当前位置:文档之家› 数据结构(C语言版)实验报告

数据结构(C语言版)实验报告

数据结构(C语言版)实验报告
数据结构(C语言版)实验报告

(此文档为word格式,下载后您可任意编辑修改!) 数据结构(C语言版) 实验报告

学院计算机科学与技术

专业计算机大类强化

学号xxx

班级xxx

姓名xxx

指导教师xxx

实验1

实验题目:单链表的插入和删除

实验目的:

了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。

实验要求:

建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。

实验主要步骤:

1、分析、理解给出的示例程序。

2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试

程序的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。

3、修改程序:

(1)增加插入结点的功能。

(2)将建立链表的方法改为头插入法。

程序代码:

#include"stdio.h"

#include"string.h"

#include"stdlib.h"

#include"ctype.h"

typedef struct node //定义结点

{

char data[10]; //结点的数据域为字符串

struct node *next; //结点的指针域

}ListNode;

typedef ListNode * LinkList; // 自定义LinkList单链表类型

LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表LinkList CreatList(void); //函数,用头插入法建立带头结点的单链表ListNode *LocateNode(); //函数,按值查找结点

void DeleteList(); //函数,删除指定值的结点

void printlist(); //函数,打印链表中的所有值

void DeleteAll(); //函数,删除所有结点,释放内存

ListNode * AddNode(); //修改程序:增加节点。用头插法,返回头指针

//==========主函数==============

void main()

{

char ch[10],num[5];

LinkList head;

head=CreatList(); //用头插入法建立单链表,返回头指针

printlist(head); //遍历链表输出其值

printf(" Delete node (y/n):"); //输入"y"或"n"去选择是否删除结点

scanf("%s",num);

if(strcmp(num,"y")==0 || strcmp(num,"Y")==0){

printf("Please input Delete_data:");

scanf("%s",ch); //输入要删除的字符串

DeleteList(head,ch);

printlist(head);

}

printf(" Add node ? (y/n):"); //输入"y"或"n"去选择是否增加结点

scanf("%s",num);

if(strcmp(num,"y")==0 || strcmp(num,"Y")==0)

{

head=AddNode(head);

}

printlist(head);

DeleteAll(head); //删除所有结点,释放内存

}

//==========用尾插入法建立带头结点的单链表===========

LinkList CreatListR1(void)

{

char ch[10];

LinkList head=(LinkList)malloc(sizeof(ListNode)); //生成头结点

ListNode *s,*r,*pp;

r=head;

r->next=NULL;

printf("Input # to end "); //输入"#"代表输入结束

printf("\nPlease input Node_data:");

scanf("%s",ch); //输入各结点的字符串

while(strcmp(ch,"#")!=0) {

pp=LocateNode(head,ch); //按值查找结点,返回结点指针

if(pp==NULL) { //没有重复的字符串,插入到链表中s=(ListNode *)malloc(sizeof(ListNode));

strcpy(s->data,ch);

r->next=s;

r=s;

r->next=NULL;

}

printf("Input # to end ");

printf("Please input Node_data:");

scanf("%s",ch);

}

return head; //返回头指针

}

//==========用头插入法建立带头结点的单链表===========

LinkList CreatList(void)

{

char ch[100];

LinkList head,p;

head=(LinkList)malloc(sizeof(ListNode));

head->next=NULL;

while(1)

{

printf("Input # to end ");

printf("Please input Node_data:");

scanf("%s",ch);

if(strcmp(ch,"#"))

{

if(LocateNode(head,ch)==NULL)

{

strcpy(head->data,ch);

p=(LinkList)malloc(sizeof(ListNode));

p->next=head;

head=p;

}

}

else

break;

}

return head;

}

//==========按值查找结点,找到则返回该结点的位置,否则返回NULL========== ListNode *LocateNode(LinkList head, char *key)

{

ListNode *p=head->next; //从开始结点比较

while(p!=NULL && strcmp(p->data,key)!=0) //直到p为NULL或p->data为key止p=p->next; //扫描下一个结点

return p; //若p=NULL则查找失败,否则p指向找到的值为key的结点

}

//==========修改程序:增加节点=======

ListNode * AddNode(LinkList head)

{

char ch[10];

ListNode *s,*pp;

printf("\nPlease input a New Node_data:");

scanf("%s",ch); //输入各结点的字符串

pp=LocateNode(head,ch); //按值查找结点,返回结点指针

printf("ok2\n");

if(pp==NULL) { //没有重复的字符串,插入到链表中

s=(ListNode *)malloc(sizeof(ListNode));

strcpy(s->data,ch);

printf("ok3\n");

s->next=head->next;

head->next=s;

}

return head;

}

//==========删除带头结点的单链表中的指定结点=======

void DeleteList(LinkList head,char *key)

{

ListNode *p,*r,*q=head;

p=LocateNode(head,key); //按key值查找结点的

if(p==NULL ) { //若没有找到结点,退出

printf("position error");

exit(0);

}

while(q->next!=p) //p为要删除的结点,q为p的前结点q=q->next;

r=q->next;

q->next=r->next;

free(r); //释放结点

}

//===========打印链表=======

void printlist(LinkList head)

{

ListNode *p=head->next; //从开始结点打印

while(p){

printf("%s, ",p->data);

p=p->next;

}

printf("\n");

}

//==========删除所有结点,释放空间===========

void DeleteAll(LinkList head)

{

ListNode *p=head,*r;

while(p->next){

r=p->next;

free(p);

p=r;

}

free(p);

}

实验结果:

Input # to end Please input Node_data:bat

Input # to end Please input Node_data:cat

Input # to end Please input Node_data:eat

Input # to end Please input Node_data:fat

Input # to end Please input Node_data:hat

Input # to end Please input Node_data:jat

Input # to end Please input Node_data:lat

Input # to end Please input Node_data:mat

Input # to end Please input Node_data:#

mat, lat, jat, hat, fat, eat, cat, bat,

Delete node (y/n):y

Please input Delete_data:hat

mat, lat, jat, fat, eat, cat, bat,

Insert node (y/n):y

Please input Insert_data:put

position :5

mat, lat, jat, fat, eat, put, cat, bat,

请按任意键继续. . .

