当前位置:文档之家› 碗扣式脚手架满堂支架设计计算_secret(右幅第四联)

碗扣式脚手架满堂支架设计计算_secret(右幅第四联)

碗扣式脚手架满堂支架设计计算_secret(右幅第四联)
碗扣式脚手架满堂支架设计计算_secret(右幅第四联)

现浇箱梁碗扣式脚手架满堂支架设计计算

1 工程概况

1.1 总概况

渭河北互通立交主线桥分为左、右幅,其中左幅桥跨径组合为:(28+30+28)m+(3×20)m+2×(4×20)m+(3×20)m+(3×25)m+(25+30.5+28)m+2×(3×20)m,共九联;右幅桥跨径组合为:(28+30+28)m+(3×20)m+2×(4×20)m+(3×20)m+(3×25)m+(25+30.5+28)m+2×(3×20)m,共九联,左右副桥梁起终桩号均为:K31+510.530~K32+155.030。左幅桥第一联、第七联,右幅桥第一联、第四联、第七联上部为现浇预应力混凝土连续梁方案,满堂支架现浇,其余联均为装配式预应力混凝土连续箱梁;下部采用柱式墩、肋式台、钻孔灌注桩基础。

施工方案确定中对于地基承载力高、墩柱高度小于15m的桥跨考虑采用碗扣式脚手架搭设满堂红作为支架体系,共计有6联现浇箱梁采用该体系。

1.2 主线桥右幅第4联

渭河北互通立交主线桥右幅第四联(10#、11#、12#、13#、14#墩)现浇梁形式为4×20m结构。右幅第四联箱梁断面采用单箱五室断面,箱梁为变宽,梁高1.2米,悬臂长度2.0米,顶板厚0.25米,底板厚0.22米,跨中腹板厚0.4米,支点附近腹板加厚为0.6米,箱梁按等高度设置,其顶、底板横坡相同,腹板按竖直设置。

渭河北互通立交主线桥右幅第四联桥梁建筑宽度由25.585m至28.312m共有13处变截点。

2、满堂支架方案

2.1、支架设计的要求

2.1.1、支架结构必须有足够的强度、刚度、稳定性。

2.1.2、支架在承重后期弹性和塑性变形应控制在15mm 以内。

2.1.3、支架部分地基的沉降量控制在 5mm 以内,地基承载(压)力达250kPa。

2.1.4、支架顶面与梁底的高差应控制在理想值范围内,且应与预留拱度通盘考虑。

2.2、支架基础按通过后满堂支架的设计方案,要求地基承载力大于250KPa,因此必须对地基作特殊处理。

2.2.1、将原地面地表层上耕植土清除30cm,然后用重型压路机压实,压实度>85%。

2.2.2、按1%横向排水坡(桥中心两侧排水)填筑三七灰土60cm,填筑分两层进行,每

层压实厚度为30cm,用重型压路机压实,底层压实度>90%,顶层压实度>95%。

2.2.3、为了防止浇筑混凝土时,流水软化支架的地基,浇筑厚5cm 的C15 细石混凝土封闭层。

2.2.4、地基处理完后,在支架搭设范围地基基础四周80~200cm 范围内设顺桥向排

水沟(水沟横断面为:60×80cm),排水沟根据现场情况设置好排水坡纵,确保地基基础不受雨水浸泡。

2.3采用满堂碗扣式支架,顺横桥向间距均为0.9m,支架搭设中间横杆层距为1.2m,支架搭设宽度较梁底宽2m。

a、按砼方量检算碗扣支架承载力是否满足要求:

梁底平均宽21.88m,长80米,箱梁底总面积为1750.4m2,箱梁砼方量1399.5m3,加上模板重量70t,按照施工荷载1.2 倍的系数考虑,则每平方米的重量为(1399.5×2.6+70)÷1750.4×1.2=2.54t。

支架采用多功能碗扣式支架,沿桥纵向步距90cm,横向步距90cm,每根立杆受正向压力为:2.54×0.9×0.9=2.06t,安全系数按1.3 考虑,则每根立杆受正向压力为:2.06×

1.3=

2.67t,小于碗扣式支架立杆允许承载力

3.5t,符合要求。

b、竹胶板采用一等品,静曲强度55Mpa〉2.54×9.8=24.892Mpa,强度符合。

c、上、下撑托允许荷载50KN,木材[σ]=11Mpa,E=1.1×10410×10cm 横向方木

I=bh3/12=5×103/12=416.7cm4

W=bh2/6=5×102/6=83.3cm3

Q总=2.54×9.8=24.892kn/m2

M=Q总L2/8=24.892×0.3×0.92/8=0.756kn·m

σ=M/W=0.756/83.3×10-6=9.1Mpa<[σ]=11Mpa

强度符合

δ=5Q 总L4/384EI

=5×24.892×0.3×0.94/384×1.1×104×416.7×10-8=1.39mm

δ/L=1.39/0.9×103=1/647<[1/400]=[δ/L]

刚度符合

3 支架初步设计

3.1 底模、纵横梁的初步确定

底模采用竹胶板。根据经验,由于箱梁高度仅为1.2m ,一般选用1.5cm 厚的高强度竹胶板。纵横梁均采用方木,宽度均为0.1m ,方木允许受弯强度为[σ]=12Mpa ,纵梁高为h1,横梁高为h2。

据经验及初略计算,来选定纵梁的高度、横梁的高度及横梁间距。横梁间距一般选择0.3m 。

由公式h=

]

[432 b ql 得,h1=0.13m ,故取0.15m ;h2=0.09m ,取0.1m 。

3.2 支架检算

碗扣式脚手架满堂支架竖向力传递过程:箱梁钢筋混凝土和内模系统的自重及施工临时荷(活载)通过底模传递到横梁上,横梁以集中荷载再传递给纵梁,纵梁以支座反力传递到每 根立杆,立杆通过底托及方木传递至钢筋混凝土基础、地基。下面以这种力的传递方式依次对支架的底模、横梁、纵梁、立杆、地基承载力进行检算。

3.3 荷载计算 3.3.1 竖向荷载计算

①本桥钢筋混凝土配筋率>2%,所以钢筋混凝土自重取26Kn/m 3,以渭南北互通立交桥主线桥右幅第4联为例,箱梁混凝土体积为1399.5m 3,所以按照最不利工况,将翼缘板部分的混凝土重量折算到底板上,混凝土的自重如下计算:

