当前位置:文档之家› 当今废盐酸再生工艺的评析

当今废盐酸再生工艺的评析

当今废盐酸再生工艺的评析
当今废盐酸再生工艺的评析

废盐酸回收方法有哪些

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/7813791698.html,) 废盐酸回收方法有哪些 在现在的工业生产中,经常要使用到盐酸,那么使用过后的盐酸该如何处理呢,下面变宝网小编简单介绍一下废盐酸回收。 方法:一是酸碱中和法,二是盐酸再生法。 盐酸再生法均采用加热蒸发、喷雾燃烧的方式,目前国内的盐酸再生装置都是引进的,其工艺是对废酸液进 行直接加热回收盐酸和氧化铁,少数大型钢铁联合企业采用鲁奇法和鲁特纳法。该处理工艺一次性投资大、运行维护费用高、设备损坏严重,一般中小企业难以承受。因此,国内的中小企业大都采用石灰中和法,使废酸液中和后达标排放。但此法需消耗大量的石灰,并产生大量的含水率99%的泥渣需干化处理。该方法处理设施投资和处理成本也都较高,且废酸液中的有用资源未能回收利用。为此,我们经过多年的实验、研究、提出了负压蒸发处理盐酸废液回收稀盐酸和氯化亚铁晶体的工艺方法。 根据氯化氢易于挥发和易溶于水的特性,以及氯化亚铁在盐酸溶液中溶解度的规律,采用蒸汽间接加热、负压蒸发浓缩工艺,蒸发产生的气体经冷凝器冷凝成为稀盐酸,返回酸洗车间再次使用;废酸液经蒸发浓缩使氯化亚铁达到一定浓度后,冷却浓缩液使氯化亚铁以结晶的形式析出,再经离心分离获取氯化亚铁的晶体。 1、采用负压蒸发技术处理盐酸酸洗废液,技术上可靠、经济上合算,适用于中、 小型钢铁企业盐酸酸洗废液的综合利用。 2、由于负压蒸发降低了蒸发温度,所以延长了设备的使用寿命,降低了设备的维修、保养费用。

3、能源消耗较少,回收的再生盐酸价值可折抵处理成本,使该处理系统能持续运行。 4、所需设备数量少,投资较低,且操作简单易行,很适合采用盐酸酸洗的中、小型冷轧带钢企业使用。 工业中的废酸包括:如硫酸、盐酸、柠檬酸、乳酸等无机酸和有机酸,它是一种非常重要的化工原料,几乎所有的工业都直接或间接地用到它,其中酸做为生产工艺的中间化工原料使用的情况又非常多,多余的废酸因为无法继续使用而需要经过处理达标后排放又成为化工企业的主要环保难题。在这种前提下,以膜技术为依托,开发研制成功了废酸回用设备,它具有易于实现工艺改造、投资回报率高、易于操作、易于维护、运行费用低、自动化程度高等特点。废酸回用设备能直接处理废酸回用,变害为宝,为企业解决环保问题的同时还带来不菲的经济效益,使用领域与前景十分可观,具有巨大的投资回报价值。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.doczj.com/doc/7813791698.html,/?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

酸再生改造方案

攀钢集团 攀枝花钢钒有限公司冷轧厂酸再生机组废气处理工艺改进技术方案 四川和翔环保科技有限公司二○一二年六月

目录 1.项目简介3 2.污染物特点 4 3.现有工艺存在的问题 4 4.系统工艺设计5 5.改造后效果及工艺说明9

1.项目简介 酸洗带钢产生的废盐酸,因富含氯化亚铁而采用喷雾焙烧法进行再生处理,废酸焙烧产生的含酸气体经吸收塔吸收后再生,残留废气经洗涤塔洗涤后排入大气。主要工艺如下: 由于废气中HCL气体、Fe2O3颗粒物状态及物理性质存在不稳定性,导致吸收和洗涤的过程变得更为复杂,现有工艺参数控制环节与废气特征不能完全匹配,当工艺条件或设备工况改变时,废气排放指标就不能达到环保要求,造成环境污染。因废气排放不达标导致机组停机或无法正常生产的时间累计达437.5小时/年,约460m3左右的废酸无法再生而排放,导致生产成本增加。 目前攀钢冷轧厂废气排放中的HCL含量和氧化铁粉无法满足≤120mg/m3的要求,粉尘排放含量也不稳定,经常出现因尾气中Fe2O3颗粒物超标而冒红烟现严重污染周围环境且对人的呼吸系统也产生伤害,废气中的酸雾危害大气且氯离子对臭氧层有很大的破坏性。因此必须对废气排放不达标的原因进行研究并通过技术改进来解决排放超标问题。 2.污染物特点 2.1 组份的多相性 废气中包含了固相、液相、气相多成分物理状态污染物,极大限制了污染物的处理方式,属复杂废气治理范畴。 2.2 强酸易挥发性 HCL气体虽易溶于水,但其溶液又具有挥发性,形成双向解压特征,介质吸收率和吸收速度受温度和压力影响较大。 2.3高沉积粘滞性 吸收液中组份复杂,含有FeCL3、Fe2O3、HCL及其它固体微粒混合物,容易产生絮凝、粘附、结晶等现象。 3.现有工艺存在的问题 3.1系统风量控制 废气抽吸为离心风机,通过变频调速控制炉内负压,但基于离心风机运行的曲线特征,直接改变风机转速会导致系统工作极不稳定。 3.2 预浓缩器 当文丘里预浓缩器循环废酸喷淋不均匀、密度不够,或烟气浓度和流速发生变化,以及喷嘴发生阻塞时,会出现焙烧气体温度过高,氧化铁分离效率降低等问题。 3.3吸收塔 由于对再生酸有浓度要求,因此吸收塔不能完全吸收掉废气中的HCl 气体和氧化铁粉,从吸收塔出来的气体含过量HCL而作为废气进入净化塔。再生酸浓度受以下因素影响: 焙烧炉中气体的HCL含量; 焙烧气体温度; 吸收水的喷流量。 3.4 洗涤塔 目前工艺采用清水作为吸收洗涤剂,选用250Y型孔板波纹填料,单级循环喷淋,由于循环水成份质量不受控制,只能依靠进水量补充来实现更新,当前端工艺不稳定时,循环水被污染程度在一段时间内可能会很严重,将显著影响了循环水的清洗效果。由于循环水中不可避免的颗粒物容易造成填料阻塞,在选择孔板波纹填料时过滤精度较粗,同时但对F2O3微粉及HCL最后吸收和拦截效率也较低。 4.系统工艺设计 4.1方案选择原则 在酸再生工艺流程中,即使采用更多控制手段,系统仍无法避免不稳定因素,因此改进方案