示意图:

心得体会:

本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。另外实验指导书上给出的代码是有一些问题的,这使我们认识到实验过程中不能想当然的直接编译执行,应当在阅读并完全理解代码的基础上再执行,这才是实验的意义所在。

实验2

实验题目:二叉树操作设计和实现

实验目的:

掌握二叉树的定义、性质及存储方式,各种遍历算法。

实验要求:

采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。

实验主要步骤:

1、分析、理解程序。

2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指

针),如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求所有叶子及结点总数。

实验代码

#include"stdio.h"

#include"stdlib.h"

#include"string.h"

#define Max 20 //结点的最大个数

typedef struct node{

char data;

struct node *lchild,*rchild;

}BinTNode; //自定义二叉树的结点类型

typedef BinTNode *BinTree; //定义二叉树的指针

int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数

//==========基于先序遍历算法创建二叉树==============

//=====要求输入先序序列,其中加入虚结点"#"以示空指针的位置==========

BinTree CreatBinTree(void)

{

BinTree T;

char ch;

if((ch=getchar())=='#')

return(NULL); //读入#,返回空指针

else{

T= (BinTNode *)malloc(sizeof(BinTNode)); //生成结点

T->data=ch;

T->lchild=CreatBinTree(); //构造左子树

T->rchild=CreatBinTree(); //构造右子树

return(T);

}

}

//========NLR 先序遍历=============

void Preorder(BinTree T)

{

if(T) {

printf("%c",T->data); //访问结点

Preorder(T->lchild); //先序遍历左子树

Preorder(T->rchild); //先序遍历右子树

}

}

//========LNR 中序遍历===============

void Inorder(BinTree T)

{

if(T) {

Inorder(T->lchild); //中序遍历左子树

printf("%c",T->data); //访问结点

Inorder(T->rchild); //中序遍历右子树

}

}

//==========LRN 后序遍历============

void Postorder(BinTree T)

{

if(T) {

Postorder(T->lchild); //后序遍历左子树

Postorder(T->rchild); //后序遍历右子树

printf("%c",T->data); //访问结点

}

}

//=====采用后序遍历求二叉树的深度、结点数及叶子数的递归算法======== int TreeDepth(BinTree T)

{

int hl,hr,max;

if(T){

hl=TreeDepth(T->lchild); //求左深度

hr=TreeDepth(T->rchild); //求右深度

max=hl>hr? hl:hr; //取左右深度的最大值

NodeNum=NodeNum+1; //求结点数

if(hl==0&&hr==0) leaf=leaf+1; //若左右深度为0,即为叶子。

return(max+1);

}

else return(0);

}

//====利用"先进先出"(FIFO)队列,按层次遍历二叉树==========

void Levelorder(BinTree T)

{

int front=0,rear=1;

BinTNode *cq[Max],*p; //定义结点的指针数组cq

cq[1]=T; //根入队

while(front!=rear)

{

front=(front+1)%NodeNum;

p=cq[front]; //出队

printf("%c",p->data); //出队,输出结点的值

if(p->lchild!=NULL){

rear=(rear+1)%NodeNum;

cq[rear]=p->lchild; //左子树入队

}

if(p->rchild!=NULL){

rear=(rear+1)%NodeNum;

cq[rear]=p->rchild; //右子树入队

}

}

}

//====数叶子节点个数==========

int countleaf(BinTree T)

{

int hl,hr;

if(T){

hl=countleaf(T->lchild);

hr=countleaf(T->rchild);

if(hl==0&&hr==0) //若左右深度为0,即为叶子。

return(1);

else return hl+hr;

}

else return 0;

}

//==========主函数=================

void main()

{

BinTree root;

char i;

int depth;

printf("\n");

printf("Creat Bin_Tree;Input preorder:"); //输入完全二叉树的先序序列,

// 用#代表虚结点,如ABD###CE##F## root=CreatBinTree(); //创建二叉树,返回根结点

do { //从菜单中选择遍历方式,输入序号。

printf("\t********** select ************\n");

printf("\t1: Preorder Traversal\n");

printf("\t2: Iorder Traversal\n");

printf("\t3: Postorder traversal\n");

printf("\t4: PostTreeDepth,Node number,Leaf number\n");

printf("\t5: Level Depth\n"); //按层次遍历之前,先选择4,求出该树的结点数。

printf("\t0: Exit\n");

printf("\t*******************************\n");

fflush(stdin);

scanf("%c",&i); //输入菜单序号(0-5)

switch (i-'0'){

case 1: printf("Print Bin_tree Preorder: ");

Preorder(root); //先序遍历

break;

case 2: printf("Print Bin_Tree Inorder: ");

Inorder(root); //中序遍历

break;

case 3: printf("Print Bin_Tree Postorder: ");

Postorder(root); //后序遍历

break;

case 4:

depth=TreeDepth(root); //求树的深度及叶子数

printf("BinTree Depth=%d BinTree Node number=%d",depth,NodeNum);

printf(" BinTree Leaf number=%d",countleaf(root));

break;

case 5: printf("LevePrint Bin_Tree: ");

Levelorder(root); //按层次遍历

break;

default: exit(1);

}

printf("\n");

} while(i!=0);

}

实验结果:

Creat Bin_Tree;Input preorder:ABD###CE##F##

********** select ************

1: Preorder Traversal

2: Iorder Traversal

3: Postorder traversal

4: PostTreeDepth,Node number,Leaf number

5: Level Depth

0: Exit

*******************************

1

Print Bin_tree Preorder: ABDCEF

2

Print Bin_Tree Inorder: DBAECF

3

Print Bin_Tree Postorder: DBEFCA

4

BinTree Depth=3 BinTree Node number=6 BinTree Leaf number=3

5

LevePrint Bin_Tree: ABCDEF

Press any key to continue

二叉树示意图

心得体会:

这次实验加深了我对二叉树的印象,尤其是对二叉树的各种遍历操作有了一定的了解。同时认识到,在设计程序时辅以图形化的描述是非常有用处的。

实验3

实验题目:图的遍历操作

实验目的:

掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS 及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。

实验要求:

采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS和BFS操作。

实验主要步骤:

设计一个有向图和一个无向图,任选一种存储结构,完成有向图和无向图的DFS(深度优先遍历)和BFS(广度优先遍历)的操作。

1.邻接矩阵作为存储结构

#include"stdio.h"

#include"stdlib.h"

#define MaxVertexNum 100 //定义最大顶点数

typedef struct{

char vexs[MaxVertexNum]; //顶点表

int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表

int n,e; //图中的顶点数n和边数e

}MGraph; //用邻接矩阵表示的图的类型

//=========建立邻接矩阵=======

void CreatMGraph(MGraph *G)

{

int i,j,k;

char a;

printf("Input VertexNum(n) and EdgesNum(e): ");

scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数

scanf("%c",&a);

printf("Input Vertex string:");

for(i=0;in;i++)

{

scanf("%c",&a);

G->vexs[i]=a; //读入顶点信息,建立顶点表

}

for(i=0;in;i++)

for(j=0;jn;j++)

G->edges[i][j]=0; //初始化邻接矩阵

printf("Input edges,Creat Adjacency Matrix\n");

for(k=0;ke;k++) { //读入e条边,建立邻接矩阵

scanf("%d%d",&i,&j); //输入边(Vi,Vj)的顶点序号

G->edges[i][j]=1;