F1=V ×γ÷V ’=28.02kn/m 3 式中:V 为整联箱梁混凝土体积; γ为钢筋混凝土的容重,取26KN/m 3; v ’为除去翼缘板箱梁混凝土体积。

对于腹板、横梁等实心段,混凝土高度h1=1.2m ,空心段混凝土高度为h2=0.5m 。 故,实心段混凝土自重:F1a=F1×h1=33.62kPa ,

空心段混凝土自重:F1b= F1×h2=14.01kPa 。 ②模板自重,一块1.22m ×2.44m 竹胶板的质量为32kg : F2=32kg ×9.8N/kg ÷(1.22m ×2.44m)=105.35Pa ③纵横梁方木荷载:

cm cm 1010?方木:g1=0.1m ×0.1m ×7.5m ×(1/0.25+1)×γ÷(7.5m ×1m)=0.375kpa cm cm 1510?方木:g2=0.1m ×0.15m ×11×γ÷7.5m=0.165kpa

式中:γ——取3

/5.7m KN

④内模及支撑荷载,取3kpa :F3=3kpa ⑤临时荷载

施工人员及机具:G1=2.5kPa 振捣荷载:G2=2.0 kPa 则临时荷载为:G=4.5kpa 3.3.2 水平荷载计算

①混凝土振捣时对侧模的荷载取:KPa 4 ②新浇混凝土对侧模的最大侧压力: kpa kh P 4.364.1261=?==

kpa h k P c 76.3205.1262.12=??==γ 式中:k ---外加剂影响修正系数,取1.2 v ----混凝土浇注速度,取0.5h m /

h ---有效压头高度,m T v h 05.115/5.09.2422.0/9.2422.0=?+=+=

T ---混凝土入模温度,取15C ? 则有:KPa P 4.36max =

一般应计算风载,但是由于渭南地区常年均为微风,可以不考虑风载。 3.4 底模验算

A 、模板的力学性能(取10cm 宽度模板进行计算) ①弹性模量(厂家提供数据) E=948Mpa ②截面惯性矩

I=bh 3/12=0.1×0.0153/12=2.813×10-8m · ③截面抵抗矩

W= bh 2/6=0.1×0.0152/6=3.75×10-6m 3

B、模板受力计算

底模下的横梁间距30cm,可以把底模简化为三跨连续梁进行计算。按照最不利工况,对腹板、横梁等实心段进行验算,空心段荷载较实心段小,故不进行验算。强度检算荷载组合为:①+②+④+⑤;刚度检算荷载组合为:①+②+④

①底模强度检算

q’=F1a×1.2+F2×1.2+F3×1.2+G×1.4=50.37 kPa

q=q’×0.1m=50.37×0.1=5.037kN/m

Mmax=1/10×ql2=0.031 kN·m

σ=Mmax/W=12.08MPa≤[σW]=47MPa 满足要求。

本支架各部件(除去立杆)均为受弯构件,仅需要检算弯矩,下同不再赘述。

②底模刚度验算

q’=F1a×1.2+F2×1.2+F3×1.2=44.07 kPa

q=q’×0.1m=44.07×0.1=4.407kN/m

f=0.689×ql4/100EI=0.14mm≤[f]=0.3m/400=0.75mm 满足要求。

3.5 横梁检算

A.横梁力学性能

①弹性模量

E=10×103Mpa

②截面惯性矩

I=bh3/12=0.1×0.13/12=8.33×10-6m4

③截面抵抗矩

W= bh2/6=0.1×0.12/6=0.167×10-3m3

B、横梁受力计算

横梁间距0.3cm,可以把横梁简化为三跨连续梁进行计算。按照最不利工况,对腹板、横梁等实心段进行验算,空心段荷载较实心段小,故不进行验算。按照最不利工况,对腹板、横梁等实心段和空心段分别进行验算。强度检算荷载组合为:①+②+③+④+⑤;刚度检算荷载组合为:①+②+③+④

①横梁强度验算

q’=F1a×1.2+F2×1.2+F3×1.2+G×1.4=50.37kPa

q=q’×0.3m+g=15.19kN/m

式中g为方木自重,g=7.5kn/m3×0.1m×0.1m=0.075kn/m

Mmax=1/10×ql2=0.55kN·m

σ=Mmax/W=3.3MPa≤[σW]=12MPa 满足要求。

最大支座反力R=11ql/10=11×15.19×0.6/10=10.02kn

②横梁刚度验算

q’=F1a×1.2+F2×1.2+F3×1.2=44.07 kPa

q=q’×0.25m+g=44.07×0.25+0.075 =11.09kN/m

式中g为方木自重,g=7.5kn/m3×0.1m×0.1m=0.075kn/m

f=0.689ql4/100EI=0.69mm≤[f]=0.6m/400=1.5mm 满足要求。

3.6 纵梁验算

A.纵梁的力学性能

①弹性模量

E=10×103Mpa

②截面惯性矩

I=bh3/12=0.1×0.153/12=2.81×10-5m4

③截面抵抗矩

W= bh2/6=0.1×0.152/6=3.75×10-4m3

B、纵梁验算

对腹板等实心段纵梁进行验算,因为跨度一致,所以如果实心段纵梁满足要求,空心段也能满足要求,故不对空心段的纵梁进行验算。实心段简化为三跨连续梁进行验算,并且集中荷载对称布置。