废酸处理方案

废酸处理(不锈钢厂酸洗废水) 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 1 废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 1.1 浓缩法 该法是在加热浓缩废稀硫酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀硫酸的双重目的。这类方法应用较广泛,技术较成熟。在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法,下面分别加以介绍。 1.1.1 高温浓缩法 淄博化工厂三氯乙醛生产过程中有废硫酸产生,其中H2SO4质量分数为65%~75%、三氯乙醛质量分数为1%~3%、其它有机杂质的质量分数为1%。该厂将其沉淀过滤后,用煤直接加热蒸馏,回收的浓硫酸无色透明,H2SO4质量分数大于95%,无三氯乙醛检出,而沉淀物经碱解、蒸馏和过滤后可回收氯仿。该厂废硫酸处理量为4000t/a,回收硫酸创利润55万元/a〔1〕。 日本木村-大同化工机械公司的废硫酸浓缩法是用搪玻璃管升膜蒸发和分段真空蒸发相结合,将废硫酸中H2SO4的质量分数从10%~40%浓缩到95%,其工艺可分为3段,前两段采用不透性石墨管加热器蒸发浓缩,后一段采用搪玻璃管升膜蒸发器浓缩,在每一段中H2SO4质量分数渐次升高,分别达到60%、80%和95%。加热过程采用高温热载体,温度为150~220℃,可将有机物转变为不溶性物质,然后过滤除去,该工艺以2t/h的规模进行中试,5a运转良好。该工艺适应能力很强,可用于含多种有机杂质的废硫酸的处理〔2〕。 1.1.2 低温浓缩法 高温浓缩法的缺点在于:硫酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦。因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法)〔3〕。 WCG法的原理和工艺如下:将废稀硫酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放。分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,达到浓度要求后,用泵打入浓硫酸储罐。浓硫酸可作为生产原料再利用。其工艺流程见图1。WCG法浓缩装置主要由换热器、循环浓缩塔和引风机组成。换热器材质为石墨,浓缩塔材质为复合聚丙烯,泵及引风机均为耐酸设备。 该法与高温浓缩法相比,蒸发温度低(50~60℃),蒸汽消耗量少,费用低(浓缩每吨稀硫酸耗电和蒸汽的费用约为30~60元)。上海染化五厂生产分散深蓝H-GL产生的稀硫酸(H2SO4质量分数为20%),上海染化八厂、武汉染料厂、济宁染料厂生产染料中间体产生的稀硫酸,采用WCG法浓缩,都取得了明显的效果。 用WCG法浓缩稀硫酸应注意以下几点: (1)在浓缩过程中若有固体物析出,会影响传热效果和废酸的分离;

酸再生设备工艺说明

廢酸再生工廠設備的情況說明 1、焙燒爐(Spray Roaster )-圖號 32250 工作原理:焙燒爐由燃氣加熱到600~700℃之間。被濃縮的廢酸經爐頂的噴嘴霧化噴灑 成微小液滴,濃縮酸中的氯化鐵顆粒在燃燒的氣體中被焙燒成游離氯化氣和氧化鐵。 物理結構:焙燒爐為立式圓柱形焊接結構。

2、旋風除塵分離機(Dust Cyclone)-圖號32170 工作原理:雙旋風除塵分離機用於分離焙燒爐烟氣中帶出的氧化鐵粉顆粒。被分離出的氧化鐵粉顆粒通過旋轉閥及插入焙燒爐中的斜管再進入焙燒爐下部。 物理結構:分離器由兩個錐形体構成,用耐磨鋼製成。

3、氧化鐵粉裝置(Oxide Air Blaster )- 圖號 33340 在氧化鐵粉儲槽的出口處安裝有此裝置,係利用瞬間噴出爆炸的壓縮空氣直接吹進下方錐形部位,避免大量鐵粉造成阻塞。 鐵粉排放口 氣爆槍 混凝土基礎 鐵粉過濾器

4、酸再生儲槽過濾裝置(Storage Tanks Filter for ARP)-圖號22210;22211 本過濾裝置是用于分離廢酸中的固體物質,過濾器內襯膠並裝有濾芯。 預濃縮酸過濾器廢酸液過濾器

5、除氯裝置(Chloride Reduction)-圖號33110 为了减少氧化铁粉中的氯化物含量在螺旋輸送機上裝有小型燃燒器,將含有HCl 的气体通过热螺旋输送机经过除尘分离器输回反应炉中。

6、洗滌塔液滴分離設備(Scrubber Drop Separator)-圖號32561 洗滌塔是用沖洗水直接射入含有粉塵顆粒的烟氣中。然後沖洗水和烟氣在文丘里管端加速霧化,藉以分離出水和鐵粉顆粒。 連續不斷流出的烟氣和水由分離機分離,向下流的水由下方的噴嘴排放,烟氣則分離後由上方排出。