G->edges[j][i]=1; //若为无向图,矩阵为对称矩阵;若建立有向图,去掉该条语句 }

//=========定义标志向量,为全局变量=======

typedef enum{FALSE,TRUE} Boolean;

Boolean visited[MaxVertexNum];

//========DFS:深度优先遍历的递归算法======

void DFSM(MGraph *G,int i)

{ //以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,邻接矩阵是0,1矩阵

int j;

printf("%c",G->vexs[i]); //访问顶点Vi

visited[i]=TRUE; //置已访问标志

for(j=0;jn;j++) //依次搜索Vi的邻接点

if(G->edges[i][j]==1 && ! visited[j])

DFSM(G,j); //(Vi,Vj)∈E,且Vj未访问过,故Vj为新出发点}

void DFS(MGraph *G)

{

int i;

for(i=0;in;i++)

visited[i]=FALSE; //标志向量初始化

for(i=0;in;i++)

if(!visited[i]) //Vi未访问过

DFSM(G,i); //以Vi为源点开始DFS搜索

}

//===========BFS:广度优先遍历=======

void BFS(MGraph *G,int k)

{ //以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索

int i,j,f=0,r=0;

int cq[MaxVertexNum]; //定义队列

for(i=0;in;i++)

visited[i]=FALSE; //标志向量初始化

for(i=0;in;i++)

cq[i]=-1; //队列初始化

printf("%c",G->vexs[k]); //访问源点Vk

visited[k]=TRUE;

cq[r]=k; //Vk已访问,将其入队。注意,实际上是将其序号入队

while(cq[f]!=-1) { //队非空则执行

i=cq[f]; f=f+1; //Vf出队

for(j=0;jn;j++) //依次Vi的邻接点Vj

if(G->edges[i][j]==1 && !visited[j]) { //Vj未访问

printf("%c",G->vexs[j]); //访问Vj

visited[j]=TRUE;

r=r+1; cq[r]=j; //访问过Vj入队

}

}

//==========main=====

void main()

{

int i;

MGraph *G;

G=(MGraph *)malloc(sizeof(MGraph)); //为图G申请内存空间

CreatMGraph(G); //建立邻接矩阵

printf("Print Graph DFS: ");

DFS(G); //深度优先遍历

printf("\n");

printf("Print Graph BFS: ");

BFS(G,3); //以序号为3的顶点开始广度优先遍历

printf("\n");

}

2.邻接链表作为存储结构

#include"stdio.h"

#include"stdlib.h"

#define MaxVertexNum 50 //定义最大顶点数

typedef struct node{ //边表结点

int adjvex; //邻接点域

struct node *next; //链域

}EdgeNode;

typedef struct vnode{ //顶点表结点

char vertex; //顶点域

EdgeNode *firstedge; //边表头指针

}VertexNode;

typedef VertexNode AdjList[MaxVertexNum]; //AdjList是邻接表类型typedef struct {

AdjList adjlist; //邻接表

int n,e; //图中当前顶点数和边数

} ALGraph; //图类型

//=========建立图的邻接表=======

void CreatALGraph(ALGraph *G)

{

int i,j,k;

char a;

EdgeNode *s; //定义边表结点

printf("Input VertexNum(n) and EdgesNum(e): ");

scanf("%d,%d",&G->n,&G->e); //读入顶点数和边数

scanf("%c",&a);

printf("Input Vertex string:");

for(i=0;in;i++) //建立边表

{

scanf("%c",&a);

G->adjlist[i].vertex=a; //读入顶点信息

G->adjlist[i].firstedge=NULL; //边表置为空表

}

printf("Input edges,Creat Adjacency List\n");

for(k=0;ke;k++) { //建立边表

scanf("%d%d",&i,&j); //读入边(Vi,Vj)的顶点对序号

s=(EdgeNode *)malloc(sizeof(EdgeNode)); //生成边表结点

s->adjvex=j; //邻接点序号为j

s->next=G->adjlist[i].firstedge;

G->adjlist[i].firstedge=s; //将新结点*S插入顶点Vi的边表头部

s=(EdgeNode *)malloc(sizeof(EdgeNode));

s->adjvex=i; //邻接点序号为i

s->next=G->adjlist[j].firstedge;

G->adjlist[j].firstedge=s; //将新结点*S插入顶点Vj的边表头部

}

}

//=========定义标志向量,为全局变量=======

typedef enum{FALSE,TRUE} Boolean;

Boolean visited[MaxVertexNum];

//========DFS:深度优先遍历的递归算法======

void DFSM(ALGraph *G,int i)

{ //以Vi为出发点对邻接链表表示的图G进行DFS搜索 EdgeNode *p;

printf("%c",G->adjlist[i].vertex); //访问顶点Vi

visited[i]=TRUE; //标记Vi已访问

p=G->adjlist[i].firstedge; //取Vi边表的头指针

while(p) { //依次搜索Vi的邻接点Vj,这里j=p->adjvex if(! visited[p->adjvex]) //若Vj尚未被访问

DFSM(G,p->adjvex); //则以Vj为出发点向纵深搜索

p=p->next; //找Vi的下一个邻接点

}

}

void DFS(ALGraph *G)

{

int i;

for(i=0;in;i++)

visited[i]=FALSE; //标志向量初始化

for(i=0;in;i++)

if(!visited[i]) //Vi未访问过

DFSM(G,i); //以Vi为源点开始DFS搜索

}

//==========BFS:广度优先遍历=========

void BFS(ALGraph *G,int k)

{ //以Vk为源点对用邻接链表表示的图G进行广度优先搜索 int i,f=0,r=0;

EdgeNode *p;

int cq[MaxVertexNum]; //定义FIFO队列

for(i=0;in;i++)

visited[i]=FALSE; //标志向量初始化

for(i=0;i<=G->n;i++)

cq[i]=-1; //初始化标志向量

printf("%c",G->adjlist[k].vertex); //访问源点Vk

visited[k]=TRUE;

cq[r]=k; //Vk已访问,将其入队。注意,实际上是将其序号入队

while(cq[f]!=-1) { 队列非空则执行

i=cq[f]; f=f+1; //Vi出队

p=G->adjlist[i].firstedge; //取Vi的边表头指针

while(p) { //依次搜索Vi的邻接点Vj(令p->adjvex=j)

if(!visited[p->adjvex]) { //若Vj未访问过

printf("%c",G->adjlist[p->adjvex].vertex); //访问Vj

visited[p->adjvex]=TRUE;

r=r+1; cq[r]=p->adjvex; //访问过的Vj入队

}

p=p->next; //找Vi的下一个邻接点

}

}//endwhile

}

//==========主函数===========

void main()

{

int i;

ALGraph *G;

G=(ALGraph *)malloc(sizeof(ALGraph));