纵梁受到10个横梁集中荷载和自重均布荷载的作用,计算弯矩和挠度的时候,可以按照集中荷载和均布荷载两种形式进行叠加。

集中荷载P=R=12.76KN

均布荷载q=11.261 ×9.8=0.110kN/M,纵梁自重为11.261kg/m

Mmax=0.244Pl+0.1ql2=3.12 kN·m

σ=Mmax/W=8.32MPa≤[σW]=12MPa 满足要求。

f=1.883Pl3/100EI+0.689ql4/100EI=0.6mm≤[f]=0.9m/400=2.25mm 满足要求。

支座最大反力:R=2.267P+P+1.1ql=41.8KN

3.7 立杆检算

立杆的检算,很多资料采用单根立杆所承受的投影面积荷载这种简单的方法进行计算,而在理论上应该采用纵梁对立杆的支座反力进行计算。下面按这两种方式分别进行计算。

3.7.1 立杆计算模型

立杆选用Ф4.8×3.5钢管,计算模型为两端铰支。

①弹性模量

E=2.1×105Mpa

②截面惯性矩

I=10.78×10-8m4

③截面抵抗矩

W= 4.40×10-6m3

④惯性积

i=1.59×10-2m

⑤柔度

λ=ul/i=1.0×1.2/1.59×10-2m=75.47,

3.7.2 单根立杆承受的荷载

腹板实心段单根立杆受力平面示意图

空心段单根立杆受力平面示意图

A 、腹板处单根立杆竖向荷载

荷载组合为:F ’=①+②+③+④+⑤,图式如下

F ’= F1a ×1.2+F2×1.2+ (g1+g2)×1.2+F3×1.2+

G ×1.4=51.02kpa

每个立杆上荷载:F=F ’×0.9m ×0.9m=51.02×0.9×0.9=41.33kn B 、空心段单根立杆竖向荷载

荷载组合为:F ’=①+②+③+④+⑤,图式如下

F ’= F1a ×1.2+F2×1.2+ (g1+g2)×1.2+F3×1.2+

G ×1.4=27.48kpa 每个立杆上荷载:F=F ’×0.9m ×0.9m=27.48×0.9×0.9=22.26kn

投影法所得单根立杆最大承受竖向荷载为41.33kn ,小于支座反力法所得的41.8kn 。所以以下检算以支座反力法进行计算。

3.7.3 立杆强度及稳定验算 A 、单根立杆强度计算

σ=F/A=41.8kn/478mm2=87MPa ≤[σ]=170MPa

K=A[f]/F=170/87=2>1.3 满足要求。 式中:安全系数3.1≥k ;

支架钢管设计抗压强度MPa 170][

=σ; 钢管有效截面积2

478mm A =。 B 、立杆稳定性检算

λ=75.47,查规范得稳定系数为 φ=0.76

σ=F/A ≤φ[σ] =41.8/478=87MPa ≤0.76×170=129.2MPa 满足要求。 3.8 地基承载力检算

地基处理应根据现场的地基情况确定,对于地基为岩石的,可以考虑直接将底托支撑在混凝土垫层上,承载力及沉降量均能满足要求。而对于表面软土的浅软基则考虑换填处理,保证压实度地分层碾压,这样处理承载力及沉降量完全能满足施工要求。

3.6.1 荷载计算

支架通过方木或底托、混凝土基层、碎石基层、地基层层施加荷载,其中,底托长宽为10cm,方木为10×10cm,混凝土基层采用5cm厚C15素混凝土,三七灰土层厚50cm。

单根立杆传递上部荷载为41.8kn,脚手架自重为2.20Kn(,地基承载力检算按支垫方式分别进行检算。

3.6.2 地基承载力检算

底托

×10方木

混凝土

地基

°°

底托直接支撑在混凝土垫层上底托下垫方木

A、底托直接支撑在混凝土硬化面上地基承载力检算:

底托长和宽为0.1m,混凝土厚0.05m,按45°角扩散应力近似计算,则路基基底承压面积为0.4m×0.4m=0.16m2,故地基承载力为:

σ=F/A=275 MPa<[σ]=400kpa 满足要求。

式中[σ]为弱风化泥岩容许承载力400~500kpa,取400kpa。

B、底托设10×10cm方木上,混凝土厚0.05cm,按45°角扩散应力近似计算,则路基基底承压面积为0.4m×0.6m=0.24m2,故地基承载力为:

σ=F/A=183 MPa<[σ]=250kpa 满足要求。

式中[σ]为地基处理后承载力要求,取250kpa。

一般情况下,应该对地基的理论沉降量进行计算。由于本工程满堂支架的地基要么是直接是岩层,要么是浅层软基,沉降量很小,故不单独进行检算。而根据预压数据显示地基塑性变形最大仅有5mm。

3.7 结论

通过以上计算,可知本支架设计通过验算,能满足规范及施工要求。同理,侧模、内模可以采用相同方法进行设计及检算,这里不再赘述。

右幅第四联支架图

- 12 -

碗扣式支架计算书汇总

碗扣式钢管模板支架工程 施工方案计算书 工程名称:兰州新区保障性住房项目A-4#、9#、10#、11#楼工程编制人: 日期:

目录 一、编制依据 (1) 二、工程参数 (1) 三、模板面板验算 (2) 四、次楞方木验算 (3) 五、主楞验算 (5) 六、立杆轴向力及承载力计算 (6) 七、立杆底地基承载力验算 (8) 八、架体抗倾覆验算 (9)

一、编制依据 1、工程施工图纸及现场概况 2、《混凝土结构工程施工规范》GB50666-2011 3、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-2008 4、《建筑施工模板安全技术规范》JGJ162-2008 5、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 6、《建筑施工手册》第四版(缩印本) 7、《混凝土结构工程施工质量验收规范》GB50204-2002(2011年版) 8、《建筑结构荷载规范》GB50009-2012 9、《混凝土模板用胶合板》GB/T17656-2008 10、《冷弯薄壁型钢结构技术规范》GB 50018-2002 9、《木结构设计规范》GB50005-2003 二、工程参数

三、模板面板验算 面板采用竹胶合板,厚度为10mm ,取主楞间距0.9m的面板作为计算宽度。 面板的截面抵抗矩W= 900×10×10/6=15000mm3; 截面惯性矩I= 900×10×10×10/12=75000mm4; (一)强度验算 1、面板按三跨连续梁计算,其计算跨度取支承面板的次楞间距,L=0.3m。 2、荷载计算 取均布荷载或集中荷载两种作用效应考虑,计算结果取其大值。 均布线荷载设计值为: q1=0.9×[1.2×(24×0.18+1.1×0.18+0.3)+1.4×2.5]×0.9=7.518KN/m q1=0.9×[1.35×(24×0.18+1.1×0.18+0.3)+1.4×0.7×2.5]×0.9= 7.253KN/m 根据以上两者比较应取q1= 7.518N/m作为设计依据。 集中荷载设计值: 模板自重线荷载设计值q2=0.9×1.2×0.9×0.3=0.292 KN/m 跨中集中荷载设计值P=0.9×1.4×2.5= 3.150KN 3、强度验算 施工荷载为均布线荷载: M 1=0.1q 1 l2=0.1× 7.518×0.32=0.068KN·m 施工荷载为集中荷载: M 2=0.08q 2 l2+0.213Pl=0.08× 0.292×0.32 +0.213× 3.150×0.3=0.203KN·m