回收处理工业废酸

山东天维膜技术有限公司阴膜扩散渗析技术回收处理工业废酸一、扩散渗析阴膜 扩散渗析阴膜是山东天维膜技术有限公司开发的用于酸性废水处理回用的芳香族聚醚类复合膜元件。该膜的生产过程中采用了特殊的胺化交联工艺,实现了膜的立体交联,强度大大提高,具有极好的物化稳定性,产品的各项技术指标均达到国际先进水平。与已有的工艺相比,该工艺具有以下特点: 1、全新的合成路线,溴化交联避免了剧毒物质氯甲醚的使用 2、制膜工艺极大简化,高分子反应料液一次铸膜成型 3、具有化学交联结构,稳定的纳米孔径控制技术 4、产品可系列化开发满足不同需求,优良的导电性,有较高的扩散性和机械强 度。 二、扩散渗析回收废酸 工作原理:整个装置是由一定数量的膜组成的一系列结构单元;其中每个单元由一张阴离子均相膜隔开成渗析室和扩散室,采用逆流操作,在阴离子均相膜的两侧分别通入废酸液及接受液(自来水)时,废酸液侧的酸及其盐的浓度远高于水的一侧,根据扩散渗析原理,由于浓度梯度的存在,废酸及其盐类有向扩散室渗透的趋势,但膜对阴离子具有选择透过性,故在浓度差的作用下,废酸侧的阴离子被吸引而顺利地透过膜孔道进入水的一侧。同时根据电中性要求,也会夹带阳离子,由于H+的水化半径比较小,电荷较少;而金属盐的水化半径较大,电荷较多,因此H+会优先通过膜,这样废液中的酸就会被分离出来。

应用领域:钢铁、化成箔、蓄电池、钛白粉、湿法炼铜、铝型材、多晶硅、电镀、钛材加工、木材糖化、稀土及其他有色金属冶炼等工业领域。本装置对酸的回收率可达80%以上,金属离子去除率90%以上。 三、应用: 1、阴膜扩散渗析技术在化成箔行业中的应用 化成箔腐蚀加工过程中,产生大量的废酸。这些废酸的排放(即使采用石灰中和),不仅造成资源浪费,使产品成本增加,而且还导致严重的环境污染,影响和制约了企业的生存和发展。以一个中型的低压电极箔生产企业为例,每天排放15—20%的废盐酸30吨,相当于浪费15—20吨31%的成品酸。采用扩散渗析技术,可将其中的盐酸有效回收,每月节约盐酸产生的经济效益在20万元以上,同时还解决了环境污染问题,经济效益和社会效益十分可观。

酸再生操作规程

酸再生操作规程 1.主要技术参数 1.1机组能力:处理废酸量6m3/h 1.2废酸:来自酸洗机组 总铁量:120g/L 总HCL:200g/L(游离和化合) 1.3再生酸:HCL浓度190~200g/L 铁含量≤5g/L 产量约5880L/h 1.4氧化铁粉:Fe2O3≥98.5% FeO ≤0.4% SiO2≤0.02% CL-≤0.01% H2O ≤0.1% 原生粒度≤1.0 m 产量约985kg/h(废酸含铁120g/L) 1.5炉顶负压:-250Pa 1.6炉顶温度:395℃ 1.7预浓缩器后炉气温度:≤95℃ 1.8新盐酸性能及盐酸酸洗原液的配制 1.8.1新盐酸性能 新盐酸(工业合成盐酸GB320-93)无色或浅黄色透明液体,用于配制酸洗机组用盐酸酸洗原液,其性能指标如下表:

用于盐酸酸洗的新盐酸,严格限制氟含量,氢氟酸最大允许量为5PPm 。 1.8.2盐酸酸洗原液的配制 当新盐酸浓度N=31%,即每吨新酸含HCL 310公斤,H 2O 690公斤。 每吨新盐酸浓度31%,可稀释20%酸洗原液重量: Kg 155020 311000=? 每吨新盐酸配制20%酸洗原液稀释耗水量: 1550-310=1240Kg 式中:31为新盐酸浓度31% 20为酸洗原液浓度20% 举例:按上述公式计算,配制15500公斤浓度20%的酸洗原液,需要10吨浓度31%新盐酸,耗水12400公斤。 2.工艺过程叙述 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器(流量用气动调节阀自动控制)。废酸通过预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部进行喷洒,与来自焙烧炉的炉气(395℃)进行直接热交换,将废酸中的部分水份(约25~30%)蒸发掉,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经废酸过滤站送至焙烧炉顶部,再经喷杆、过滤网、喷嘴进入焙烧炉进行喷洒。焙烧炉设有3杆喷枪,每杆喷枪上各装有5个喷嘴,喷枪可自动插入焙烧炉内部。 焙烧炉本体是个钢壳,内衬有耐火耐酸砖,在本体上呈切线均布3个烧嘴加热(600~650℃),使喷洒到炉内浓缩酸蒸发、干燥、结晶分解,其在焙烧炉内反应如下: 2FeCl 2+2H 2O+1/2O 2=Fe 2O 3+4HCL 2FeCl 3+3H 2O=Fe 2O 3+6HCL 分解后的Fe 2O 3固体颗粒,以粉末形式落在焙烧炉下部锥体中,经破碎机、

工业废盐酸进厂信息单、产品控制

附录 A (资料性附录) 进厂废盐酸信息单 进厂废盐酸信息单应包含的信息见表A.1。 表A.1 进厂废盐酸信息单 进厂废盐酸信息单年月日时分 废盐酸溯源信息填写人: 废酸产生单位名称包装□槽车□桶联系人联系方式批量m3(t)产生废酸工艺□钢铁酸洗□铝型材酸洗□铝箔酸洗□电路板酸洗□其他 原料酸规格酸处理件规格 废盐酸基本信息检验人: 外观不溶物/% 总酸度(HCl)/% 铁(Fe)/% 氟(F)/% 铝(Al)/% 硝酸根(NO3)/% 铬(Cr)/% 硫酸根(SO4)/% 镉(Cd)/% 总氮(N)/% 铅(Pb)/% 总有机碳(TOC)/% 镍(Ni)/% 汞(Hg)/% 锌(Zn)/% 铜(Cu)/%