CreatALGraph(G);

printf("Print Graph DFS: ");

DFS(G);

printf("\n");

printf("Print Graph BFS: ");

BFS(G,3);

printf("\n");

}

实验结果:

1.邻接矩阵作为存储结构

执行顺序:

Input VertexNum(n) and EdgesNum(e): 8,9

Input Vertex string:

Input edges,Creat Adjacency Matrix

0 1

0 2

1 3

1 4

2 5

2 6

3 7

4 7

5 6

Print Graph DFS:

Print Graph BFS:

2.邻接链表作为存储结构

执行顺序:

Input VertexNum(n) and EdgesNum(e): 8,9

Input Vertex string:

Input edges,Creat Adjacency List

0 1

0 2

1 3

1 4

2 5

2 6

3 7

4 7

5 6

Print Graph DFS:

Print Graph BFS:

心得体会:

这次实验较以前的实验难度加大,必须先理解深度优先和广度优先两种遍历思路,和数据结构中队列的基本操作,才能看懂理解代码。同时图这种数据结构对抽象的能力要求非常高,代码不容易看懂,排错也比较麻烦,应该多加练习,才能掌握。

实验4

实验题目:排序

实验目的:

掌握各种排序方法的基本思想、排序过程、算法实现,能进行时间和空间性能的分析,根据实际问题的特点和要求选择合适的排序方法。

实验要求:

实现直接排序、冒泡、直接选择、快速、堆、归并排序算法。比较各种算法的运行速度。

实验主要步骤:

实验代码

#include"stdio.h"

#include"stdlib.h"

#define Max 100 //假设文件长度

typedef struct{ //定义记录类型

int key; //关键字项

}RecType;

typedef RecType SeqList[Max+1]; //SeqList为顺序表,表中第0个元素作为哨兵

int n; //顺序表实际的长度

//==========直接插入排序法======

void InsertSort(SeqList R)

{ //对顺序表R中的记录R[1‥n]按递增序进行插入排序

int i,j;

for(i=2;i<=n;i++) //依次插入R[2],……,R[n]

if(R[i].key

R[0]=R[i];j=i-1; //R[0]是R[i]的副本

do

{ //从右向左在有序区R[1‥i-1]中查找R[i] 的位置

R[j+1]=R[j]; //将关键字大于R[i].key的记录后移

j--;

}

while(R[0].key

}//endif

}

//==========冒泡排序=======

typedef enum {FALSE,TRUE} Boolean; //FALSE为0,TRUE为1

void BubbleSort(SeqList R) { //自下向上扫描对R做冒泡排序

int i,j; Boolean exchange; //交换标志

for(i=1;i

exchange=FALSE; //本趟排序开始前,交换标志应为假

for(j=n-1;j>=i;j--) //对当前无序区R[i‥n] 自下向上扫描

if(R[j+1].key

R[0]=R[j+1]; //R[0]不是哨兵,仅做暂存单元

R[j+1]=R[j];

R[j]=R[0];

exchange=TRUE; //发生了交换,故将交换标志置为真

}

if(! exchange) //本趟排序未发生交换,提前终止算法

return;

}// endfor(为循环)

}

//1.========一次划分函数=====

int Partition(SeqList R,int i,int j)

{ // 对R[i‥j]做一次划分,并返回基准记录的位置

RecType pivot=R[i]; //用第一个记录作为基准

while(i

while(i=pivot.key) //基准记录pivot相当与在位置i上

j--; //从右向左扫描,查找第一个关键字小于pivot.key的记录R[j]

if(i

R[i++]=R[j]; //交换R[i]和R[j],交换后i指针加1

while(i

if(i pivot.key,则

R[j--]=R[i]; //交换R[i]和R[j],交换后j指针减1

}

R[i]=pivot; //此时,i=j,基准记录已被最后定位

return i; //返回基准记录的位置

}

//2.=====快速排序===========

void QuickSort(SeqList R,int low,int high)

{ //R[low..high]快速排序

int pivotpos; //划分后基准记录的位置

if(low

pivotpos=Partition(R,low,high); //对R[low..high]做一次划分,得到基准记录的位置

QuickSort(R,low,pivotpos-1); //对左区间递归排序

QuickSort(R,pivotpos+1,high); //对右区间递归排序

}

}

//======直接选择排序========

void SelectSort(SeqList R)

{

int i,j,k;

for(i=1;i

k=i;

for(j=i+1;j<=n;j++) //在当前无序区R[i‥n]中选key最小的记录R[k] if(R[j].key

k=j; //k记下目前找到的最小关键字所在的位置

if(k!=i) { // //交换R[i]和R[k]

R[0]=R[i];

R[i]=R[k];

R[k]=R[0];

} //endif

} //endfor

}

//==========大根堆调整函数=======

void Heapify( SeqList R,int low,int high)

{ // 将R[low..high]调整为大根堆,除R[low]外,其余结点均满足堆性质

int large; //large指向调整结点的左、右孩子结点中关键字较大者

RecType temp=R[low]; //暂存调整结点

for(large=2*low; large<=high;large*=2){ //R[low]是当前调整结点

//若large>high,则表示R[low]是叶子,调整结束;否则先令large指向R[low]的左孩子

if(large

large++; //若R[low]的右孩子存在且关键字大于左兄弟,则令large指向它

//现在R[large]是调整结点R[low]的左右孩子结点中关键字较大者if(temp.key>=R[large].key) //temp始终对应R[low]

break; //当前调整结点不小于其孩子结点的关键字,结束调整

R[low]=R[large]; //相当于交换了R[low]和R[large]

low=large; //令low指向新的调整结点,相当于temp已筛下到large的位置

}

R[low]=temp; //将被调整结点放入最终位置上

}

//==========构造大根堆==========

void BuildHeap(SeqList R)

{ //将初始文件R[1..n]构造为堆

int i;

for(i=n/2;i>0;i--)

Heapify(R,i,n); //将R[i..n]调整为大根堆

}

//==========堆排序===========

void HeapSort(SeqList R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元

int i;

BuildHeap(R); //将R[1..n]构造为初始大根堆

for(i=n;i>1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。

R[0]=R[1]; R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质。

数据结构实验报告

2013-2014-1学期 《数据结构》实验报告 专业:信息管理与信息系统 班级: 姓名: 学号: 完成日期:2013.12.01

实验名称:二叉树的创建与遍历 一、实验目的 建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。 二、实验要求 1、建立一棵用二叉链表方式存储的二叉树,并对其进行遍历(先序、中序和后序),打印输出遍历结果。 2、从键盘接受扩展先序序列,以二叉链表作为存储结构,建立二叉树,并将遍历结果打印输出。 三、实验步骤(包括所选择的二叉树的创建算法和常用三种遍 历算法的说明、完整的程序代码及必要的注释。) 1、用二叉链表创建二叉树: ①输入根结点值;②若左子树不空,则输入左子树,否则输入一个结束符‘#’;③若右子树不空,则输入右子树,否则输入一个结束符‘#’。 2、遍历该二叉树 (1) 先序遍历(DLR) 若二叉树为空,则结束返回。否则:①访问根结点;②先序遍历左子树;③先序遍历右子树。 (2) 中序遍历(LDR) 若二叉树为空,则结束返回。否则:①中序遍历左子树;②访问根结点;③中序遍历右子树。 (3) 后序遍历(LRD) 若二叉树为空,则结束返回。否则:①后序遍历

