plane mount at grazing incidence brings light onto the grating at a low graze angle,quasi-parallel to the direction of the grooves.The light is then di?racted through an arc,forming a cone,so that this mount is also known as conical di?raction(Cash1991; Catura et al.1988).The o?-plane grating equation is

sinα+sinβ=

2.3.GEM Detectors

The two detectors on the payload are Gaseous Electron Multipliers(GEM).They were built by Sensor Sciences,LLC.These innovative detectors use a gas?lled chamber(75% Ar25%CO2)segmented by perforated polyimide(Kapton R )?lm coated with a conductive layer on each side.The perforation holes provide a potential di?erence through which the electron cloud is accelerated resulting in gain.One of the most attractive features of these detectors is that they are made with very large formats,which is essential for this experiment due to the system’s dispersion and line lengths.The entrance window is a105mm×105 mm polyimide window that is3600-3900?A thick to maximize transmission while maintaining integrity.A100?A carbon coat was added for conductivity and a grid bar and mesh support system is utilized with a transmission of57.8%.The mesh and grid bars carry the negative high volts(HV)so that electrons are accelerated towards the anode,which is held at ground. Gain is determined by many factors including the voltage drop across the foils and gaps, high voltage supply stability,cleanliness of the GEM foils,gas pressure,etc.A gas?ow system was incorporated to replenish the counter gas and maintain an operating pressure of 14.5psia.This system also counteracts the leak rate and compensates for micro tears in the window in order to improve gain stability.

The100mm×100mm anode is a serpentine cross delay line.The output of the resistive anode is analyzed by a custom electronics system.Signals are passed through an ampli?er and then to an adder box which combines the data of the two detectors and passes it on to the timing-to-digital converter(TDC).The TDC returns a12-bit word for X position and Y position and an8-bit word for pulse height.The least signi?cant bit of the pulse height determines which detector the current data word originates from.Finally,a stim pulse is sent from the TDC to the anode,which is then analyzed and sent back to the TDC.This gives reference data on both position and pulse height.This stim can be seen without HV on and thus provides a useful diagnostic.

2.4.Expected Performance

The payload was designed to obtain spectra from di?use sources in the soft X-ray. Several design factors determine the accepted passband such as the length of the payload, the size of the detectors and the dispersion of the gratings.Optimizing these factors resulted in a passband of44?A to132?A in?rst order.The expected performance at these wavelengths can be summarized by the resolution and e?ective area of the payload.The resolution is ultimately determined by the full-width at half maximum(FWHM)of a spectral line at the focus along with the dispersion of the system.The grating groove density of5670

grooves/mm and throw distance of~2m give a dispersion of0.89?A mm?1in?rst order. Calibrations of the spectrum give line widths that broaden slightly from1.7mm to2.2mm as wavelength is increased.These characteristics give resolution ofλ/?λ~25?70in?rst order and~25?85in second order(22-66?A)as shown in?gure1.

The e?ective area of this spectrograph is determined by the collecting area,sky coverage, and throughput of the system.The collecting area of the telescope is de?ned by the size of the zero order image at the focal plane;1.7mm wide line over10cm of detector gives1.7 cm2.This small amount of collecting area is bolstered by the large amount of solid angle available to each point on the focal plane,8.93deg2.In terms of e?ciency,the detector gas absorbs all X-rays,but the mechanical throughput is57.8%,which is then further reduced by the transmission of the polyimide/carbon window.As for the gratings,the theoretical e?ciencies are plotted as lines in?gure2.Calibration data are shown as the points at44.76?A(carbon K-shell),with1σGaussian error bars,and agree well with theory.Taking all factors into account,the resulting e?ective area curves are shown in?gure3.

2.5.Flight

The payload was launched from White Sands Missile Range at02:00:00UT,2006Novem-ber21(?ight36.224).The zenith angle of the target was~31?.Usable data were recorded over345seconds of the?ight.However,a breakdown event upon high voltage turn on ren-dered one detector useless while leaving the other detector extremely noisy for most of the ?ight.The GEM detectors exhibit noise in the form of hotspots which typically decay over time.Therefore,usable spectral data were only recorded over65seconds near the end of the ?ight.The pointing was dithered during the?ight so that during the time when spectral data were collected the payload was pointed o?center as depicted in?gure4.

3.Data Analysis

Data were extracted from the section of the detector that was free of noise and contained spectral information.The resulting spectrum is given in?gure5.Pre-?ight and post-?ight spectral calibration data were compared with?ight data to determine the wavelength scale. The counts at wavelengths longer than50?A are residual emission from a large hotspot that dominated the detector for most of the?ight.The two prominent features below50?A are the detected spectral features.

To?t the data a series of equilibrium spectral models of an optically thin plasma un-

der collisional ionization equilibrium were constructed using line lists from Raymond-Smith (Raymond&Smith1977),MEKAL(Mewe et al.1985,1986;Kaastra1992;Arnaud&Rothen?ug 1985;Arnaud&Raymond1992;Liedahl et al.1995)and APED(Smith et al.2001a,b)

at temperatures ranging from kT e=0.034?0.272keV(log(T)=5.6?6.5).The spec-

tra are constructed using Gaussians placed at the appropriate wavelengths(per Raymond-Smith,MEKAL or APED)with widths corresponding to the1.84mm(1.64?A)FWHM

of the spectral line calibration data and amplitudes such that the integrated?ux of each

line scales according to the emissivities given in each line list.Each model spectrum is ab-sorbed using photoelectric absorption cross sections from Morrison&McCammon(1983)

with N H=7×1020cm?2(held constant)and then convolved with the payload instrument response function(?gure3).Cosmic abundances are per Allen(1973):He,10.93;C,8.52;

N,7.96;O,8.82;Ne,7.92;Na,6.25;Mg,7.42;Al,6.39;Si,7.52;S,7.20;Ar,6.80;Ca,6.30;

Fe,7.60;Ni,6.30(in logarithmic units where log10N H=12.00).