附录 B (资料性附录) 产品控制 B.1 氯化亚铁产品控制 按照表2中规定的处理处置工艺,可得到氯化亚铁的质量见表B.1。 表B.1 项目指标检验方法 氯化亚铁(以Fe2+计)w/% ≥26.5 参见HG/T 4538 酸不溶物w/% ≤0.50 硫酸根(SO4)≤ 2.0 三价铁(Fe3+)w/% ≤0.60 砷(As)w/% ≤0.0005 铅(Pb)w/% ≤0.004 汞(Hg)w/% ≤0.00002 镉(Cd)w/% ≤0.0005 铬(Cr)w/% ≤0.01 锌(Zn)w/% ≤0.15 B.2 硫酸亚铁产品控制 按照表2中规定的处理处置工艺,可得到硫酸亚铁的质量见表B.2。 表B.2 项目指标检验方法 硫酸亚铁(FeSO4·7H2O)w/% ≥87.0 参见GB/T 10531 不溶物w/% ≤0.50 游离酸(以H2SO4计)≤ 2.00 砷(As)w/% ≤0.001 铅(Pb)w/% ≤0.002 镉(Cd)w/% ≤0.0005 汞(Hg)w/% ≤0.0001 铬(Cr)w/% ≤0.005 B.3 聚氯化铁产品控制 按照表2中规定的处理处置工艺,可得到聚氯化铁的质量见表B.3。

废硫酸水的处理方法简介

废硫酸水的处理方法简介 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 一、废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 (一)浓缩法 该法是在加热浓缩废稀硫酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀硫酸的双重目的。这类方法应用较广泛,技术较成熟。在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法,下面分别加以介绍。 1、高温浓缩法

淄博化工厂三氯乙醛生产过程中有废硫酸产生,其中H2SO4质量分数为65%~75%、三氯乙醛质量分数为1%~3%、其它有机杂质的质量分数为1%。该厂将其沉淀过滤后,用煤直接加热蒸馏,回收的浓硫酸无色透明,H2SO4质量分数大于95%,无三氯乙醛检出,而沉淀物经碱解、蒸馏和过滤后可回收氯仿。该厂废硫酸处理量为4000t/a,回收硫酸创利润55万元/a。 日本木村-大同化工机械公司的废硫酸浓缩法是用搪玻璃管升膜蒸发和分段真空蒸发相结合,将废硫酸中H2SO4的质量分数从10%~40%浓缩到95%,其工艺可分为3段,前两段采用不透性石墨管加热器蒸发浓缩,后一段采用搪玻璃管升膜蒸发器浓缩,在每一段中H2SO4质量分数渐次升高,分别达到60%、80%和95%。加热过程采用高温热载体,温度为150~220℃,可将有机物转变为不溶性物质,然后过滤除去,该工艺以2t/h的规模进行中试,5a运转良好。该工艺适应能力很强,可用于含多种有机杂质的废硫酸的处理。 2、低温浓缩法 高温浓缩法的缺点在于:硫酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦。因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法)。 WCG法的原理和工艺如下:将废稀硫酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放。分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,

酸再生机组工艺流程图

再生机组工艺流程、参数及产品描 再生机组工艺流程图 废酸罐1级废酸过滤器予浓缩器吸收塔 大气 塑烧板除尘器 装袋机门型阀铁粉料仓破碎机焙烧炉 外运大气洗涤塔液滴分离器排烟风机 1、酸 a 新盐酸:无色或浅黄色透明液体 各项指标: 酸 (HCL) ≥ 31% 铁≤ 0.01% 砷≤ 0.001% 灼烧残渣≤ 0.15% 氯化物≤ 0.01% 含铁、硫酸盐、灼烧残渣、氯化物等各项指标低的盐酸为一级品或优质品,用于酸洗的盐酸,严格限制含氟(含氟严格限定为:F≤5ppm)。 b 废酸:来自酸洗线 总铁量≥120 g/l 总HCL ≤ 200 g/l 其中:游离HCL 3-5% Fe 120g/L 温度≤90℃ c 再生酸 HCL 浓度 190-210g/l 铁含量≤5 g/l 产量约3000L/h d 氧化铁粉 可分离出来的铁浓度为115g/l时,约产生492Kg/h氧化铁粉 氧化铁粉各项指标: Fe 2O 3 % 98.7--99 FeO % ≤0.4 H 2 O % ≤0.09 比表面积 m2/g 3-3.9 粒度μm ≤1.0 Cl-含量 % ≤0.2(重量) SiO2 % ≤0.02 2、能力与热耗 a 酸溶解铁能力 酸洗热轧板总量 40万吨/年

酸洗铁损 0.5% 废酸液浓度~200g/L HCL(游离与化合) 废酸液温度≤90℃ 废酸中Fe含量~120 g/L废酸 b 再生能力 年再生运行时间: 6500h/年 40万t/年的酸洗热轧钢板将产生: 40万t/年×0.5%=2000吨的Fe,溶解在酸洗液中。即在酸洗废酸液中溶有120g/L Fe。 在再生过程中,从废酸中分离Fe的效率并非100%,约有5g/L的Fe仍然残留在再生酸中。按从废酸液可分离出115g/L废酸的Fe求得:2000×1000×1000g =17391304.3 115g/L 每小时要求再生能力为: 17391304.3 =2676L/h 6500h 经园整后,取再生能力为3m3/h。 3m3/h再生机组将产生492kg/h氧化铁粉。 3m3/h再生装置,废酸99%转化成再生酸。 c 酸再生的能耗 在设备正常运行焙烧炉热平衡时:耗750Kcal/升废酸。 设天然气热值:8350Kcal/Nm3 需天然气量:200 N m3/h 压力:8000-10000Pa 助燃空气:2970Nm3/h 压力:8000-12000Pa 压缩空气:120Nm3/h(仪表用气)压力:0.5-0.7MPa 年耗电量:165.75×104kW·h 工业水量:Max5 m3/h,正常耗量2 m3/h 脱盐水量:2 m3/h(二级除盐水) 3、环保指标 a 噪音:噪音不超过80Db。高噪音的设备,将安装在隔离室中隔离。 b 排废烟气 自洗涤塔出口排放的烟气中含: HCL <30mg/Nm3 Fe2O3(湿态)<50mg/Nm3 氧化铁粉料仓顶部排放废气,Fe2O3含量≤20mg/ Nm3。 c 排液 机组正常运行无废水液排放,只有开车、停车时,或清洗喷枪、设备时,机组才有废液排出。且是间断排液。 废水排放:4 m3/次,温度:40℃,比重:1.01 kg/L, 含Fe 5g/L,含HCL 0~200g/L d 车间空气 HCL含量≤5mg/Nm3(湿态) Fe2O3含量≤10mg/Nm3(湿态) 4、现场 新盐酸再生机组,占地面积为21×27=567m2 5 公用工程 a 电 电压等级:380V AC,3相220V AC,单相 频率:50Hz