左子树;②后序遍历右子树;③访问根结点。 3、程序代码: #include #include #include #define NULL 0 typedef struct BiTNode { char data; struct BiTNode *Lchild,*Rchild; }BiTNode,*BiTree; BiTree Create(BiTree T) { char ch; ch=getchar(); if(ch=='#') T=NULL; else { if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) printf("Error!"); T->data=ch; T->Lchild=Create(T->Lchild); T->Rchild=Create(T->Rchild); } return T; } void Preorder(BiTree T) { if(T) { printf("%c",T->data); Preorder(T->Lchild); Preorder(T->Rchild); } } void zhongxu(BiTree T) { if(T) { zhongxu(T->Lchild); printf("%c",T->data);

数据结构实验报告格式

《数据结构课程实验》大纲 一、《数据结构课程实验》的地位与作用 “数据结构”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。本课程较系统地介绍了软件设计中常用的数据结构以及相应的存储结构和实现算法,介绍了常用的多种查找和排序技术,并做了性能分析和比较,内容非常丰富。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: (1)内容丰富,学习量大,给学习带来困难; (2)贯穿全书的动态链表存储结构和递归技术是学习中的重点也是难点; (3)所用到的技术多,而在此之前的各门课程中所介绍的专业性知识又不多,因而加大了学习难度; (4)隐含在各部分的技术和方法丰富,也是学习的重点和难点。 根据《数据结构课程》课程本身的技术特性,设置《数据结构课程实验》实践环节十分重要。通过实验实践内容的训练,突出构造性思维训练的特征, 目的是提高学生组织数据及编写大型程序的能力。实验学时为18。 二、《数据结构课程实验》的目的和要求 不少学生在解答习题尤其是算法设计题时,觉得无从下手,做起来特别费劲。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 为了帮助学生更好地学习本课程,理解和掌握算法设计所需的技术,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所用到的一些技术。数据结构中稍微复杂一些的算法设计中可能同时要用到多种技术和方法,如算法设计的构思方法,动态链表,算法的编码,递归技术,与特定问题相关的技术等,要求重点掌握线性链表、二叉树和树、图结构、数组结构相关算法的设计。在掌握基本算法的基础上,掌握分析、解决实际问题的能力。 三、《数据结构课程实验》内容 课程实验共18学时,要求完成以下六个题目: 实习一约瑟夫环问题(2学时)

数据结构C语言版期末考试试题(有答案)

“数据结构”期末考试试题 一、单选题(每小题2分,共12分) 1.在一个单链表HL中,若要向表头插入一个由指针p指向的结点,则执行( )。 A. HL=ps p一>next=HL B. p一>next=HL;HL=p3 C. p一>next=Hl;p=HL; D. p一>next=HL一>next;HL一>next=p; 2.n个顶点的强连通图中至少含有( )。 A.n—l条有向边 B.n条有向边 C.n(n—1)/2条有向边 D.n(n一1)条有向边 3.从一棵二叉搜索树中查找一个元素时,其时间复杂度大致为( )。 A.O(1) B.O(n) C.O(1Ogzn) D.O(n2) 4.由权值分别为3,8,6,2,5的叶子结点生成一棵哈夫曼树,它的带权路径长度为( )。 A.24 B.48 C. 72 D. 53 5.当一个作为实际传递的对象占用的存储空间较大并可能需要修改时,应最好把它说明为( )参数,以节省参数值的传输时间和存储参数的空间。 A.整形 B.引用型 C.指针型 D.常值引用型· 6.向一个长度为n的顺序表中插人一个新元素的平均时间复杂度为( )。 A.O(n) B.O(1) C.O(n2) D.O(10g2n) 二、填空题(每空1分,共28分) 1.数据的存储结构被分为——、——、——和——四种。 2.在广义表的存储结构中,单元素结点与表元素结点有一个域对应不同,各自分别为——域和——域。 3.——中缀表达式 3十x*(2.4/5—6)所对应的后缀表达式为————。 4.在一棵高度为h的3叉树中,最多含有——结点。 5.假定一棵二叉树的结点数为18,则它的最小深度为——,最大深度为——· 6.在一棵二叉搜索树中,每个分支结点的左子树上所有结点的值一定——该结点的值,右子树上所有结点的值一定——该结点的值。 7.当向一个小根堆插入一个具有最小值的元素时,该元素需要逐层——调整,直到被调整到——位置为止。 8.表示图的三种存储结构为——、——和———。 9.对用邻接矩阵表示的具有n个顶点和e条边的图进行任一种遍历时,其时间复杂度为——,对用邻接表表示的图进行任一种遍历时,其时间复杂度为——。 10.从有序表(12,18,30,43,56,78,82,95)中依次二分查找43和56元素时,其查找长度分别为——和——· 11.假定对长度n=144的线性表进行索引顺序查找,并假定每个子表的长度均

(完整版)数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1 .实验目的 (1 )掌握使用Visual C++ 6.0 上机调试程序的基本方法; (2 )掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2 .实验要求 (1 )认真阅读和掌握和本实验相关的教材内容。 (2 )认真阅读和掌握本章相关内容的程序。 (3 )上机运行程序。 (4 )保存和打印出程序的运行结果,并结合程序进行分析。 (5 )按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>// 头文件 #include// 库头文件------ 动态分配内存空间 typedef int elemtype;// 定义数据域的类型 typedef struct linknode// 定义结点类型 { elemtype data;// 定义数据域 struct linknode *next;// 定义结点指针 }nodetype; 2)创建单链表

nodetype *create()// 建立单链表,由用户输入各结点data 域之值, // 以0 表示输入结束 { elemtype d;// 定义数据元素d nodetype *h=NULL,*s,*t;// 定义结点指针 int i=1; cout<<" 建立一个单链表"<> d; if(d==0) break;// 以0 表示输入结束 if(i==1)// 建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));// 表示指针h h->data=d;h->next=NULL;t=h;//h 是头指针 } else// 建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t 始终指向生成的单链表的最后一个节点