满堂支撑架结构计算书

扣件式满堂支撑架安全计算书 一、计算依据 1、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑施工临时支撑结构技术规范》JGJ300-2013 6、《建筑施工高处作业安全技术规范》JGJ80-1991

二、计算参数

(图1)平面图 (图2)纵向剖面图1 (图3)纵向剖面图2

三、次楞验算 恒荷载为: g1=1.2[g kc+g1k e]=1.2×(0.022+0.35×250/1000)=0.131kN/m 活荷载为: q1=1.4(Q1+Q2)e=1.4×(2+2)×250/1000=1.4kN/m 次楞按三跨连续梁计算符合工况。计算简图如下: (图4)可变荷载控制的受力简图 1、强度验算 (图5)次楞弯矩图(kN·m) M max=0.124kN·m σ=M max/W=0.124×106/(1×85.333×103)=1.454N/mm2≤[f]=15N/mm2 满足要求 2、抗剪验算

(图6)次楞剪力图(kN) V max=0.827kN τmax= V max S0/(Ib) =0.827×103×40.5×103/(341.333×104×4×10)=0.245N/mm2≤[τ]=125N/mm2 满足要求 3、挠度验算 挠度验算荷载统计: q k=g kc+g1k e+(Q1+Q2)e =0.022+0.3×250/1000+(2+2)×250/1000=1.097kN/m (图7)挠度计算受力简图 (图8)次楞变形图 (mm) νmax=0.145mm≤[ν]=max(1000×0.9/150,10)=10mm 满足要求 4、支座反力计算 承载能力极限状态下支座反力为:R=1.516kN 正常使用极限状态下支座反力为:R k=1.086kN 五、主楞验算 按三跨连续梁计算符合工况,偏于安全,计算简图如下:

满堂式碗扣支架支架设计计算知识讲解

满堂式碗扣支架支架设计计算 杭州湾跨海大桥XI合同段中G70~G76墩的上部结构为预应力混凝土连续箱梁,该区段连续箱梁结构设计有两种形式,一为等高段,一为变高段,G70~G70为变高段连续箱梁。为此,依据设计图纸、杭州湾跨海大桥专用施工技术规范、水文、地质情况,并充分结合现场的实际施工状况,为便于该区段连续箱梁的施工,保证箱梁施工的质量、进度、安全,我部采用满堂式碗扣支架组织该区段连续箱梁预应力混凝土逐段现浇施工。 一、满堂式碗扣件支架方案介绍 满堂式碗扣支架体系由支架基础(厚50cm宕渣、10cm级配碎石面层)、Φ48×3mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm底垫木、10cm×15cm或10cm×10cm木方做横向分配梁、10cm×10cm木方纵向分配梁;模板系统由侧模、底模、芯模、端模等组成。10cm×15cm木方分配梁沿横桥向布置,直接铺设在支架顶部的可调节顶托上,箱梁底模板采用定型大块竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm、10cm×10cm 木方分配梁上进行连接固定;侧模、翼缘板模板为整体定型钢模板。(主线桥30m跨等高连续梁一孔满堂支架结构示意图见附图XL-1、2、3所示)。 根据箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过计算确定,每孔支架立杆布置:纵桥向为:3*60cm+30*90cm +2*60cm,共计36排。横桥向立杆间距为:120cm+3*90cm+3*60cm +6*90cm +3*60cm +3*90 cm+120cm,即腹板区为60cm,两侧翼缘板(外侧)为120cm,其余为90cm,共21排;支架立杆步距为120cm,在横梁和腹板部位的支架立杆步距加密为60cm,支架在桥纵向每360cm间距设置剪刀撑;支架两端的纵、横杆系通过垫木牢固支撑在桥墩上;立杆顶部安装可调节顶托,立杆底部支立在底托上,底托安置在支架基础上的10cm×15cm木垫板上。以确保地基均衡受力。 二、支架计算与基础验算 (一)资料 (1)WJ碗扣为Φ48×3.5 mm钢管; (2)立杆、横杆承载性能: 立杆横杆 步距(m)允许载荷(KN)横杆长度(m)允许集中荷载 (KN)) 允许均布荷载 (KN) 0.6 40 0.9 4.5 12

碗扣式支架计算书

现浇板模板(碗扣式支撑)计算书 本标段内K58+288(2-6m小桥)、K60+739(1-8m)小桥、K61+800(1-8m)小桥及6座涵洞的桥面板和涵洞盖板均采用现场浇筑施工,模板支撑采用Ф48mm碗扣式支架搭设,搭设结构为:立杆步距h(上下水平杆轴线间的距离)取1.2及1.5m,立杆纵距l y取0.9m,横距l x取0.9m。为确保施工安全,现选择支架高度最高,荷载最大的K60+739(1-8m)小桥作为代表性结构物进行支架稳定性计算,以验证该类结构物碗扣式支架搭设方案是否安全可靠,计算依据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 一、综合说明 K60+739(1-8m)小桥现浇板模板支架高度在4.96m范围内,按高度5m进行支架稳定性验算。设计范围:K60+739小桥现浇板,长×宽=13.91m×6.38m,厚0.5m。 二、搭设方案 (一)基本搭设参数 模板支架高H为5m,立杆步距h(上下水平杆轴线间的距离)取1.2m,立杆纵距l y 取0.9m,横距l x取0.9m。整个支架的简图如下所示。