含铅废盐酸处理及资源化解决方案

江苏省的表面处理废水主要来源于钢管、热镀锌、不锈钢、冷轧薄板、铝型材、钢丝绳和线路板等行业的酸洗、钝化、磷化和退锡等工艺。由于废酸产生的行业不同,其重金属等特征也有差别。下面海普就为大家详细的介绍下含铅废盐酸处理及资源化解决方案的相关信息,希望对你有所帮助。 一般钢丝绳行业产生的废盐酸中含铅(500-2000 mg/L)。钢丝绳生产过程中,为了去除钢丝表面的氧化物需要进行酸洗处理,一般采用盐酸进行酸洗,当盐酸浓度低于10%,无法达到正常酸洗效果时被废弃。酸洗过程中产生的废酸属于危废(HW34),酸性强,具有强腐蚀性和毒性(富含大量铅)双重特性,若不妥善处理,会造成区域性环境污染,一定程度上制约了该行业发展。 1、含铅废盐酸处理现状和困局: 传统处置方法为酸碱中和法,可以去除多种重金属,一般是用石灰、电石渣或石灰消化反应的产物氢氧化钙与其中和,中和后的pH值可以达到要求,但是铅、锌、铁的排放指标难以达到。废酸中主要污染物铅、锌属两性金属,氢氧化物沉淀范围窄,pH偏低或偏高时都会再溶出,由于废酸浓度高,工作负荷大,中和会消耗大量石灰,产生大量污泥,需要后续处理,设施投资和处理成本较高。 喷雾焙烧法,将废盐酸喷入600℃炉窑内,高温下,废酸中的氯化氢气体经水吸收后回用于酸洗工序,氯化亚铁盐生成三氧化二铁空心球状颗粒,可做软磁材料。废酸处理量稳定,能够同时回收酸及金属,得到的再生酸浓度高,且不含金属盐,可直接用于酸洗生产;在焙烧过程中,得到的副产品氧化铁球品质高;但此法占地面积大,对进酸要求严格,需在预处理阶段设多个过滤器,导致一次性投资高。 蒸馏结晶法,将含有金属的废盐酸在真空状态下加热,使溶液中的HCl溶质和水蒸发,经冷凝后形成稀盐酸;溶液中不可挥发的盐浓度增加,形成饱和溶液,然后通过冷却,降低

废酸回收简介

金属在表面处理过程中使用大量的废酸。当酸液中的金属达到一定的浓度后,因处理效果达不到工艺要求,酸液需要重新配制和更换。在这个过程中,大量的废酸液被产生。这些废酸液中由于含有较高浓度的酸和金属,对环境造成一定的威胁,需要进行处理,废酸洗液回收再生方法主要有:加热蒸发法,特种树脂交换法和扩散渗析膜法三种。加热蒸发法随着能源价格涨高,已经不符和经济性价比,随着科技发展,树脂交换法和扩散渗析膜法技术发展成型。扩散渗析法在德国已经商品化,进几年国内有些厂家在少量试生产,该设备最大处理能力为5M3/d, 因处理量小,膜寿命短,易老化破损,性价比过高等原因,限制工业生产使用。 树脂交换法是将废酸洗液通过纯化回收设备,酸离子被填料阻滞吸附,金属离子随液体穿透填料层,酸与金属杂质分离,用穿透液等量的水冲洗填料上酸根,便得到与废酸洗液浓度大致相等的再生酸,可重新配置酸洗液使用。穿透液根据杂质性质回收。 产品特点 对盐酸,硫酸,硝酸,磷酸,氢氟酸以及混合酸都可以纯化回收。 纯化回收酸浓度高,循环使用降低生产成本。 酸,金属盐分离,有利于金属盐回收。 废酸洗液经纯化回收设备处理后,能够实现废水零排放。 清洗化生产,节能减排,绿色环保设备。 全程自动化,精作简单,节省人力成本。 技术参数 单体设备处理量5--30M3/d. 外形尺寸:1000×2000×1200mm 酸回收率85--90% 工作电压380V 50HZ 特别说明 填料是纯化回收设备技术核心,需要根据企业废酸洗液进行探索实验,小试,选择最佳分离纯化填料。 进行中试确定纯化回收工艺参数,根据中试数据确定产品参数,设计制造。 若企业拟实行废水零排放,需要增加其他处理设备。 废硫酸回收再利用 硫酸在化工、钢铁等行业广泛应用。在许多生产过程中,硫酸的利用率很低,大量的硫酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。近年来许多国家已经制定了严格的排放标准,与此同时,先进的治理技术也在世界各地迅速发展起来。 废硫酸和硫酸废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 1 废硫酸的回收再用 废硫酸中硫酸浓度较高,可经处理后回收再用。处理主要是去除废硫酸中的杂质,同时对硫酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 1.1 浓缩法

酸再生技术总结

硅钢酸再生工程施工技术总结

一、工程概况 酸再生站位于冷轧硅钢厂主厂外,站内共5层平台,最高平台为▽+30m,酸再生站内主要设备有外方引进、国内合作制造配套设备。主要设备有焙烧炉、文丘里除尘器、文丘里浓缩器、吸收塔、预脱硅沉淀池、脱硅沉淀池、浸溶塔、罐体、泵、风机、阀门等。本工程为节能环保项目,将生产线上的废酸处理后,生成再生酸,防止酸外排,节约成本。酸再生站的主要作用: 1、将新酸在酸罐内稀释,痛过再生酸泵送到酸轧线; 2、酸轧线的废酸经过预脱硅、脱硅、焙烧炉、文丘里浓缩器等一系列设备,生成再生酸,再送到酸轧线使用; 主要工艺流程:

二、相关专业的施工难点及应对措施 (一)机械专业 1、机械基本情况 酸再生站位于冷轧硅钢厂主厂外,站内共5层平台,最高平台为▽+30m,酸再生站内主要设备有外方引进、国内合作制造配套设备。主要设备就是罐体,最大直径为焙烧炉φ8200 x14948mm,每个罐体安装必须与土建结构穿插配合进行施工。酸再生安装的内容主要有大型、小型储罐、泵、风机、烟道、旋转阀、起重葫芦、管道等,酸储罐防腐衬胶、防腐衬砖,焙烧炉炉窑砌筑,高温储罐保温。 2、工程难点 (1)槽、罐、塔类衬胶设备的安装; (2)焙烧炉的安装; (3)其它小型储罐、泵类设备的安装 (4)风机安装 3、施工方法 (1)设备的平面定位 一般设备如罐类、塔类,应在设备吊装前在基础上依据车间轴线放出墨线,吊装后参照设备罐体上制造时做出的基准标记调整。 重要设备为了保证设备在基础上准确就位,设备吊装就位后应根据已设置的中心标板,挂设基准线。基准线的挂设应根据设备安装精度要求和挂设跨距选用直径为0.3~0.75mm的整根钢线,其拉紧力一

废酸处理

废酸处理的研究现状 摘要 通过对国内外废酸液现状及处理方法的分析,结合国内不同行业的现状,提出了废酸处理的措施和方法。正确的含酸废水处理方法不但能保护环境,同时还能对废酸中有价值的物质加以回收利用,以降低成本关键词:废酸; 焙烧法; 浓缩法; 中和氧化法; 萃取法; 离子交换树脂法

引言 节能减排己成为我国工业发展的重大国策。而我国每年大约要排出的废酸溶液近百万立方米[1],化工厂、化纤厂、金属表面处理行业及电镀行业等在其制酸用和酸的过程中,会排出大量的酸性废水。废酸液分为有机酸和无机酸,这些废酸液中除含有相当数量的残酸外,无机废酸中还富含亚铁盐,而有机废酸则是COD值高,色度深[2]。如果直接排放这些工业酸性废,会将管道腐蚀,损坏农作物,伤害鱼类等的水生物,破坏生态环境,危害人体健康。所以,工业酸性废水必须经过处理以达到国家排放标准才能排放,酸性废水还可以经过回收处理,再次利用。处理废酸时,可以选用方法有盐处理、浓缩法、中和法、萃取法、离子交换树脂法。几种废酸处理方法各有利弊,在国内均有应用。本论文将综述近年来废酸的现状与废酸的几种常见的处理方法,即各种方法的优缺点,并通过实例说明目前针对废酸的缺点所提出的改进方法。 1、有机废酸处理 对有机废酸的处理可以采用离子交换树脂、盐析循环使用、厌氧一兼氧一好氧生物组合法等方法。现通过几个特例简单介绍以上各种方法在处理废酸中的应用。 1.1 离子交换树脂法 离子交换树脂法处理有机酸废液的基木原理是利用某些离子交换树脂可从废酸溶液中吸收有机酸而排除无机酸和金属盐的功能来实现不同酸及盐之间分离的一种方法。现通过β-萘磺酸废液和2,3-酸废水介绍离子交换树脂法。

废酸再生技术

精心整理 废酸资源化技术摘要 钢铁热轧所产生的酸洗废液一般含有0.05~5g /L 的 H+和 60~250 g /L 的 Fe2+,由于严重的腐蚀性,已被列入《国家危险废物名录》。该类废液的直接排放不仅严重污染环境,而且造成极大的浪费。 Ca (OH 1 特性,在焙烧炉中直接将FeCl2 转化为盐酸和Fe2O3,其反应如下: 4FeCl2+4H2O+O2=SHCIt↑+2Fe2O3

反应生成的和从酸里蒸发出来的HCl气体被水吸收后得到再生酸。这是一种最彻底、最直接处理酸洗废液的方法。由于盐酸具有挥发性,所以该方法更适合于盐酸酸洗废液的处理。实践证明该方法可以处理任何含铁量的盐酸酸洗废液。 流化床焙烧法与喷雾焙烧法是直接焙烧法中两种应用最早、最成熟的工艺形式。虽然采用的具体设备和工作过程不完全相同,但工作原理相同,它们将废液的加热、 厂、 除了上述两种方法以外,还有日本的开米拉依托法、奥托(OTTO)法、PORI法及滑动床法等方法。开米拉依托法在直接焙烧法的基础之上,加入了氧化铁的提纯工艺,可以生产出高纯度氧化铁,是钢铁工业与电气磁性材料的结合。 直接焙烧法原理简单,而且一般自动化程度都较高,解决了钢铁企业不熟悉化工生产操作的难题,但是由于其要求系统内各个程序的控制相互协调,而且要求酸洗工

序与之密切配合,需要具有较高的设计、管理和控制水平,同时由于在高温下盐酸有强烈的腐蚀性,因此接触废液的设备均需要采用优质的耐腐蚀材料,造成设备成本、零部件消耗、维修费用及运行费用都很高,因此该法更适合于大型企业采用。 目前已经建立了许多无废液排放的带钢酸洗厂,即将直接焙烧处理工艺与钢材的酸洗工艺有效地结合起来。 1.2 1.2.l 晶体的 由于盐酸具有挥发性,容易再生,所以在对盐酸酸洗废液进行浓缩处理的同时,可以回收得到稀盐酸,与浓酸混合后可循环用于酸洗工艺。也可以用萃取法再生盐酸后进行铁盐的回收[1]。 1.2.2 膜法分离