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构实验报告完整

华北电力大学 实验报告| | 实验名称数据结构实验 课程名称数据结构 | | 专业班级:学生姓名: 学号:成绩: 指导教师:实验日期:2015/7/3

实验报告说明: 本次实验报告共包含六个实验,分别为:简易停车场管理、约瑟夫环(基于链表和数组)、二叉树的建立和三种遍历、图的建立和两种遍历、hash-telbook和公司招工系统。 编译环境:visual studio 2010 使用语言:C++ 所有程序经调试均能正常运行 实验目录 实验一约瑟夫环(基于链表和数组) 实验二简易停车场管理 实验三二叉树的建立和三种遍历 实验四图的建立和两种遍历 实验五哈希表的设计

实验一:约瑟夫环 一、实验目的 1.熟悉循环链表的定义和有关操作。 二、实验要求 1.认真阅读和掌握实验内容。 2.用循环链表解决约瑟夫问题。 3.输入和运行编出的相关操作的程序。 4.保存程序运行结果 , 并结合输入数据进行分析。 三、所用仪器设备 1.PC机。 2.Microsoft Visual C++运行环境。 四、实验原理 1.约瑟夫问题解决方案: 用两个指针分别指向链表开头和下一个,两指针依次挪动,符合题意就输出结点数据,在调整指针,删掉该结点。 五、代码 1、基于链表 #include using namespace std; struct Node { int data; Node* next; }; void main() { int m,n,j=1; cout<<"请输入m的值:";cin>>m; cout<<"请输入n的值:";cin>>n; Node* head=NULL; Node* s=new Node; for(int i=1;i<=n;i++) { Node* p=new Node; p->data=n+1-i;

数据结构c语言版期末考试复习试题

《数据结构与算法》复习题 一、选择题。 1在数据结构中,从逻辑上可以把数据结构分为 C 。 A ?动态结构和静态结构B.紧凑结构和非紧凑结构 C.线性结构和非线性结构 D.内部结构和外部结构 2?数据结构在计算机内存中的表示是指_A_。 A .数据的存储结构B.数据结构 C .数据的逻辑结构 D .数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的A结构。 A .逻辑 B .存储C.逻辑和存储 D .物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储_C A .数据的处理方法 B .数据元素的类型 C.数据元素之间的关系 D .数据的存储方法 5.在决定选取何种存储结构时,一般不考虑A A .各结点的值如何C.对数据有哪些运算 B .结点个数的多少 D .所用的编程语言实现这种结构是否方 6.以下说法正确的是D A .数据项是数据的基本单位 B .数据元素是数据的最小单位 C.数据结构是带结构的数据项的集合 D .一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。 (1) A .找出数据结构的合理性B.研究算法中的输入和输出的关系 C .分析算法的效率以求改进C.分析算法的易读性和文档性 (2) A .空间复杂度和时间复杂度B.正确性和简明性 &下面程序段的时间复杂度是0( n2) s =0; for( I =0; i

数据结构实验报告模板

2009级数据结构实验报告 实验名称:约瑟夫问题 学生姓名:李凯 班级:21班 班内序号:06 学号:09210609 日期:2010年11月5日 1.实验要求 1)功能描述:有n个人围城一个圆圈,给任意一个正整数m,从第一个人开始依次报数,数到m时则第m个人出列,重复进行,直到所有人均出列为止。请输出n个人的出列顺序。 2)输入描述:从源文件中读取。 输出描述:依次从显示屏上输出出列顺序。 2. 程序分析 1)存储结构的选择 单循环链表 2)链表的ADT定义 ADT List{ 数据对象:D={a i|a i∈ElemSet,i=1,2,3,…n,n≧0} 数据关系:R={< a i-1, a i>| a i-1 ,a i∈D,i=1,2,3,4….,n} 基本操作: ListInit(&L);//构造一个空的单链表表L ListEmpty(L); //判断单链表L是否是空表,若是,则返回1,否则返回0. ListLength(L); //求单链表L的长度 GetElem(L,i);//返回链表L中第i个数据元素的值; ListSort(LinkList&List) //单链表排序 ListClear(&L); //将单链表L中的所有元素删除,使单链表变为空表 ListDestroy(&L);//将单链表销毁 }ADT List 其他函数: 主函数; 结点类; 约瑟夫函数 2.1 存储结构

[内容要求] 1、存储结构:顺序表、单链表或其他存储结构,需要画示意图,可参考书上P59 页图2-9 2.2 关键算法分析 结点类: template class CirList;//声明单链表类 template class ListNode{//结点类定义; friend class CirList;//声明链表类LinkList为友元类; Type data;//结点的数据域; ListNode*next;//结点的指针域; public: ListNode():next(NULL){}//默认构造函数; ListNode(const Type &e):data(e),next(NULL){}//构造函数 Type & GetNodeData(){return data;}//返回结点的数据值; ListNode*GetNodePtr(){return next;}//返回结点的指针域的值; void SetNodeData(Type&e){data=e;}//设置结点的数据值; void SetNodePtr(ListNode*ptr){next=ptr;} //设置结点的指针值; }; 单循环链表类: templateclass CirList { ListNode*head;//循环链表头指针 public: CirList(){head=new ListNode();head->next=head;}//构造函数,建立带头节点的空循环链表 ~CirList(){CirListClear();delete head;}//析构函数,删除循环链表 void Clear();//将线性链表置为空表 void AddElem(Type &e);//添加元素 ListNode *GetElem(int i)const;//返回单链表第i个结点的地址 void CirListClear();//将循环链表置为空表 int Length()const;//求线性链表的长度 ListNode*ListNextElem(ListNode*p=NULL);//返回循环链表p指针指向节点的直接后继,若不输入参数,则返回头指针 ListNode*CirListRemove(ListNode*p);//在循环链表中删除p指针指向节点的直接后继,且将其地址通过函数值返回 CirList&operator=(CirList&List);//重载赋

数据结构(c语言版)期末考试复习试题

《数据结构与算法》(c语言版)期末考复习题 一、选择题。 1.在数据结构中,从逻辑上可以把数据结构分为 C 。 A.动态结构和静态结构B.紧凑结构和非紧凑结构 C.线性结构和非线性结构D.内部结构和外部结构 2.数据结构在计算机内存中的表示是指 A 。 A.数据的存储结构B.数据结构C.数据的逻辑结构D.数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的 A 结构。 A.逻辑B.存储C.逻辑和存储D.物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储 C 。A.数据的处理方法B.数据元素的类型 C.数据元素之间的关系D.数据的存储方法 5.在决定选取何种存储结构时,一般不考虑 A 。 A.各结点的值如何B.结点个数的多少 C.对数据有哪些运算D.所用的编程语言实现这种结构是否方便。 6.以下说法正确的是 D 。 A.数据项是数据的基本单位