Given the low number of counts,a maximum likelihood analysis was performed to obtain

the best?t.Assuming that the number of counts in each bin follows a Poisson distribution

and that each bin is independent of the others results in the following likelihood function

L=

N

i=1

Z n i i exp(?Z i)

The data and the model(solid curve)are plotted together in?gure6.These data are identical to those shown in?gure5,but this time are plotted with0.9772single-sided upper and lower limits(0.9544con?dence level)as calculated by Gehrels(1986),which correspond to2σGaussian statistics.The likelihood contours for the?t parameters are given in?gure7. The shaded region encompasses68%of the normalized likelihood and establishes the84%

(1σGaussian)marginalized con?dence intervals for the individual parameters,1.55+0.90

?0.63for

the S abundance and?0.76+0.18

?0.17?A for theλshift.Finally,a closeup of the spectral data

along with line identi?cations are shown in?gure8.The more prominent data line around 44?A contains some?rst order Mg X and Si IX-Si XII,but most of the?ux is in the He-like triplet of O VII in second order.The other data line around47-48?A is dominated by S IX and S X in?rst order.A summary of the major lines is given in table1.The elemental abundances with respect to cosmic(Allen1973)are C,1.0;N,0.44(max);O,1.0;Ne,1.0;

Mg,1.0;Si,0.44(max);S,1.55+0.90

?0.63;Ar,1.0;Ca,1.0;Fe,1.0;Ni,1.0.Tabel1summarizes

the major lines and transitions.

4.Discussion

The results of the data analysis reveal a departure from cosmic abundances;S is enriched while Si and N are depleted.The enrichment of S can be explained by confusion due to multiple temperature components.The single temperature?t at kT e=0.14keV is intermediate in comparison to Levenson et al.(1999)and Miyata&Tsunemi(2001),but consistent with the low temperature component from Miyata et al.(2007).Therefore,there may be some contamination from a higher temperature component in the CyXESS data. In this passband,increasing the temperature increases the contribution from second order oxygen while decreasing the contributions of other lines.Therefore,a high temperature component will only add?ux to the line complex at44?A,thus requiring additional?ux in the form of a S enhancement in the47.5?A complex in order to maintain the spectral shape de?ned by the?t.Since there are only2features to?t,it is impossible to accurately discern the relative contribution from each plasma.More spectral resolution is required so that individual lines can be used to de?ne the components.

As for the second issue,even though some previous observations argue for an equilibrium plasma,especially in the case of the softest X-rays which occur in cloud shocks,nonequilib-rium conditions could still be important.If nonequilibrium is considered,then the ionization state of the gas should be decreased.In nonequilibrium the electron temperature is higher than what is expected from the ion state of the gas and the gas is underionized.Therefore, favoring lower ion species in the MEKAL model will test nonequilibrium conditions.Also,

within the lower ion species the ratio of higher energy line?ux to lower energy line?ux should be increased relative to equilibrium since the electrons have more energy to excite the ions to higher levels than typical in equilibrium.In the case of Si,the lines that contribute the problematic long wavelength?ux occur around49-50?A and are Si IX,Si X and Si XI.De-creasing the in?uence of these lines will de?nitely have a desired e?ect,but will also require an increase of major Si VII and Si VIII lines at52?A,thus reintroducing the problem.This occurs for other elements as well.Favoring lower ion species will not explain the depletions, and furthermore,there is no evidence for nonequilibrium conditions contributing to these data.

Another explanation could be depletion into dust,especially in the case of Si depletion. If dust is a major constituent of the shocked ISM then refractory elements could be con-tained within the dust and depleted from the gas phase.However,the dust present in the cloud must be able to survive not only the initial blast wave,but also a re?ection shock and sublimation over time in the hot gas(not to mention precursor winds,cloud-cloud interac-tions,cosmic rays and photodesorption(Draine&Salpeter1979a,b)).Given the conditions present in the Cygnus Loop,Draine&Salpeter(1979a)show that thermal sputtering rates for dust grains in log(T)=6.2gas are~0.001μm every1000years.Therefore,small grains (size 100?A)will be quickly destroyed with the mass fraction returning to the gas.In addi-tion,Draine&Salpeter(1979b)have modelled dust sputtering as a function of blast wave velocity.Their results show that a blast wave with shock velocity>300km s?1will sputter nearly all graphite,silicate,and iron dust grains up to a size of0.1μm in a cloud with density n H=10?100cm?3.Calculations for the initial blast wave velocity for the Cygnus Loop vary from330km s?1(Levenson et al.2002)to400km s?1(Ku et al.1984).This also suggests that if a signi?cant fraction of refractory elements are depleted into dust in the dense clouds consituting the Cygnus Loop cavity walls,then the size distribution of dust particles favors large grains.

Infrared(IR)emission from the Cygnus Loop has been observed and Arendt et al. (1992)show that it can be explained by dust https://www.doczj.com/doc/7613982692.html,ing IRAS observations at12μm, 25μm,60μm,and100μm,they?nd that there are two infrared(IR)components,one that correlates well with X-ray emission and another that correlates with the optical emission.

A lack of observed emission in the12μm and25μm bands suggests an underabundance of small grains.This is supported by their models of the X-ray/IR correlated gas,which favor a minimum grain size of~150?A consistent with our estimates.However,the models used to?t the broadband observations assume all emission is due to thermal dust emission.The authors state that line emission could theoretically contribute a signi?cant fraction to the observed IR emission.Therefore,constraining the dust fraction is impossible without higher resolution IR spectra,which should become available with upcoming Spitzer observations.

Depletion into dust cannot be ruled out and is supported by our data,especially in the case of silicate grains.We see no evidence for graphite grains because there are no important C lines in the wavelength range of our spectrum.The N and Si depletions necessary for our ?t are due to a line complex of second order N VII and?rst order Si X and Si XI.Therefore, given this confusion only an upper limit to the Si abundance can be applied suggesting a large depletion of at least56%of the Si into grains.

5.Summary

The CyXESS payload was designed to observe the soft X-ray?ux of the Cygnus Loop supernova remnant.The design consisted of a wire grid collimator that focused the light onto an array of gratings in the o?-plane mount which ultimately dispersed the spectrum onto large format GEM detectors.The payload was launched on November20th,2006from White Sands Missile Range and collected345seconds of data.Data reduction decreased the amount of usable data to65seconds during which the instrument detected?ux between 43-49.5?A(250-288eV)in two prominent features.The?rst feature near45?A is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII in?rst order,while the second feature near47.5?A is?rst order S IX and S X.Fits to the spectra give an equilibrium plasma at kT e=0.14keV(log(T)=6.2)and near cosmic abundances for most elements.Even though the most likely?t to the CyXESS data contains only one temperature,the lack of spectral range and resolution do not allow determination of multiple components.An observed depletion in Si supports the presence of silicate grains but higher X-ray and IR resolution are necessary to accurately constrain dust models.

Our data were constrained to a small portion of the soft X-rays,but show a wealth of lines present.In this band we?nd no evidence to support nonequilibrium conditions. Therefore,our results are consistent with previous observations and show that the soft X-ray spectrum of the Cygnus Loop,which is dominated by interactions between the initial blast wave with the walls of a precursor formed cavity,can be described by an equilibrium plasma.