碗扣支架布置图 模板采用1.5cm厚竹胶板拼接,模板底部的采用双层10*10cm方木支撑,其中底模方木布设间距为0.3m;横向托梁方木布设间距0.9m。 (二)材料及荷载取值说明 本支撑架使用Φ48 ×3.5钢管,钢管壁厚不小于3.5-0.025mm,钢管上严禁打孔;采用的扣件,不得发生破坏。 上碗扣、可调底座及可调托撑螺母应采用铸钢制造,其材料性能应符合GB11352中ZG270-500的规定。 模板支架承受的荷载包括:模板及模板支撑自重、新浇混凝土自重、钢筋自重,以及施工人员及设备荷载、振捣混凝土时产生的荷载等。 三、板模板支架的强度、刚度及稳定性验算 荷载首先作用在板底模板上,按照"底模→底模方木/钢管→横向水平方木→可调顶托→立杆→可调底托→基础"的传力顺序,分别进行强度、刚度和稳定性验算。 (一)板底模板的强度和刚度验算 模板按三跨连续梁考虑,取模板长1m计算,如图所示:

满堂脚手架设计计算法(最新)

满堂脚手架设计计算方法 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)、 《钢结构设计规范》(GB50017-2003)、《冷弯薄壁型钢结构技术规范》(GB50018-2002)、 《建筑地基基础设计规范》(GB 50007-2002)、《建筑结构荷载规范》(2006年版)(GB 50009-2001)等编制。 一、参数信息: 1.脚手架参数 计算的脚手架为满堂脚手架, 横杆与立杆采用双扣件方式连接,搭设高度为4米,立杆采用单立管。 搭设尺寸为:立杆的纵距l a= 1.20米,立杆的横距l b= 1.20米,立杆的步距h= 1.50米。 采用的钢管类型为Φ48×3.5。 横向杆在上,搭接在纵向杆上的横向杆根数为每跨2根 2.荷载参数砼板厚按均布250mm计算 2400X0.25X1=6.0KN/mm2 施工均布荷载为6.0kN/m2,脚手板自重标准值0.30kN/m2, 脚手架用途:支撑混凝土自重及上部荷载。 满堂脚手架平面示意图

二、横向杆的计算: 横向杆钢管截面力学参数为 截面抵抗矩 W = 5.08cm3; 截面惯性矩 I = 12.19cm4; 横向杆按三跨连续梁进行强度和挠度计算,横向杆在纵向杆的上面。 按照横向杆上面的脚手板和活荷载作为均布荷载计算横向长杆的最大弯矩和变形。 考虑活荷载在横向杆上的最不利布置(验算弯曲正应力和挠度)。 1.作用横向水平杆线荷载 (1)作用横向杆线荷载标准值 q k=(3.00+0.30)×1.20/3=1.32kN/m (2)作用横向杆线荷载设计值 q=(1.4×3.00+1.2×0.30)×1.20/3=1.82kN/m 横向杆计算荷载简图 2.抗弯强度计算 最大弯矩为 M max= 0.117ql b2= 0.117×1.82×1.202=0.307kN.m σ = M max/W = 0.307×106/5080.00=60.49N/mm2 横向杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度为 V=0.990q k l b4/100EI = 0.990×1.32×12004/(100×2.06×105×121900.0) = 1.079mm 横向杆的最大挠度小于1200.0/150与10mm,满足要求! 三、纵向杆的计算:

盘扣式满堂楼板模板支架计算书

盘扣式满堂楼板模板支架计算书 楼板模板的计算参照《建筑施工模板安全技术规范》(JGJ162-2008)、《混凝土结构工程施工规范》(GB506666-2011)、《建筑施工承插型盘扣式钢管支架安全技术规程》(JGJ231-2010)、《混凝土结构设计规范》(GB50010-2010)、《钢结构设计规范》(GB 50017-2003)、《组合钢模板技术规范》(GB50214-2001)、《木结构设计规范》(GB 50005━2003)、《建筑结构荷载规范》(GB 50009-2012)等编制。 一、参数信息: 楼板楼板现浇厚度为0.20米,模板支架搭设高度为3.00米, 搭设尺寸为:立杆的纵距 b=1.20米,立杆的横距 l=1.20米,立杆的步距 h=1.20米。 模板面板采用胶合面板,厚度为18mm, 板底龙骨采用木方: 50×80;间距:300mm; 托梁采用双楞设置,梁顶托采用10号工字钢。 采用的钢管类型为60×3.2, 立杆上端伸出至模板支撑点长度:0.30米。

图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 二、模板面板计算 依据《混凝土结构工程施工规范》GB50666-2011,4.3.5和4.3.6计算。 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板按照三跨连续梁计算。 使用模板类型为:胶合板。 (1)钢筋混凝土板自重(kN/m): q11 = 25.100×0.200×1.200=6.024kN/m (2)模板的自重线荷载(kN/m): q12 = 0.350×1.200=0.420kN/m (3)活荷载为施工荷载标准值(kN/m): q13 = 2.500×1.200=3.000kN/m 均布线荷载标准值为: q = 25.100×0.200×1.200+0.350×1.200=6.444kN/m 均布线荷载设计值为: q1 = 0.90×[1.35×(6.024+0.420)+1.4×0.9×3.000]=11.231kN/m 面板的截面惯性矩I和截面抵抗矩W分别为: 本算例中,截面抵抗矩W和截面惯性矩I分别为: W = 120.00×1.80×1.80/6 = 64.80cm3; I = 120.00×1.80×1.80×1.80/12 = 58.32cm4; (1)抗弯强度计算

满堂碗扣式脚手架计算书

附二满堂碗扣式脚手架计算书 一、试算(采用J41~J47联一截面形式进行试算) 金城路J41~J47连续梁典型截面 设计图5-5剖面 A=24.2063-5.9051-3.2853-4.3915=10.6244m2 (一)取1m纵向计算单元进行荷载计算 1、首次混凝土自重=(5.2069m2×1m×2600kg/m3)/(16.17m× 1m)=837.23kg/m2 2、方木及模板=45kg/m2 3、人行机具=200kg/m2 4、冲击荷载=837.23×0.3=251.17kg/m2 5、二次混凝土自重=5.4175×1×2600/(16.17×1)=871.09kg/m2 6、超过10m排架计算立杆稳定时需计算排架、托架自重 荷载组合Q=1.2×(837.23+45+871.09)+1.4×(200+251.17)=2735.62kg/m2 (二)单肢立杆可支撑面积,按图示二种形式进行初步计算 1、若按支撑支架荷载面积图(1)所示,S=0.6×0.9=0.54m2,立杆步距按