B.数据元素是数据的最小单位 C.数据结构是带结构的数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。(1)A.找出数据结构的合理性B.研究算法中的输入和输出的关系C.分析算法的效率以求改进C.分析算法的易读性和文档性(2)A.空间复杂度和时间复杂度B.正确性和简明性 C.可读性和文档性D.数据复杂性和程序复杂性 8.下面程序段的时间复杂度是O(n2) 。 s =0; for( I =0; i

数据结构实验报告图实验

图实验一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10;

template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp

#include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) {

数据结构实验报告

《用哈夫曼编码实现文件压缩》 实验报告 课程名称数据结构 实验学期2015至2016学年第一学期 学生所在系部计算机学院 年级2014专业班级物联B142班 学生姓名杨文铎学号201407054201 任课教师白磊 实验成绩

用哈夫曼编码实现文件压缩 1、了解文件的概念。 2、掌握线性表的插入、删除的算法。 3、掌握Huffman树的概念及构造方法。 4、掌握二叉树的存储结构及遍历算法。 5、利用Haffman树及Haffman编码,掌握实现文件压缩的一般原理。 微型计算机、Windows系列操作系统、Visual C++6.0软件 根据ascii码文件中各ascii字符出现的频率情况创建Haffman树,再将各字符对应的哈夫曼编码写入文件中,实现文件压缩。 本次实验采用将字符用长度尽可能短的二进制数位表示的方法,即对于文件中出现的字符,无须全部都用S为的ascii码进行存储,根据他们在文件中出现的频率不同,我们利用Haffman算法使每个字符能以最短的二进制数字符进行存储,已达到节省存储空间,压缩文件的目的,解决了压缩需要采用的算法,程序的思路已然清晰: 1、统计需压缩文件中的每个字符出现的频率 2、将每个字符的出现频率作为叶子节点构建Haffman树,然后将树中结点引向 其左孩子的分支标“0”,引向其右孩子的分支标“1”;每个字符的编码 即为从根到每个叶子的路径上得到的0、1序列,这样便完成了Haffman 编码,将每个字符用最短的二进制字符表示。 3、打开需压缩文件,再将需压缩文件中的每个ascii码对应的haffman编码按bit 单位输出。 4、文件压缩结束。 (1)构造haffman树的方法一haffman算法 构造haffman树步骤: I.根据给定的n个权值{w1,w2,w3…….wn},构造n棵只有根结点的二叉 树,令起权值为wj。 II.在森林中选取两棵根结点权值最小的树作左右子树,构造一棵新的二叉树,置新二叉树根结点权值为其左右子树根结点权值之和。 III.在森林中删除这两棵树,同时将得到的二叉树加入森林中。 IV.重复上述两步,知道只含一棵树为止,这棵树即哈夫曼树。 对于haffman的创建算法,有以下几点说明: a)这里的Haffman树采用的是基于数组的带左右儿子结点及父结点下标作为

数据结构(C语言版)期末复习

数据结构(C语言版)期末复习汇总 第一章绪论 数据结构:是一门研究非数值计算程序设计中的操作对象,以及这些对象之间的关系和操作的学科。 数据结构分为:逻辑结构、物理结构、操作三部分 逻辑结构:集合、线性结构、树形结构、图(网)状结构 物理结构(存储结构):顺序存储结构、链式存储结构 算法:是为了解决某类问题而规定的一个有限长的操作序列。 算法五个特性:有穷性、确定性、可行性、输入、输出 评价算法优劣的基本标准(4个):正确性、可读性、健壮性、高效性及低存储量 语句频度的计算。 算法的时间复杂度: 常见有:O(1),O(n),O(n2),O(log2n),O(nlog2n),O(2n) 第二章线性表 线性表的定义和特点: 线性表:由n(n≥0)个数据特性相同的元素构成的有限序列。线性表中元素个数n(n≥0)定义为线性表的长度,n=0时称为空表。 非空线性表或线性结构,其特点: (1)存在唯一的一个被称作“第一个”的数据元素; (2)存在唯一的一个被称作“最有一个”的数据元素; (3)除第一个之外,结构中的每个数据元素均只有一个前驱; (4)除最后一个之外,结构中的每个数据元素均只有一个后继。 顺序表的插入:共计n个元素,在第i位插入,应移动(n-i+1)位元素。 顺序表的删除:共计n个元素,删除第i位,应移动(n-i)位元素。 线性表的两种存储方式:顺序存储、链式存储。 顺序存储 概念:以一组连续的存储空间存放线性表; 优点:逻辑相邻,物理相邻;可随机存取任一元素;存储空间使用紧凑; 缺点:插入、删除操作需要移动大量的元素;预先分配空间需按最大空间分配,利用不充分;表容量难以扩充; 操作:查找、插入、删除等 查找: ListSearch(SqlList L,ElemType x,int n) { int i; for (i=0;i

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

数据结构实验报告--图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e)

{ int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: "; cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } } template void MGraph::DFSTraverse(int v) { cout << vertex[v]; visited[v] = 1; for(int j = 0; j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] == 0) DFSTraverse(j); } template void MGraph::BFSTraverse(int v) { int Q[MaxSize]; int front = -1, rear = -1; cout << vertex[v]; visited[v] = 1; Q[++rear] = v; while(front != rear) { v = Q[++front]; for(int j = 0;j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] == 0){ cout << vertex[j]; visited[j] = 1;

数据结构实验报告

数据结构实验报告 第 6 次实验 学号:20141060106 姓名:叶佳伟 一、实验目的 1、复习图的逻辑结构、存储结构及基本操作; 2、掌握邻接矩阵、邻接表及图的创建、遍历; 3、了解图的应用。 二、实验内容 1、(必做题)假设图中数据元素类型是字符型,请采用邻接矩阵或邻接表实现图的以下基本操作: ( 1)构造图(包括有向图、有向网、无向图、无向网); ( 2)根据深度优先遍历图; ( 3)根据广度优先遍历图。 三、算法描述 (采用自然语言描述) 四、详细设计 (画出程序流程图) 五、程序代码 (给出必要注释) #include #include #include #include #include #define INFINITY 255678 /*赋初值用*/ #define MAX_VERTEX_NUM 20 /* 最大顶点个数*/ enum {DG, DN, UDG, UDN}; typedef struct ArcCell {

int adj;/*顶点关系类型,对无权图,用1(是)或0(否)表示相邻否;对带权图,则为权值*/ char *info;/*弧相关信息指针*/ }AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct { char vexs[MAX_VERTEX_NUM][5];/*顶点向量*/ AdjMatrix arcs; /*邻接矩阵*/ int vexnum, arcnum;/*图的当前顶点数和弧数*/ int kind; }MGraph; void CreateDG(MGraph *G); void CreateDN(MGraph *G); void CreateUDG(MGraph *G); void CreateUDN(MGraph *G); int LocateVex(MGraph *G, char v[]); void print(MGraph *G); int main(void) { MGraph *G; G = (MGraph *)malloc(sizeof(MGraph)); printf("请选者0-有向图,1-有向网,2-无向图,3-无向网: "); scanf("%d", &G->kind); switch(G->kind) { case DG : CreateDG(G); print(G); break; case DN : CreateDN(G); print(G); break; case UDG : CreateUDG(G); print(G); break; case UDN : CreateUDN(G);