The authors would like to acknowledge NASA grants NNG04WC02G and NGT5-50397 for support of this work.

REFERENCES

Allen,C.W.1973,Astrophysical Quantities(3rd ed.;London:Athlone)

Arendt,R.G.,Dwek,E.,&Leisawitz D.1992,ApJ,400,562

Arnaud,M.,&Rothen?ug,R.1985,A&AS,60,425

Arnaud,M.,&Raymond,J.1992,ApJ,398,394

Arnaud,K.A.1996,in ASP Conf.Ser.101,Astronomical Data Analysis Software and Systems V,ed.G.H.Jacoby,&J.Barnes,17

Blair,W.P.,Sankrit,R.,&Raymond,J.C.2005,AJ,129,2268

Cash,Jr.,W.C.1991,Appl.Opt.,30,1749

Catura,R.C.,Stern,R.A.,Cash,W.,Windt,D.L.,Culhane,J.L.1988,Proc.SPIE,830, 204

Draine,B.T.,&Salpeter,E.E.1979,ApJ,231,77

Draine,B.T.,&Salpeter,E.E.1979,ApJ,231,438

Fesen,R.A.,Blair,W.P.,Kirshner,R.P.1982,ApJ,262,171

Gehrels,N.1986,ApJ,303,336

Hamilton,A.J.S.,Chevalier,R.A.,Sarazin,C.L.1983,ApJS,51,115

Kaastra,J.S.1992,An X-ray Spectral Code for Optically Thin Plasmas,Internal SRON-Leiden Report,updated version2.0

Ku,W.H.M.,Kahn,S.M.,Pisarski,R.,&Long,K.S.1984,ApJ,278,615

Leahy,D.A.2004,MNRAS,351,385

Levenson,N.A.et al.1997,ApJ,484,304

Levenson,N.A.,Graham,J.R.,Keller,L.D.,Richter,M.J.1998,ApJS,118,541 Levenson,N.A.,Graham,J.R.,Snowden,S.L.1999,ApJ,526,874

Levenson,N.A.,Graham,J.R.,Walters,J.L.2002,ApJ,576,798

Liedahl,D.A.,Osterheld,A.L.,Goldstein,W.H.1995,ApJ,438,L115

McCray,R.,&Snow,Jr.,T.P.1979,ARA&A,17,213

McEnta?er,R.L.2007,PhD thesis,University of Colorado

McEnta?er,R.L.et al.2008,Experimental Astronomy,submitted

McKee,C.F.1974,ApJ,188,335

McKee,C.F.,&Ostriker,J.P.1977,ApJ,218,148

Mewe,R.,Gronenschild,E.H.B.M.,&van den Oord,G.H.J.,1985,A&AS,62,197

Mewe,R.,Lemen,J.R.,&van den Oord,G.H.J.,1986,A&AS,65,511

Miyata,E.,&Tsunemi,H.2001,ApJ,552,624

Miyata,E.,Katsuda,S.,Tsunemi,H.,Hughes,J.P.,Kokubun,M.,&Porter,F.S.2007, PASJ,59,163

Morrison,R.,&McCammon,D.1983,ApJ,270,119

Raymond,J.C.,&Smith,B.W.1977,ApJS,35,419

Sedov,L.1993,Similarity and Dimensional Methods in Mechanics(10th ed.;Boca Raton, Fla.:CRC Press)

Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,Raymond,J.C.2001,ApJ,556,L91

Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,Raymond,J.C.2001,in ASP Conf.Ser.247, Spectroscopic Challenges of Photoionized Plasmas,ed.G.Ferland,&D.W.Savin, 159

Spitzer,L.1998,Physical Processes in the Interstellar Medium,Wiley Classics Library,1998

Vedder,P.W.,Canizares,C.R.,Markert,T.H.,Pradhan,A.K.1986,ApJ,307,269

Fig.1.—Spectral resolution as a function of wavelength for?rst order(solid line)and second order(dashed line).

Fig. 2.—Theoretical grating e?ciency curves for?rst order(dashed),second order(dot-dashed)and sum of orders(solid).The data points are from pre-?ight calibrations using carbon K-shell emission.

Fig.3.—E?ective area curves for?rst order(dashed),second order(dot-dashed)and sum of orders(solid).

Fig. 4.—The octagonal FOV of CyXESS is shown over a ROSAT brightness map of the 0.25keV band taken from Levenson et al.(1999).This pointing is~55′to the west of the center position and is where the telescope was pointed when the spectral data were observed.

Fig.5.—Two spectral lines stand out on the left side.The rest of the counts are residual broad oval emission that dominates the noise.

Fig.6.—Data are plotted as points with2σerrorbars.The log(T)=6.2MEKAL equilib-rium plasma model is plotted as the solid line.

Fig.7.—Likelihood contours for the?t parameters are plotted in steps of10%of the peak value.The gray area encompasses the68%con?dence region.

从劳厄发现晶体X射线衍射谈

从劳厄发现晶体X射线衍射谈起 摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。 今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。 从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。 我们先来了解一下劳厄发现的前因后果。1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。身在这样的学府中,劳厄当时通过耳闻目睹也就对 晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。真可谓机遇不负有心人了。这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。他意识到,说不定晶体正是能衍射X射线的三维光栅呢。现在劳厄需要考虑的大事是做实验来证实这个想法。当时索末菲正好有个助教弗里德里希(Friedrich W) ,他曾从伦琴教授那里取得博士学位。 他主动要去进行这样的实验。经过几次失败后,他终于取得了晶体的第一个衍射图「(见图1)」。晶体是五水合硫酸铜(CuSO4·5H2O)。 劳厄的发现经过进一步的工作很快取得了一箭双雕的效果:既明确了X射线的本质,测定了波长,开创了X射线谱学,又使测定晶体结构的前景在望,从而将观察晶体外形所得结论经过三维点阵理论发展到230个空间群理论的晶体学,提升为X射线晶体学。这个发现产生的两个新学科,几乎立即给出了一系列在科学中有重大影响的结果。英国的布拉格父子(Bragg W H和Bragg W L)在奠定这两个新学科的基础中起了非常卓越的作用。他们使工作的重心从德国转到英国。将三个劳厄方程(衍射条件)压缩成一个布拉格方程(定律)的小布拉格曾把重心转移的原因归之于老布拉格设计的用起来得心应手的电离分光计”。既然晶体是X射线的衍射光栅,那么,为了测定X射线的波长,光栅的间距当如何得出?1897年巴洛(Barlow W)预测过最简单的晶体结构型式,其中有氯化钠所属的型式。根据当时已知的NaCI的化学式量(58.46)和阿伏伽德罗常数(6.064×1023)以及晶体密度(2.163g/cm2),可以推算出氯化钠晶体(10)原子面的间距d=2.814×10-8cm。 布拉格父子的工作是有些分工的:老布拉格用他的电离分光计侧重搞谱学,很快发现X射线谱中含有连续谱和波长取决于对阴极材料的特征谱线。此后,测定晶体结构主要依靠特征射线。同时还观察到同一跃迁系特征射线的频率是随对阴极材料在元素周期系中的排序递增的,这种频率的排序给出了原子序数。这是对化学中总结出来的元素周期律作出的呼应。小布拉格的工作是沿着X射线晶体学的方向发展的。他一生中从氯化钠和金刚石一直测到蛋白质的晶体结构。从1913年起,他在两年中一连测定了氯化钠、金刚石、硫化锌、黄铁矿、荧石和方解石等的晶体结构。这一批最早测定的晶体结构虽然极为简单,但很有代表性,而且都足以让化学和矿物学界观感一新。同时为测定参数较多和结构比较复杂的晶体结构也进行了理论和技术方面的准备。X射线晶体学能不断采用新技术和解决周相问题的新方法,使结构测定的对象