1.2m,则单肢立杆支撑荷载为2735.62×0.54=1477.235kg,此时,应按底柱进行计算,需计算杆件自重产生的压力。按22米计算,则其长度为22×1.8+(1.2+0.6)×12=53.4m,重量为53.4×5=267kg,此时单肢立杆支撑荷载N2=1477.235+1.2×267=1797.635,合1797.635×9.8=17617N (17.617KN)。 2、若按支撑支架荷载面积图(2)所示,S=0.6×0.6=0.36m2,立杆步距按1.2m,则单肢立杆可支撑荷载为N3=2735.62×0.36=984.823kg,此时,若分析单肢杆压杆稳定,则需计算杆件自重产生的压力。按22米计算,则其长度为22×1.8+(1.2+0.6)×12=53.4m,重量为53.4×5=267kg,此时单肢立杆支撑荷载N3=984.823+1.2×267=1305.223kg,合1305.223×9.8=12791N(12.791KN)。 (三)分析计算、结论 1、整体稳定验算: 已知碗扣式脚手架的立杆计算长度系数μw=0.9325μ=0.9325×1.55=1.4454;[μ为相应条件下扣件式脚手架整体稳定的计算长度系数(转化为对长度为步距h的立杆段进行计算)]。f=205N/mm2,D=48mm,d=48-3.5=44.5mm,步距h=1.2m。 长细比λ=μw h/i=1.4454×1.2/[(√(D2+d2))/4]=1.7345/0.0166=105根据λ,查得支架稳定系数φ=0.551。 容许荷载Ncr=φAf/(0.9γm)=0.551×489mm2×205N/mm2/(0.9×1.59)=38598N=38.598KN。[γm为材料强度附加分项系数=1.19(1+η)/

满堂支架计算

办公楼满堂支架施工方案 一、满堂支架方案 2.1、支架设计的要求 2.1.1、支架结构必须有足够的强度、刚度、稳定性。 2.1.2、支架在承重后期弹性和塑性变形应控制在15mm以内。 2.1.3、支架部分地基的沉降量控制在5mm以内,地基承载(压)力达200kPa。 2.1.4、支架顶面与梁底的高差应控制在理想值范围内,且应与预留应变通盘考虑。 2.2、支架基础 按通过后满堂支架的设计方案,要求地基承载力大于200MPa,因此必须对地基作特殊处理。 2.2.1、将原地面腐植地表层上耕植土清除15cm,然后用挖掘机挖松50cm,用强夯分两层压实,底层压实度>80%,顶层压实度>85%。 2.2.2、按2%横向排水坡(主体结构边缘四周排水)填筑宕渣30cm,填筑分两层进行,每层压实厚度为15cm,用强夯压实,底层压实度>90%,顶层压实度>95%。 2.2.3、为了防止浇筑混凝土时,流水软化支架的地基,浇筑厚5cm的C10细石混凝土封闭层。 2.3、满堂支架 在混凝土硬化好的基础顶面放置40*40*7cm C30砼预制块作为支架立杆底座,在已放置好的底座上搭设碗扣式多功能钢支架,支架布置为:底板立杆按0.9m×1.2m进行布置,即立杆纵向间距1.2m,横向间距0.9m,内排距主体0.3m,横向7排,纵向56排,步距1.2m; 支架外围四周设剪刀撑,内部沿主体结构纵向每4排立杆搭设一排横向剪刀撑,横向剪刀撑间距不大于5m,支架高度通过可调托座和可调底座调节。

满堂支架平面布置示意图 满堂支架纵立面布置示意图 满堂支架横立面布置示意图

2.4、模板结构及支撑体系 模板结构是否合适将直接影响该悬挑结构造型的外观,底模面板均采用厚为18mm 的竹胶板,面板尺寸1.2m ×2.8m ,以适应立杆布置间距,面板直接钉在横向方木上,横向方木采用100×100mm 方木,间距25cm ;横向方木置于纵向100×160mm 方木上,纵向方木间距应与立杆横向间距一致。在钉面板时,每块面板应从一端赶向另一端,以保证面板表面平整。 二、支架结构检算 3.1、拟采用的材料截面特性 根据上图的布置方案,采用碗扣式多功能钢支架,对其刚度、强度、稳定性必须进行检算。拟采用钢管外径D=48mm ,壁厚3.5mm ,即内径d=44.5mm 。 断面积2222254.24)45.48.4(14.34/)(cm d D A =÷-?=-=π 转动惯量4444481.664)45.48.4(14.364/)(cm d D J =÷-?=-=π 回转半径cm d D i 64.14)45.48.4(4/)(2/1222/122=÷+=+= 截面模量)32/()(44D d D W -=π 34484.2)8.432()]45.48.4(14.3[cm =?÷-?= 钢材弹性系数MPa E 5101.2?= 钢材容许应力MPa f 170][= 3.2、荷载计算及荷载的组合 计算单元荷载(按受荷较大的梁处计算) A 、钢筋混凝土梁重:2/6.15266.0m kN h W p =?==钢筋砼砼ρ(钢筋混凝土梁重量按 26kN/m 3计算) B 、支架模板重 ① 模板重量: 2/4498.099.24018.0m kN h W p =?==模板模板ρ(竹胶板重量按24.99kN/m 3计算) ② 方木重量: 2/40.01.2 0.98.33)21.20.160.1+30.90.1(0.1m kN h W p =????????==方木方木ρ(方木重量按8.33KN/m3计算) ③ 支架重量: 根据现场情况以21米高支架,步距1.2m 进行检算 2/68.201.0*84.3*18*2*1.2 0.9)9.0(1.2m kN W W W =?+=+=横杆立杆支架(48*3.5杆重量3.84kg/m) C 、人员及机器重 2/2.1m kN W =人员机器