工业盐酸

工业盐酸 工业盐酸:30%,[ 分子式] :HCl [ 分子量] :36.46 工业盐酸 一般是在经防腐处理过的钢瓶里,使氯气在氢气中燃烧生成氯化氢(有少量杂质三氯化铁),再通入水中制得,并常因其中含有三价铁离子而呈黄色. 盐酸的工业制法之一工业上制取盐酸时,首先在反应器中将氢气点燃,然后通入氯气进行反应,制得氯化氢气体。氯化氢气体冷却后被水吸收成为盐酸。在氯气和氢气的反应过程中,有毒的氯气被过量的氢气所包围,使氯气得到充分反应,防止了对空气的污染。在生产上,往往采取使另一种原料过量的方法使有害的、价格较昂贵的原料充分反应. 盐酸的工业制法之二盐酸是氯化氢的水溶液。在制革、印染、食品、医药、化工、冶金等工业部门大量使用盐酸。工业上生产盐酸的主要方法是使氯气跟氢气直接化合,然后用水吸收生成的氯化氢气体。氯化氢是在合成塔里合成的。盐酸是化学工业重要原料之一,广泛用于化工原料、染料、医药、食品、印染、皮革、制糖、冶金等行业。还用于离子交换树脂的再生以及电镀、金属表面的清洗剂。 近年来,工业上还发展了由生产含氯有机物的副产品氯化氢制盐酸。例如,氯气跟乙烯反应,生成二氯乙烷(C2H4Cl2)。它再经过反应生成氯乙烯,后者是制聚氯乙烯的原料。C2H4Cl2=C2H3Cl(氯乙烯)+HCl 氯化氢是制氯乙烯的副产品。 [ 性质] 纯盐酸为无色有刺激性臭味的液体,当有杂质时呈微黄色。有强烈的腐蚀性,浓盐酸在空气中发烟,触及氨蒸汽会生成白色云雾。其气体对动植物有害,盐酸是极强无机酸,对皮肤或纤维均有腐蚀作用,能与很多金属起化学反应生成金属氯化物并放出氢。与金属氧化物、碱反应生成盐和水。盐酸属二级无机酸性腐蚀物品,危规编号93001。 [ 用途] 盐酸是化学工业重要原料之一,广泛用于化工原料、染料、医药、食品、印染、皮革、制糖、冶金等行业。还用于离子交换树脂的再生以及电镀、金属表面的清洗剂。 安全措施 泄漏:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土、干燥石灰或苏打灰混合。也可用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泵转移至槽车

酸再生工艺简介

酸再生工艺简介 来自酸洗机组的废酸,收集在废酸罐中,用废酸泵经废酸过滤器送入预浓缩器,由预浓缩器循环泵经浓缩酸过滤器送至预浓缩器顶部喷洒,与来自焙烧炉的炉气(395°)进行直接热交换,蒸发废酸中部分水份,废酸得到浓缩。浓缩后的废酸由焙烧炉给料泵经过滤站送至焙烧炉顶部,再经喷杆,过滤网,喷嘴进入焙烧炉喷洒。焙烧炉本体上呈切线分布两个烧嘴加热。使喷洒到炉内浓缩酸蒸发、干燥、结晶分解。其在炉内反应如下: 2FeCl2+2H2O+1/2O2=Fe2O3+4HCL 2FeCl3+3H2O=Fe2O3+6HCL 分解后的Fe2O3固体颗粒,以粉末形式落在焙烧炉下部椎体中,经破碎机、旋转阀排出,由一气动输送系统输送到铁粉料仓。在料仓上部安装有一台塑烧板式除尘器,以过滤输送氧化铁粉时用过的空气,然后将空气排放到大气中。料仓中的氧化铁粉,经门型阀进到装袋机装袋。 焙烧炉气(由燃烧废气,水蒸汽和氯化氢气体组成)自顶部出来经双旋风分离器将炉气中夹带的部分氧化铁粉分离出来,氧化铁粉经管道返回到焙烧炉底部。炉气进入预浓缩器,直接与循环酸接触,冷却和清洗炉气中残留的微量氧化物,并进入吸收塔,与经吸收塔给料泵送至顶部喷洒的冲洗水均匀接触。炉气中的氯化氢成分被水吸收形成再生酸。再生酸从塔底部自流至再生酸储罐中。 含有微量氯化氢气体的炉气从吸收塔顶部离开,经排烟风机进入洗涤塔(排烟风机控制系统处于负压状态,保证不会有氯化氢泄露出来),用冲洗水喷淋洗涤。在洗涤塔上部烟囱脱盐水再进行两段洗涤。洗涤水流至收集水罐,用于

吸收塔喷洒,使含酸清洗水全部回收。废气达标排放。 工艺流程简图: 酸洗车间冲洗水酸洗车间废酸 ↓↓ 冲洗水罐废酸罐 (100m3*1个)(100m3*2个) 经冲洗水过滤器经废酸过滤器 ↓ 浓缩酸铁粉 焙烧炉铁粉仓 高温含酸炉气装袋外卖 含酸炉气 再生酸 吸收塔再生酸罐酸洗车间 (50m3*4个) 炉气 洗涤塔 净化后炉气排放

废酸处理

废酸处理 酸在化工、钢铁等行业广泛应用。在许多生产过程中,酸的利用率很低,大量的酸随同含酸废水排放出去。这些废水如不经过处理而排放到环境中,不仅会使水体或土壤酸化,对生态环境造成危害,而且浪费大量资源。废酸和酸性废水除具有酸性外,还含有大量的杂质。根据废酸、废水组成和治理目标的差异,目前国内外采用的治理方法大致可分为3大类:回收再用、综合利用和中和处理。 1 废酸的回收再用 废酸中酸浓度较高,可经处理后回收再用。处理主要是去除废酸中的杂质,同时对酸增浓。处理方法有浓缩法、氧化法、萃取法和结晶法等。 1.1 浓缩法 该法是在加热浓缩废稀酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀酸的双重目的。这类方法应用较广泛,技术较成熟。在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法。 1.1.1 高温浓缩法 废酸沉淀过滤后,直接加热蒸馏,回收浓度较高的酸液。 1.1.2 低温浓缩法 高温浓缩法的缺点在于:酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦。因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法)〔3〕。 WCG法的原理和工艺如下:将废稀酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放。分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,达到浓度要求后,用泵打入酸液储罐。该法与高温浓缩法相比,蒸发温度低(50~60℃),蒸汽消耗量少,费用低。 1.2 氧化法 该法应用已久,原理是用氧化剂在适当的条件下将废硫酸中的有机杂质氧化分解,使其转变为二氧化碳、水、氮的氧化物等从硫酸中分离出去,从而使废硫酸净化回收。常用的氧化剂有过氧化氢、硝酸、高氯酸、次氯酸、硝酸盐、臭氧等。