射线数字成像专业书籍

射线数字成像专业书籍

射线数字成像专业书籍《实时射线成像检测》王建华李树轩编著 目录: 前言 第1章射线成像的物理基础 1.1物质构成 1.1.1元素 1.1.2原子 1.2同位素 1.2.1核素 1.2.2同位素 1.2.3核素分类 1.2.4原子能级 1.3原子核结构 1.3.1核力 1.3.2核稳定性 1.3.3放射性衰变

1.4射线种类和性质 1.4.1射线分类 1.4.2X射线和γ射线的性质 1.4.3X射线和γ射线的不同点 1.4.4射线胶片照相中使用的射线 1.5射线的产生 1.5.1X射线的产生 1.5.2γ射线的产生 1.5.3高能X射线 1.5.4中子射线 1.6射线与物质的相互作用 1.6.1光电效应 1.6.2康普顿效应 1.6.3电子对效应 1.6.4瑞利散射 1.6.5各种效应相互作用发生相对的几率 1.7射线的衰减规律 1.7.1吸收、散射与衰减 1.7.2射线的色和束 1.7.3单色窄束射线的衰减规律 1.7.4宽束、多色射线的衰减规律(包括连续X射线)

测试题(是非题) 第2章实时成像 2.1实时成像的基础 2.1.1简述 2.1.2实时成像的原理 2.1.3射线成像的特点 2.1.4射线成像的应用 2.1.5实时成像局限性 2.2实时成像技术 2.2.1实时成像系统 2.2.2射线成像设备 2.2.3成像系统的构成 2.2.4成像转换装置(成像器) 2.3射线辐射转换器 2.3.1X射线荧光检验屏 2.3.2X射线图像增强器 2.4射线数字化成像技术 2.4.1计算机射线照相技术 2.4.2线阵列扫描成像技术 2.4.3光纤CCD射线实时成像检测系统(简称光纤CCD系统) 2.4.4数字平板直接成像技术

锂离子电池研究现状

锂硫电池的研究现状 近年来,随着不可再生资源的逐渐减少,清洁能源的利用逐渐得到重视,而电池作为储能装置也受到越来越多的考验。锂硫电池与传统的锂离子电池相比,优势主要在于硫的高比容量,单质硫的理论比容量为1600mAh/g ,理论比能量2600Wh/kg。并且硫是一种廉价且无毒的原材料。而与此同时,硫作为锂电池的正极材料也存在着诸多问题[1]: 1、单质硫以及最终放电产物都是绝缘的,如果与正极中掺入的导电物质结合不好,就会导致活性物质不能参与反应而失效; 2、单质硫在反应过程中会生成长链的聚硫化物离子S n2-,这种离子容易溶解在电解液中,并与锂负极反应,产生“穿梭效应”,引起自放电并使库伦效率降低; 3、在每次放电过程结束之后,都会有一些Li2S2/Li2S沉淀在正极上,并且这些不溶物随着循环次数的增加,在正极表面发生团聚,并且正极结构也会发生变化,导致这部分活性物质不能参与电化学反应而失效,并且使电池的内阻增加; 4、硫正极随充放电的进行会产生约22%的体积变化,从而导致电池物理结构破坏而失效。 针对硫作为正极材料的种种弊端,研究者们分别采用了多种方法予以解决,其中将硫与碳材料复合的研究较多。针对几种典型方法,分别举例介绍如下:一、石墨烯-硫复合材料 Wang等人采用石墨烯包覆硫颗粒的方法制作复合材料电极[2]。如图1所示,他们首先采用化学方法制备了硫单质,并利用一种特殊的表面活性剂Triton X-100在硫颗粒的表面修饰了一些PEG高分子,然后再用导电炭黑和石墨烯的分散液对硫颗粒进行包覆。这种方法的优点在于:首先,石墨烯和导电炭黑具有优异的导电性能,可以克服硫以及硫反应产物绝缘的问题;第二,导电炭黑、石墨烯和PEG高分子对硫颗粒进行了包覆,可以解决硫在电解液中溶出的问题;第三,PEG高分子具有一定的弹性,可以在一定程度上缓解体积变化带来的影响。 二、碳纳米管-硫复合材料 Zheng等人用AAO做模板制备了碳纳米管阵列[3],随后将硫加热使其浸入到碳纳米管中间,然后将AAO模板去掉,得到碳纳米管-硫复合材料,如图2所示。这种方法的优点在于碳纳米管的比表面积大,有利于硫化锂的沉积。并且长径比较大,可以较好地将硫限制在管内,防止其溶解在电解液中。碳纳米管的导电性好管壁又很薄,有利于离子导通和电子传输。同时,因为制备过程中先沉积硫,后去除模板,这样有利于使硫沉积到碳管内,减少硫在管外的残留,从而防止这部分硫的溶解。

射线数字成像技术的应用

射线数字成像技术的应用 在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 过大量的工程实践与应用,对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。 1 射线数字成像技术的应用背景 随着我国经济的快速发展,对能源的需求越来越大,输油输气管道建设工程也越来越多,众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。 目前,在管道建设工程中,管道焊接基本实现了自动化和半自动化,而与之配套的射线检测主要采用胶片成像技