满堂支架计算

中交二航局硚孝高速第QXTJ-6标 标准跨径现浇砼箱梁支架结构计算书 编制 审核 中交第二航务工程局

2010年7月 标准跨径(20m)砼箱梁现浇支架结构设计和计算书 一、设计与验算条件 1、设计与验算假定及原则 为简化计算,对于连续结构按简支结构计算,这样偏于安全;其结构形式及构件型号选用宜结合现场条件尽量采用原有,即可周转和便于采购,租赁以及便于运输的材料;施工简单和便于装拆,节省费用,加快施工进度,确保交通,施工安全及施工质量。 2、设计与验算依据 (1)硚口至孝感高速第QXTJ-06合同段设计说明及相关施工图; (2)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001); (3)公路桥涵技术规范(JTJ041—2000); (4)路桥施工计算手册; 3、工程概况 武汉硚口至孝感高速公路时武汉城市圈中武汉(汉口中心城区)至孝感(孝南区)的快速通道,是武汉城市圈实施交通一体化建设的重要组成部分,同时也是武汉市西北方向环线公路之间的一条快速联络通道,沿线经过武汉市下辖的硚口区、东西湖区以及孝感市下辖的孝南区。第QXTJ-6合同段位于位于武汉市东西湖区的东山农场灯塔大队和胜利大队范围内,为上跨京港澳高速的一个互通(灯塔互通)。主线全长 2.393km(K20+107-K22+500)、其中路基只有24米,主线宽26米。主线通过 A、B、C、D、E、F6条匝道桥与京港澳高速互通,匝道总长4.618Km,其中桥梁长度3.008Km、路基长度1.61Km,宽8.5米。

4、桥型及结构特点 全桥分主线桥、A 、B 、C 、D 、E 和F 六条匝道桥。本项目共有现浇箱梁365孔。箱梁顶宽8.5m-15.54m ,有单室、双室、三室和四室。高度为1.4m 。为非预应力连续箱梁,3跨-6跨为一联。本项目跨越5口鱼塘,一条灌溉渠,10条水沟,其余均为旱地,因此本项目所有旱地均采用满堂脚手架作为临时支撑,鱼塘、沟渠、跨路处采用少支架。 二、现浇箱梁满堂支架设计与验算 由于本工程现浇箱梁跨径不一,但以20m 跨径居多,所以采用20m 跨径、宽12.75m 、梁高为1.4m 、净空为10m 的箱梁为标准跨径箱梁进行计算。采用φ48轮扣式满堂支架搭设,底模、侧模采用竹胶合板、钢模组合模板。经验算满堂支架脚手管的布置型式为: ①箱梁底板下脚手管横桥向布距:箱梁腹板位置为0.6m ,底板及翼缘板区为0.9~1.2m ,层间0.9m 。每根立杆顶端设60cm 顶托,在其上横向铺设I10横向分配梁,箱梁底模面板采用竹胶合板mm 12=δ,纵向次肋为10×10cm 硬杂枋木,箱梁下布置间距均为@=30cm 。外侧模及翼缘底模为面板δ=12mm ;横纵梁均为10×10木枋,横向间距300mm ,顺桥向间距100mm ;内模为δ=12mm 竹胶合板加10×10木枋纵横向主次肋。 ②脚手管纵桥向排距为60cm 。具体布置见图一。 ③同时支架横向采用φ80×3.5mm 普通脚手管设置剪刀撑,以增加支架整体稳定性,剪刀撑均上、下到底。

碗扣式脚手架结构设计计算(含计算书)

碗扣式脚手架结构设计计算 1 基本设计规定: 1.1本规范的结构设计依据《建筑结构设计统一标准》GBJ68-84、《建筑结构荷载规范》GB5009-2001和《钢结构设计规范》GB50017-2003及《冷弯薄壁型钢结构技术规范》GB50018-2002等国家标准的规定。采用概率理论为基础的极限状态设计法,以分项系数的设计表达式进行设计。 1.2脚手架的结构设计应保证整体结构形成几何不变体系,以“结构计算简图”为依据进行结构计算。脚手架立、横、斜杆组成的节点视为“铰接”。 1.3脚手架立、横杆构成网格体系几何不变条件应保证(满足)网格的每层有一根斜杆(图1.3)。 图 1.3 网络结构几何不变条件 1.4 模板支撑架(满堂架)几何不变条件应保证(是)沿立杆轴线(包括平面x、y两个方向)的每行每列网格结构竖向每层有一根斜杆(图1.4),也可采用侧面增加链杆与结构柱、墙相连(图 1.4-1所示)或采用格构柱法(图 1.4-2)。

图 1.4满堂架几何不变体系 图 1.4-1侧面增加支撑链杆法图 1.4-2 格构柱法 1.5 双排脚手架沿纵轴x方向形成两片网格结构的几何不变条件可采用每层设一根斜杆(图 1.5),在y轴方向应与连墙件支撑作用共同分析: 1当两立杆间无斜杆时(图 1.5a),立杆的计算长度l0等于拉墙件间垂直距离;

2当两立杆间增设斜杆(图 1.5 b)则其立杆计算长度l0等于立杆节点间的距离。 3无拉墙件立杆应在拉墙件标高处增设水平斜杆,使内外大横杆间形成水平桁架(图1.5A-A剖面)。 图 1.5双排外脚手架结构计算简图 1.6 双排脚手架无风荷载时,立杆一般按承受垂直荷载计算,当有风荷载时按压弯构件计算。 1.7 当横杆承受非节点荷载时,应进行抗弯强度计算,当风荷载较大时应验算连接斜杆两端扣件的承载力; 1.8 所有杆件长细比λ=l0 /i不得大于250。 1.9当杆件变形有控制要求时,应按照正常使用极限状态验算其变形。 1.10脚手架不挂密目网时,可不进行风荷载计算;当脚手架采用密目安全网或其他方法封闭时,则应按挡风面积进行计算。 2 施工设计

碗扣支架计算书

至高铁DK110+217~DK138+151.98 干板沟特大桥(40+64+40)m连续梁桥 现浇支架计算书 中铁十二局集团 通宇公路研究所 二零一七年四月

第一部分概述 一、编制依据 1、现行铁路工程施工技术指南、规程、验收标准及工程建设的相关文件; 2、施工单位提供的有关资料。 二、计算及参考依据 计算及参考的依据主要有: 1、铁路混凝土梁支架法现浇施工技术规程(TB10110-2011) 2、铁路桥涵施工规(TB10203-2002) 3、建筑结构荷载规(GB50009-2012) 4、钢结构设计规(GB50017-2014) 5、铁路桥涵钢筋混凝土及预应力混凝土结构设计规(TB10002.3-2005 ) 6、铁路桥涵设计基本规(TB10002.1-2005 ) 三、工程概况 至高铁DK110+217~DK138+151.98干板沟特大桥(40+64+40)m连续梁桥,采用支架现浇法施工,箱梁为变截面箱梁。本桥采用双线矩形空心桥台基础,圆端形实体桥墩、圆端形空心桥墩,桩基共有φ150、φ125两种形式,全桥均采用钻孔灌注桩基础。 第二部分现浇支架计算 一、支架布置 干板沟特大桥支架体系自上而下依次为6mm定制钢模,I20工字钢分配梁,Φ48×3.5碗口脚手架,立杆底托安置在厚30cm C20混凝土硬化层上,采用15cm ×10cm木垫板支垫,纵桥向立杆间距为60cm,横桥向立杆间距60cm,立杆步距