废酸再生技术

废酸再生技术 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

废酸资源化技术摘要钢铁热轧所产生的酸洗废液一般含有0.05~5g/L的H+和60~250g/L的Fe2+,由于严重的腐蚀性,已被列入《国家危险废物名录》。该类废液的直接排放不仅严重污染环境,而且造成极大的浪费。为避免酸洗液的酸污染,传统方法一般采用石灰、电石渣或石灰消化反应的产物Ca (OH)2进行中和,中和后虽然pH值可以达到要求,但是其余各项指标很难达标,而且产生的泥渣脱水困难、不易干燥、后处理难度大,大部分情况是堆积待处理,占用了大量土地,造成二次污染,同时该方法浪费了大量的酸和铁资源。为了保护环境,节约及合理利用资源,国内外学者长期以来进行了大量的研究和探索,提出了不同类型的处理和回收方法及技术,取得了较好的应用效果。1资源化处理酸洗废液的主要方法1.1F e C l2直接焙烧法直接焙浇法是利用FeCl2在高温、有充足水蒸气和适量氧气的条件下能定量水解的特性,在焙烧炉中直接将F e C l2转化为盐酸和F e2O3,其反应如下:4F e C l2+4H2O+O2=S H C I t↑+2F e2O3反应生成的和从酸里蒸发出来的HCl气体被水吸收后得到再生酸。这是一种最彻底、最直接处理酸洗废液的方法。由于盐酸具有挥发性,所以该方法更适合于盐酸酸洗废液的处理。实践证明该方法可以处理任何含铁量的盐酸酸洗废液。

流化床焙烧法与喷雾焙烧法是直接焙烧法中两种应用最早、最成熟的工艺形式。虽然采用的具体设备和工作过程不完全相同,但工作原理相同,它们将废液的加热、脱水、亚铁盐的氧化和水解、氯化氢气体的收集及吸收成盐酸有机地结合在一个系统内一并完成。具有处理能力大、设施紧凑、资源回收率高(可达98%~99%)、再生酸浓度高、酸中含F e2+少、氧化铁品位高(可达98%左右)及应用广等特点。这两种工艺形式的设备组成系统,都有主体设备、酸贮罐区和氧化铁输送贮存设备三部分。主体设备都有焙烧炉、旋风除尘器、预浓缩器、吸收塔和清洗设备,但主体设备的结构却有很大区别。世界上流化床法盐酸再生装置已建成50多套,我国武钢1700mm冷连轧的盐酸再生工艺就是从西德陶瓷化学公司(KCH)引进的流化床焙烧工艺机组。美国SHARON厂、VALLYCITY 等钢铁厂的冷轧工序及我国鞍钢、宝钢、上海益昌和攀钢冷轧薄板厂都采用逆流喷雾焙烧盐酸再生装置。除了上述两种方法以外,还有日本的开米拉依托法、奥托(OTTO)法、PORI法及滑动床法等方法。开米拉依托法在直接焙烧法的基础之上,加入了氧化铁的提纯工艺,可以生产出高纯度氧化铁,是钢铁工业与电气磁性材料的结合。直接焙烧法原理简单,而且一般自动化程度都较高,解决了钢铁企业不熟悉化工生产操作的难题,但是由于其要求系统内各个程序的控制相互协调,而且要求酸洗工序与之密切配合,需要具有较高的设计、管理和控制水平,同时由于在高温下盐酸有强烈的腐蚀性,因此接触废液的设备均需要采用优质的耐腐蚀材料,造成设备成本、零部件消耗、维修费用及运行费用都很高,因此该法更适合于大型企业采用。

酸再生废混酸泄露处置

二、处理过程: 1、告知公司调度室(25762202)通知生产操作人员,停废混酸泵,切 换模式,停车。机械维护人员协助生产操作人员,打开墙体鼓风机,保 证泄露现场通风;告知电器维护人员停危险区域内废混酸、再生酸五台 电机电源。组织保驾人员设立警戒区域并划分为危险区和安全区,并设 立标志,在安全区外设立隔离带。 2、进入现场危险区劳保穿戴须进行全身防护,穿封闭式防化服(含全 棉防静电的内外衣、手套、袜子等),防护面具穿戴正压式空气呼吸器 或全防型滤毒罐。 3、机械维护人员劳保穿戴完整后进入现场查看酸罐当前储量、已发生 泄漏量、泄露部位、废混酸泄露扩散范围;机械维护人员明确泄露位置 进口阀门及时关闭阀门; 4、机械维护人员查看酸再生再生酸罐、废混酸罐(未发生泄漏罐)储 量;关闭废混酸罐(未发生泄漏罐)出口手阀;关闭废混酸罐(发生泄 漏罐)入口废混酸管手阀,并打开出口排废手阀; 5、要求生产操作人员启动应急地坑泵(开关位于泵房检修电源箱,有 标牌),将废酸重新收集至废混酸储罐(未发生泄漏罐);同时切换地坑 泵管道(关闭进入废水站管道阀门,开启进入废混酸储罐管道阀门)将 废酸收集至废混酸储罐(未发生泄漏罐);废混酸储罐过满则储存至再 生酸罐,或排放至废水站; 6、组织保驾人员用直流水清扫现场,特别是低洼、沟渠等处,废液经 由地坑泵排至废水站;确认该区域无泄漏后,对泄漏酸液腐蚀面积观察 进行确认,并采取大量水冲洗腐蚀部位清洁设备表面,确认平台格栅板 等辅助设备的安全后才能进入修复,避免踏空伤人。 7、所泄露废混酸处理完毕后,由机械人员通知维修厂家进厂区维修废 混酸储罐; 8、修复完毕后,罐体注水酸泵送电联系生产人员进行小循环打压试漏。

相关主题
文本预览
相关文档 最新文档