术,检测周期长、效率低下。“十二五”期间,将有更多的油气管道建设工程相继启动,如何将一种可靠的、快速的、“绿色”的射线数字检测技术应用于工程建设中,以替代传统射线胶片检测技术已成为目前管道焊缝射线检测领域亟需解决的问题。 2 国内外管道焊缝数字化检测的现状 2.1 几种主要的射线数字检测技术 1)CCD型射线成像(影像增强器) 2)光激励磷光体型射线成像(CR) 3)线阵探测器(LDA)成像系统 4)平板探测器(FPD)成像系统 几种技术各有特点,目前适用于管道工程检测的是CR 和FPD,但CR不能实时出具检测结果,且操作环节较繁琐、成本较高,因此平板探测器成像系统成为射线数字检测的主要发展方向。 2.2 国内研发情况 国内目前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司,但其产品主要用于钢管生产厂的螺旋焊缝检测。通过实践应用比较,研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要,并通过了科技成果鉴

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

全固态3D薄膜锂离子电池的研究进展

全固态3D薄膜锂离子电池的研究进展 作者:邓亚锋钱怡崔艳华刘效疆来源:本站浏览数:289 发布时间:2013-8-8 16:28:16 0 引言 全固态薄膜锂离子电池主要由正/负极薄膜、电解质和集流器薄膜组成.整个电池厚约10 μm,可设计成任意形状和大小集成在IC电路中,是便携式电子设备、微电子机械系统(MEMS)以及微型国防技术装备(如微型智能武器)的理想能源。全固态平面薄膜电池(图1)受限于几何结构,能量和功率密度难以满足快速发展的MEMS、微型医疗器械、无线通信、传感器等领域对微电源的要求。全固态三维薄膜锂离子电池(简称3D锂电池)通过独特的构架设计(图2),增大单位立足面积内电极活性物质负载量,并缩短锂离子扩散半径,提高了电池的容量和充放电速率。是解决未来微电子器件能量需求的一种有效方式,引起了人们的极大关注。 1 不同构架的全固态3D薄膜锂电池 1.1 叉指碳柱3D电池 叉指碳柱3D电池由加利福尼亚大学Wang小组于2004年首次提出(图3),在Si/SiO2衬底上涂覆感光胶,光刻得到图形,再经过高温热解及后处理,即制得正/负极叉指状碳柱3D电池。叉指碳柱既可以直接作为电极,又可以作为集流器,在其表面沉积各种电化学活性物质。2008年,Min等研究了在叉指碳柱上电镀十二烷基苯磺酸盐掺杂聚吡咯(PPYDBS)导电聚合物薄膜的方法。结果表明,覆盖约10 μm厚PPYDBS的叉指阴极(C-PPYDBS),电极电位从碳电极的3.2 V提高到了3.7 V(相对于Li/Li+),但自放电较为严重,电池的放电容量远小于充电电容。 为改善叉指碳柱电极性能,Teixidor等制备出包覆中间相碳微球的叉指碳柱(C-MCMB),有效提高了电极不可逆容量,但可逆容量仍较低。Chen等在叉指碳柱上包覆碳纳米管(CNT/C-MEMS)使单位立足面积电容达到8.3 F/cm2,充放电循环性能得到显著提高。 叉指碳柱电极成本低、热力学和化学稳定性好、易制成各种形貌、能包覆不同的活性材料(图4),光刻-热解工艺较为成熟,适合工业化生产。但是,叉指结构放电不均匀、漏电流较大、碳柱在锂离子嵌入和脱出过程中易变形破损,这些问题需进一步研究解决。 1.2 微通道衬底3D电池 1998年,以色列特拉维夫大学的Peled小组首次报道了微通道衬底3D 电池(3D-MCP);在Si片或玻璃上蚀刻出均匀分布、直径为15~50 μm的微通

全固态薄膜锂离子二次电池的研究进展

论 著8 全固态薄膜锂离子二次电池的研究进展 耿利群任岳*朱仁江陈涛 (重庆师范大学物理与电子工程学院,重庆 400047) 摘 要:本文综述了全固态薄膜锂离子二次电池的研究进展,主要阐述了薄膜锂电池的结构设计以及正极、负极和固体电解质材料研究现状,并对其今后的发展趋势及研发热点进行了展望。 关键词:全固态薄膜锂离子二次电池;固体电解质;电池结构 DOI:10.3969/j.issn.1671-6396.2013.01.004 1 引言 随着电子信息工业和微型加工技术快速发展,对其所需的微型能源则提出了特殊微型化的要求。其中全固态薄膜锂离子二次电池因其高的能量密度、强的安全性、长的循环寿命、宽的工作电压和重量轻等优点,成为微电池系统需求的最佳选择[1]。本文主要介绍了全固态薄膜锂离子二次电池的关键性薄膜材料及电池结构的研究现状,并对其的开发应用及研究前景作了分析。 2 全固态薄膜锂离子二次电池结构的研究 薄膜电池结构的设计,对整个电池性能将产生直接的影响;同样对提高电池的能量密度、循环寿命和锂离子的传输速率也起到至关重要的作用。所以优化薄膜电池结构的设计,则是对构造高性能薄膜锂离子电池做到了强有力的支撑。 1993年美国橡树岭国家实验室(ORNL)Bates等[2]研制出了一种经典的薄膜锂离子电池叠层结构(见图1)。在衬底上先沉积两层阴阳极电流收集极薄膜,而后依次沉积阴极、固体电解质和阳极薄膜,最后在薄膜电池外表面上涂一层保护层,以此来防止阳极上金属锂和空气中的一些物质发生化学反应。 图1 薄膜锂离子电池结构剖面示意图 Baba等[3]研发出另一种典型的薄膜锂离子电池结构(见图2)。其较图1薄膜锂电池结构设计更为简单,制作更为容易。在不锈钢衬底上依次沉积各层薄膜电池材料,而在图示中有两个引线端子则是为了便于薄膜电池的连接使用。这种结构设计很好地提高了整个电池的有效面积,进而也极大地改善了薄膜电池的性能。 Nakazawa等[4]利用直流溅射和射频溅射的方法,研制出一种“直立型”全固态薄膜锂离子电池结构(见图3)。该研究小组利用该薄膜电池结构设计,成功制备出有效面积更大的全固态薄膜锂离子电池,这样也使得薄膜电池的能量密度和循环寿命等电化学性能得到大幅度提升。 图2 全固态薄膜锂离子电池结构剖面示意图 图3 “直立型”全固态薄膜锂离子电池剖面示意图 Hart等[5]设计了柱状电极交替排列的微型锂电池结构(见图4)。并对几种不同的正极、负极排列方式进行了相关的研究计算,得出了此薄膜电池的结构能够大大提升薄膜电池本身的能量密度。然而Eftekhari[6]则研制出了一种3-D微型锂电池结构的LiMn2O4电极,与以往微型锂电池结构的LiMn2O4电极在电池容量方面得到了提升。 图4 3-D微电池柱状结构示意图 [正极(灰色) 、负极(白色)交替排列分布]