数据结构与算法实验报告册

. . 河南工程学院 理学院学院 实验报告 (数据结构与算法) 学期: 课程: 专业: 班级: 学号: 姓名: 指导教师:

. . 目录 实验一线性表1(顺序表及单链表的合并) (1) 实验二线性表2(循环链表实现约瑟夫环) (1) 实验三栈和队列的应用(表达式求值和杨辉三角) (1) 实验四赫夫曼编码 实验五最小生成树 (1) 实验六排序算法

. . 实验一线性表1 一、实验学时:2学时 二、实验目的 1.了解线性表的逻辑结构特性是数据元素之间存在着线性关系。在计算机中 表示这种关系的两类不同的存储结构是顺序存储结构和链式存储结构。 2.熟练掌握这两类存储结构的描述方法以及线性表的基本操作在这两种存储 结构上的实现。 三、实验内容 1. 编写程序,实现顺序表的合并。 2. 编写程序,实现单链表的合并。 四、主要仪器设备及耗材 硬件:计算机一台 软件:VC++ 6.0,MSDN2003或者以上版本 五、算法设计 1. 顺序表合并的基本思想 程序流程图: 2. 单链表合并的基本思想 程序流程图 六、程序清单

. 七、实现结果 .

. 八、实验体会或对改进实验的建议.

. . 实验二线性表2 一、实验学时:2学时 二、实验目的 1.了解双向循环链表的逻辑结构特性,理解与单链表的区别与联系。 2.熟练掌握双向循环链表的存储结构以及基本操作。 三、实验内容 编写程序,采用循环链表实现约瑟夫环。 设有编号为1,2,……,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,……,如此下去,直到所有人全部出圈为止。当任意给定n和m后,设计算法求n个人出圈的次序。 四、主要仪器设备及耗材 硬件:计算机一台 软件:VC++ 6.0,MSDN2003或者以上版本 五、算法设计 约瑟夫环实现的基本思想 程序流程图: 六、程序清单

数据结构实验报告 - 答案汇总

数据结构(C语言版) 实验报告

专业班级学号姓名 实验1 实验题目:单链表的插入和删除 实验目的: 了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。 实验要求: 建立一个数据域定义为字符串的单链表,在链表中不允许有重复的字符串;根据输入的字符串,先找到相应的结点,后删除之。 实验主要步骤: 1、分析、理解给出的示例程序。 2、调试程序,并设计输入数据(如:bat,cat,eat,fat,hat,jat,lat,mat,#),测试程序 的如下功能:不允许重复字符串的插入;根据输入的字符串,找到相应的结点并删除。 3、修改程序: (1)增加插入结点的功能。 (2)将建立链表的方法改为头插入法。 程序代码: #include"stdio.h" #include"string.h" #include"stdlib.h" #include"ctype.h" typedef struct node //定义结点 { char data[10]; //结点的数据域为字符串 struct node *next; //结点的指针域 }ListNode; typedef ListNode * LinkList; // 自定义LinkList单链表类型 LinkList CreatListR1(); //函数,用尾插入法建立带头结点的单链表 LinkList CreatList(void); //函数,用头插入法建立带头结点的单链表 ListNode *LocateNode(); //函数,按值查找结点 void DeleteList(); //函数,删除指定值的结点 void printlist(); //函数,打印链表中的所有值 void DeleteAll(); //函数,删除所有结点,释放内存

数据结构实验报告

华南农业大学信息学院 综合性、设计性实验 起止日期:2011秋 学院软件学院专业班级10软件工程7班学号20103100070 4 姓名黄定康 实 验 题 目 实现平衡二叉排序树的各种算法 自我评价 项目算法设计独立完成情况算法熟练程度测试 通过 成功失败独立帮助掌握了解不懂 插入新结点√√√√ 前序、中序、后序遍历二叉树 (递归) √√√√ 前序、中序、后序遍历的非递 归算法 √√√√ 层次遍历二叉树√√√√ 在二叉树中查找给定关键字√√√√ 交换各结点的左右子树√√√√ 求二叉树的深度√√√√ 叶子结点数√√√√ 删除某结点√√√√ ●A---------完成实验要求的全部功能并运行通过,算法有一定的新意,程序代码 符合书写规范,实验报告叙述清晰完整,有详尽的分析和总结。 ●B---------完成实验要求的全部功能,程序代码符合书写规范,实验报告叙述 清晰完整。 ●C---------完成实验要求的大部分功能,实验报告良好。 ●D---------未按时完成实验,或者抄袭。 成 绩 教师签名:杨秋妹

实验报告 题目:实现平衡二叉排序树的各种算法 班级:10软件工程7班 姓名:黄定康 学号:201031000704 完成日期:2011/12/07 (一)分析题目要求 (1)函数说明 void R_rotate(ptr& t) -右旋转函数,从T开始做右旋转 int coutdeep(ptr t)-计算深度函数 void L_rotate(ptr& t)-左旋转函数 void leftbalance(ptr&t)-左平衡函数,从T开始做左平衡处理 void rightbalance(ptr&t)-右平衡函数 int insertA VL(ptr& t,int e,int & taller)-插入结点函数 void preorder(ptr t)-(递归)先序遍历 void preorder_2(ptr t)-(非递归)先序遍历 void inorder(ptr t)-(递归)中序遍历 void inorder_2(ptr t)-(非递归)中序遍历 void posorder(ptr t)-(递归)后序遍历 void posorder_2(ptr t)-(非递归)后序遍历 void dfs(ptr t,int type)-(递归)深度优先遍历(包含中序先序后续) void dfs_2(ptr t,int type)-(递归) 深度优先遍历 int bfs(ptr t)-层次便利 int delete_node(ptr& t,int&shorter,int temp);-删除结点函数 int Delete(ptr& t,int shorter)-删除结点函数 int transfer(ptr&t)-左右子树交换函数 int countleaf(ptr t)-计算叶节点 int checkup(ptr t,int temp)- 从树t中查找temp是否存在,存在返回1否则返回0 int main()-主函数 void show_menu(ptr t)-简单的菜单函数 (2)输入形式及输入值范围 输入形式:当树没创建时,先在第一行输入树的节点数目n,第二行再输入n个大于0的不重复整数,以空格隔开。删除结点时,直接输入要删除结点的值。 输入范围:所有int类型的大于零的值,注意不能重复输入。

相关主题
文本预览
相关文档 最新文档