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

射线数字成像检测技术

射线数字成像检测技术 韩焱 (华北工学院现代元损检测技术工程中心,太原030051) 摘要:介绍多种射线数字成像(DR)系统的组成及成像机理,分析其性能指标、优缺点及应用领域。光子放大的DR系统(如图像增强器DR系统)实时性好,但适应的射线能量低,检测灵敏度相对较低;其它系统的检测灵敏度较高但成像时间较长。DR系统成像方式的主要区别在于射线探测器,除射线转换方式外,影响系统检测灵敏度的主要因素是散射噪声和量子噪声;可采用加准直器和光量子积分降噪的方法提高检测灵敏度。 关键词:射线检验;数字成像系统;综述 中图分类号:TGll5.28 文献标识码:A 文章编号:1000-6656(2003109-0468-04 DIGITAL RADIOGRAPHIC TECHNOLOGY HAN Yan (Center of Modern NDT &E, North China Institute of Technology, Taiyuan 030051, China) Abstract: The structure and imaging principle of digital radiographic (DR) systems are introduced. And thecharacteristics, performances, advantages, disadvantages and applications of the systems are analyzed. The DR sys-tern with photon amplification such as the DR system with intensifier can get real-time imaging, but it fits for lowerenergy and its inspection sensitivity is lower. The systems working with high energy can obtain higher sensitivity,while is time-eonsurning. The imaging way of a DR system depends on the detector used, and the factors influencinginspection sensitivity are the quantum noise from ray source and scatter noise besides the transform way of rays.Quantum integration noise reducer and collimator can be used to improve the inspection sensitivity of the system. Keywords:Radiography; Digital imaging system; Survey 射线检测技术作为产品质量检测的重要手段,经过百年的历史,已由简单的胶片和荧屏射线照相发展到了数字成像检测。随着信息技术、计算机技术和光电技术等的发展,射线数字成像检测技术也得到了飞速的发展,新的射线数字成像方法不断涌现,给射线探伤赋予了更广泛的内涵,同时也使利用先进网络技术进行远程评片和诊断成为可能。 目前工业中使用的射线数字成像检测技术主要包括射线数字直接成像检测技术(Digital Radio—graphy,简称DR)和射线数字重建成像检测技术,如工业CT(Industry Computed Tomography,简称ICT)。以下将在介绍DR检测系统组成的基础上,重点分析系统的成像原理、特点、特性及应用场合。 1 DR检测系统简介 DR检测系统组成见图1。按照图像的成像方式分为线扫描成像和面扫描成像;根据成像过程可分为直接和间接式DR系统。以下重点介绍直接DR系统。 图1 DR检测系统组成框图 1.1 直接式DR系统 直接DR成像系统主要分为图像增强器成像系统、平板型成像系统和线阵扫描成像系统等。 图2为图像增强器式DR系统,主要通过射线视频系统与数字图像处理系统集成实现。系统采用射线--可见光--电子--电子放大--可见光的光放大技术,是将射线光子由转换效率较高的主射线转换屏转换为可见光图像,可见光光子经光电转换变为电子,而后对电子进行放大,放大后的电子聚集在小屏上再次

薄膜锂电池

能源材料课程业 ——薄膜锂电池的研究进展 院系:材料科学与工程学院 专业:金属材料与成型加工 班级:2012级金属材成1班 学号:20120800828 姓名:吴贵军

薄膜锂电池的研究进展 摘要:微电子机械系统(MEMS)和超大规模集成电路(VLSI)技术的发展对能源的微型化、集成化提出了越来越高的要求.全固态薄膜锂电池因其良好的集成兼容性和电化学性能成为MEMS和VLSI能源微型化、集成化的最佳选择.简单介绍了薄膜锂电池的构造,举例说明了薄膜锂电池的工作原理.从阴极膜、固体电解质膜、阳极膜三个方面概述了近年来薄膜锂电池关键材料的研究进展.阴极膜方面LiCoO2依旧是研究的热点,此外对LiNiO2、LiMn2O4、LiNixCo1-xO2、V2O5也有较多的研究;固体电解质膜方面以对LiPON膜的研究为主;阳极膜方面以对锂金属替代物的研究为主,比如锡的氮化物、氧化物以及非晶硅膜,研究多集中在循环效能的提高.在薄膜锂电池结构方面,三维结构将是今后研究的一个重要方向.。 关键词:薄膜锂电池;微系统;薄膜:微电子机械系统随着电子集成技术的飞速发展,SO C (System on chi p) 成为 现实,电子产品在不断地小型化、微型化。以整合集成电路及机械系统,如各种传感器于同一块晶片上的技术,即微机电技术,受到了普遍重视。微小型飞行器、微小型机器人和微小型航天器等都在源源不断地出现和进一步地改进。这些微型系统的功能强大,必然对其能源系统提出了微型化的

要求。当电池系统被微型化,电池底面积小于10 m m2、功率在微瓦级以下时,被称为微电池。微电池的制备通常是将传统的电池微型化、薄膜化。目前,用于微电池的体系有:锌镍电池、锂电池、太阳能电池、燃料电池、温差电池和核电池。锂电池是目前具有较高比能量的实用电池体系,因此人们对薄膜化的锂电池投入了大量的研究。 优点: (1)成本低,根据Photon 的预测,预计到2012 年下降到2.08 美元/w;预计薄膜电池的平均价格能够从2.65 美元/w 降至1.11 美元/w,与晶体硅相比优势明显;而相关薄膜电池制造商的预测更加乐观,EPV 估计到2011 年,薄膜组件的成本将大大低于1 美元/w;Oerlikon 更估计2011 年GW 级别的电站其组件成本将降低于0.7 美元/w,这主要是由转化率提高和规模化带来的。 (2)弱光性好 (3)适合与建筑结合的光伏发电组件(BIPV),不锈钢和聚合物衬底的柔性薄膜太阳能电池适用于建筑屋顶等,根据需要制作成不同的透光率,代替玻璃幕墙。 缺点: (1)效率低,单晶硅太阳能电池,单体效率为14%-17%(AMO),而柔性基体非晶硅太阳电池组件(约1000平方厘米)的效率为 10-12%,还存在一定差距。

X射线数字成像检测系统郑金泉.doc

实用标准文档 X射线数字成像检测系统

目录 一、目的意义 (3) 二、系统介绍 (3) 2.1 CR 技术与 DR技术的共同点 (4) 2.2 CR 技术与 DR技术的不同点 (4) 2.3 对比分析 (5) 2.4 系统组成 (5) 2.5 X 射线数字平板探测器 (6) 2.6 X 射线源 (7) 2.7 图像处理系统 (8) 2.8 成像板扫描仪 (9) 2.9IP 成像板 (9) 三、 DR检测案例 (10) 3.1 广西 220kV 振林变 (10) 3.2 广西 220kV 水南变 (11) 3.3 温州 220kV 白沙变 (13) 3.4 广西 110kV 城东变 (15) 3.5 广西乐滩水电站 (16) 四、 CR检测案例 (18) 4.1 百色茗雅 220kV变电站 (18)

一、目的意义 气体绝缘全封闭组合电器(GIS)设备结构复杂,由断路器、隔离开关、接 地开关、互感器、避雷器、母线、连接件和出线终端等组成,内部充有SF6绝缘气体,给解体检修工作带来很大的困难,且检修工作技术含量高,耗时长,停电 所造成的损失大。通过对 GIS 设备事故的分析发现,大部分严重事故,未能通过现有的检测手段在缺陷发展初期被发现,导致击穿、烧损等严重事故的发生。 通过 GIS 设备局放监测,结合专家数据库和现场经验,可大致判断 GIS 设备局放类型,进行大致的定位,但无法明确GIS 设备内部的具体故障。结合X 射线数字成像检测系统,对 GIS 设备进行多方位透视成像,配合专用的图像处理与 判读技术,实现其内部结构的“可视化”与质量状态快速诊断,极大地提高 GIS 设备故障定位与判别的准确性,提高故障诊断效率,为整个设备的运行安全与质量监控提供一种全新的检测手段。对 GIS 设备局放可能造成的危害及其影响范围和程度,提出相应策略,采取相应的措施,对电网的安全、稳定、经济运行具有重要意义。 二、系统介绍 按照读出方式(即X 射线曝光到图像显示过程)不同,可分为: 数字射线成像( DR-Digital Radiography) 计算机射线成像( CR-Computed Radiography) 图 1-1 检测原理图

X射线数字成像检测系统

X射线数字成像检测系统X射线数字成像检测系统

(XYG-3205/2型) 一、设备基本说明 X射线数字成像系统主要是由高频移动式(固定式)X射线探伤机、数字平板成像系统、计算机图像处理系统、机械电气系统、射线防护系统等几部分组成的高科技产品。它主要是依靠X射线可以穿透物体,并可以储存影像的特性,进而对物体内部进行无损评价,是进行产品研究、失效分析、高可靠筛选、质量评价、改进工艺等工作的有效手段。 探伤机中高压部分采用高频高压发生器,主机频率40KHz为国际先进的技术指标。连续工作的高可靠性,透照清晰度高,穿透能力强,寿命长,故障率低等特点。X光机通过恒功率控制持续输出稳定的X射线,波动小,保证了优质的图像质量。高频技术缩短了开关机时间,有助于缩短检测周期,提高工作效率。 数字平板成像采用美国VEREX公司生产的Paxscan2530 HE型平板探测器,成像效果清晰。该产品已经在我公司生产的多套实时成像产品中使用,性能稳定可靠。 计算机图像处理系统是我公司独立自主研制开发的、是迄今为止国内同行业技术水平最高的同类产品。主要特点是可以根据不同行业用户的需求,编程不同的应用界面及图像处理程序,利用高性能的编程技术,使操作界面简单易懂,最大限度的减少操作步骤,最快速度的达到操作人员的最终需求。 机械传动采用电动控制、无极变速,电气控制采用国际上流行的钢琴式多功能操作台,将本系统中的X射线机控制、工业电视监视、机械操作等集中到一起,操作简单、方便。 该系统的自动化程度高, 检测速度快,极大地提高了射线探伤的效率,降低了检验成本,检测数据易于保存和查询等优点,其实时动态效果更是传统拍片法所无法实现的,多年来该系统已成功应用于航空航天、军事工业、兵器工业、石油化工、压力容器、汽车工业、造船工业、锅炉制造、制管行业、耐火材料、低压铸造、陶瓷行业、环氧树脂材料等诸多行业的无损检测中。

射线数字成像技术发展

射线数字成像技术发展 摘要:射线数字成像是一种先进辐射成像技术,是辐射成像技术的重要发展方向,该技术利用射线观察物体内部的技术。这种技术可以在不破坏物体的情况下获得物体内部的结构和密度等信息,并且通过计算机进行图像处理和判定。目前已经广泛应用于医疗卫生、国民经济、科学究等领域。 关键词:辐射成像射线数字成像 1引言 自德国物理学家伦琴1895年发现X射线以来,射线无损探伤作为一种常规的无损检测方法在工业领域应用已有近百年的历史,人们一直使用胶片记录X(γ)射线穿过被检物件后的影像,其中60多年来,则一直使用增感屏配合胶片来获取高品质的影像,曝光过后的胶片经过化学处理,产生可视的影像后,在观片灯上显示出来以供读取、分析及判断。胶片-增感屏系统可使射线检测人员实现对影像的采集、显示和存储。这种方法操作简单,产生的图像质量优异,功能效用全面,因此该技术在包括核工业在内的工业、医疗领域一直被广泛使用。 胶片照相法的不足在于检测周期长,因为需要暗室处理,检测周期在3~20个小时不等;大量底片造成保存上的困难,查阅不便;胶片成本高;曝光时间长;在大量的检测工作面前,需要大量人力资源;底片难以共享,某些焊缝底片在需要专家共同研讨评定时,该弊端特别明显;不利于环境保护等。无法满足目前工业化生产和竞争日益激烈的需要。 随着科学技术和设备制造能力的进步,例如电子技术、光电子技术、数字图像处理技术的发展;高亮度高分辨率显示器的诞生;高性能计算机/工作站的广泛应用;计算机海量存储、宽带互联网的发展,使得数字成像技术挑战传统胶片成像方式在技术上形成可能。 以射线DR、CR和CT为代表的数字射线成像技术,结合远程评定技术将是无损检测技术领域的一次革命。数字射线照相技术具有检测速度快,图像保存方便,容易实现远程分析和判断,是未来射线检测发展的方向[1]。

X射线数字成像检测系统(郑金泉)

X射线数字成像检测系统

目录 一、目的意义 (3) 二、系统介绍 (3) 2.1 CR技术与DR技术的共同点 (4) 2.2 CR技术与DR技术的不同点 (4) 2.3对比分析 (5) 2.4 系统组成 (5) 2.5 X射线数字平板探测器 (6) 2.6 X射线源 (7) 2.7 图像处理系统 (8) 2.8成像板扫描仪 (9) 2.9IP成像板 (9) 三、DR检测案例 (10) 3.1 广西220kV振林变 (10) 3.2 广西220kV水南变 (11) 3.3 温州220kV白沙变 (13) 3.4 广西110kV城东变 (15) 3.5 广西乐滩水电站 (16) 四、CR检测案例 (18) 4.1百色茗雅220kV变电站 (18)

一、目的意义 气体绝缘全封闭组合电器(GIS)设备结构复杂,由断路器、隔离开关、接地开关、互感器、避雷器、母线、连接件和出线终端等组成,内部充有SF6绝缘气体,给解体检修工作带来很大的困难,且检修工作技术含量高,耗时长,停电所造成的损失大。通过对GIS设备事故的分析发现,大部分严重事故,未能通过现有的检测手段在缺陷发展初期被发现,导致击穿、烧损等严重事故的发生。 通过GIS设备局放监测,结合专家数据库和现场经验,可大致判断GIS设备局放类型,进行大致的定位,但无法明确GIS设备内部的具体故障。结合X射线数字成像检测系统,对GIS设备进行多方位透视成像,配合专用的图像处理与判读技术,实现其内部结构的“可视化”与质量状态快速诊断,极大地提高GIS 设备故障定位与判别的准确性,提高故障诊断效率,为整个设备的运行安全与质量监控提供一种全新的检测手段。对GIS设备局放可能造成的危害及其影响范围和程度,提出相应策略,采取相应的措施,对电网的安全、稳定、经济运行具有重要意义。 二、系统介绍 按照读出方式(即X射线曝光到图像显示过程)不同,可分为: ◆数字射线成像(DR-Digital Radiography ) ◆计算机射线成像(CR-Computed Radiography) 图1-1检测原理图

X射线衍射分析

X 射线衍射分析 1实验目的 1、 了解X 衍射的基本原理以及粉末X 衍射测试的基本目的; 2、 掌握晶体和非晶体、单晶和多晶的区别; 3、 了解使用相关软件处理XRD 测试结果的基本方法。 2实验原理 1、 晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶 体 定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和 物质环境均同,这些“点集”称空间点阵。③晶体结构 =空间点阵+结构单元。非 晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、 成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的 影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14 种Bravais 点阵 表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体 生长完善。Bravais 提出了点阵空间这一概念,将其解释为点阵中选取能反映空 间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱 间直角最多,同时体积最小。1848年Bravais 证明只有14种点阵。 Bravais lattice Cryslal DerBCfliptlcn CSlnwle) cubic Cubic a - b=? E , a = = 90B BaO/-rentered F*韓?“nl ?喇 (Simple) T etr-Aa^n^ i = b*C i .a=g = 7=SCi , Boa^-tentered ler^go>nal CGlnwle) DfthDmunbic Orlharhanbir 目日即亡时恒创 Orlhorhcmbic Oase-ceMered Offliorhombic Fac$-LBnter$d OnhorhChibie (Simple) Rhombol*edrai Rhombohedr^i (Trigonal) R = b = (;&= p= 7^ 90' 闭卿闾扫D 城帕1 H 曲g 肿对 a = b?iC fc tt=ft=0I]-a 7=12D - ⑻側 1.) MOnlQClHiC Monoclinic a c s a = y= go ■,&4 ger Monodlnlc : (Slrrwle)AnDithl£: Anotlhic (Triclinic) a * : UH p 9D" PDFhAAiNT uaes Ehe 他 dfescnbing lhe pallerrt I Ellice cubic tatnigond orthortiombic rhonibdhedral hdxa.goinal (trigcnal) anortluc (tricl i me) iriufiOchrr ic

射线数字成像技术的应用样本

射线数字成像技术的应用 在管道建设工程中, 射线检测是确保焊接质量的主要无损检测手段, 直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来, 射线检测主要采用X射线或γ射线的胶片成像技术, 检测劳动强度大, 工作效率较低, 常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展, X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存, 检索、统计快速方便, 易于实现远程图像传输、专家评审, 结合GPS系统可对每道焊口进行精确定位, 便于工程质量监督。同时, 由于没有了底片暗室处理环节, 消除了化学药剂对环境以及人员健康的影响。 过大量的工程实践与应用, 对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。 1 射线数字成像技术的应用背景 随着中国经济的快速发展, 对能源的需求越来越大, 输油输气管道建设工程也越来越多, 众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。 当前, 在管道建设工程中, 管道焊接基本实现了自动化和半自动化, 而与之配套的射线检测主要采用胶片成像技术, 检测周期长、效率低下。”十二五”期间, 将有更多的油气管道建设工程相继启动, 如何将一种可靠的、快速的、”绿色”的射线数字检测技术应用于工程建设中, 以替代传统射线胶片检测技术已成为当前管道焊缝射线检测领域亟需解决的问题。 2 国内外管道焊缝数字化检测的现状 2.1 几种主要的射线数字检测技术 1) CCD型射线成像( 影像增强器) 2) 光激励磷光体型射线成像( CR)

3) 线阵探测器( LDA) 成像系统 4) 平板探测器( FPD) 成像系统 几种技术各有特点, 当前适用于管道工程检测的是CR和FPD, 但CR不能实时出具检测结果, 且操作环节较繁琐、成本较高, 因此平板探测器成像系统成为射线数字检测的主要发展方向。 2.2 国内研发情况 国内当前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司, 但其产品主要用于钢管生产厂的螺旋焊缝检测。经过实践应用比较, 研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要, 并经过了科技成果鉴定。 2.3 国外研发情况 国外对数字化射线图像信息获取和无损检测方面的实验室研究工作开展较早, 并进行了深入的研究, 国外文献对数字X射线平板探测系统的工作原理、典型结构、参数优化、应用领域等诸多方面有少量的公开资料报道, 其中美国、日本等国对该技术的研究已比较成熟, 有些技术还申请了专利保护, 并已有实用产品用于实际领域的报道, 但关键制造技术则未见详细报道。 3 数字成像系统的的工程应用可行性 3.1 系统主要组成 RDEES系统主要由数字平板探测器( FPD) 、 X射线源( 或爬行器) 、工装夹具、系统软件、便携式计算机、 GPS定位器等部分组成。 3.2 检测布置 根据不同管道环焊缝特点可选择源在外的双壁透照方式或源在内的中心透照方式。

相关主题
文本预览
相关文档 最新文档