60cm,12#,11#桥墩两侧梁体腹板区横、纵桥向立杆间距加密为30cm,10#、13#现浇直线段横桥向立杆间距加密为30cm。支架在桥纵向每360cm间距设置剪力撑,剪力杆与地面成45度,剪力撑按构造要求布置。支架布置示意图如下所示。 图1 纵桥向支架布置图(单位:cm)

满堂脚手架荷载计算

扣件钢管楼板模板支架计算书 计算参数: 模板支架搭设高度为5.7m, 立杆的纵距 b=0.80m,立杆的横距 l=0.80m,立杆的步距 h=1.50m。 面板厚度18mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000.0N/mm2。 木方50×100mm,间距100mm,剪切强度1.3N/mm2,抗弯强度13.0N/mm2,弹性模量9000.0N/mm2。 模板自重0.50kN/m2,混凝土钢筋自重24.00kN/m3,施工活荷载2.50kN/m2。 扣件计算折减系数取1.00。 图1 楼板支撑架立面简图 图2 楼板支撑架荷载计算单元 采用的钢管类型为48×3.5。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算。 静荷载标准值 q1 = 24.000×0.180×0.800+0.500×0.800=3.856kN/m

活荷载标准值 q2 = (0.000+2.500)×0.800=2.000kN/m 面板的截面惯性矩I 和截面抵抗矩W 分别为: 本算例中,截面惯性矩I 和截面抵抗矩W 分别为: W = 80.00×1.80×1.80/6 = 43.20cm 3; I = 80.00×1.80×1.80×1.80/12 = 38.88cm 4; (1)抗弯强度计算 f = M / W < [f] 其中 f —— 面板的抗弯强度计算值(N/mm 2); M —— 面板的最大弯距(N.mm); W —— 面板的净截面抵抗矩; [f] —— 面板的抗弯强度设计值,取15.00N/mm 2; M = 0.100ql 2 其中 q —— 荷载设计值(kN/m); 经计算得到 M = 0.100×(1.20×3.856+1.40×2.000)×0.100×0.100=0.007kN.m 经计算得到面板抗弯强度计算值 f = 0.007×1000×1000/43200=0.172N/mm 2 面板的抗弯强度验算 f < [f],满足要求! (2)抗剪计算 T = 3Q/2bh < [T] 其中最大剪力 Q=0.600×(1.20×3.856+1.4×2.000)×0.100=0.446kN 截面抗剪强度计算值 T=3×446.0/(2×800.000×18.000)=0.046N/mm 2 截面抗剪强度设计值 [T]=1.40N/mm 2 抗剪强度验算 T < [T],满足要求! (3)挠度计算 v = 0.677ql 4 / 100EI < [v] = l / 250 面板最大挠度计算值 v = 0.677×3.856×1004/(100×6000×388800)=0.001mm 面板的最大挠度小于100.0/250,满足要求! 二、板底支撑钢管计算 横向支撑钢管计算 横向支撑钢管按照集中荷载作用下的连续梁计算。 集中荷载P 取木方支撑传递力。 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 0.82k N 支撑钢管计算简图

满堂脚手架计算方法

L --长杆总长度(m);N2 --直角扣件数(个); N3 --对接扣件数(个);

N4 --旋转扣件数(个); S --脚手板面积(m2); n --立杆总数(根) n=121; H --搭设高度(m) H=18; n1 --纵向跨度n1=10; n2 --横向跨度n2=10; h --步距(m) h=; la--立杆纵距(m) la=; lb --立杆横距(m) lb=; 长杆总长度(m) L =×18×(121+×121/× 直角扣件数(个) N2=×18/×121=3485 对接扣件数(个) N3=6=1075 旋转扣件数(个) N4=×6=322 脚手板面积(m2) S=×10×10××= 根据以上公式计算得长杆总长米;直角扣件3485个;对接扣件1075个;旋转扣件322个;脚手板。 九、脚手架的搭设要求: 1、满堂脚手架搭设在建筑物楼面上时,脚手架自重及施工荷载应在楼面设计荷载许可范围内, 否则须经验算后制定加固方案;

2、立杆搭设应符合下列规定: (1)当立杆基础不在同一高度上时,必须将高处的纵向扫地杆向低处延长两跨与立杆固定,高低差不应大于1m;靠边坡上方的立杆轴线到边坡的距离不应小于500mm,如下图所示: (2)立杆接长除顶层顶步外,其余各层各步接头必须采用对接扣件连接; (3)立杆顶端宜高出女儿墙上皮1m,高出檐口上皮m; 3、水平杆搭设应符合下列规定,如图所示: (1)纵向水平杆应设置在立杆内侧,其长度不宜小于3跨; (2)纵向水平杆接长宜采用对接扣件连接,也可采用搭接; (3)横向水平杆应放置在纵向水平杆上部,靠墙一端至墙装饰面距离不宜大于100mm; (4)主节点处必须设置横向水平杆; (5)杆件接头应交错布置,两根相邻杆件接头不应设置在同步或同跨内,接头位置错开距离不应小于500mm, 各接头中心至主节点的距离不宜大于纵距的1/3; (6)搭接接头的搭接长度不应小于1m,应采用不少于3个旋转扣件固定; 4、扫地杆设置应符合下列要求: (1)纵向扫地杆必须连续设置,钢管中心距地面不得大于200mm; (2)脚手架底部主节点处应设置横向扫地杆,其位置应在纵向扫地杆下方;5、扣件安装应符合下列规定:

满堂支架计算材料

新建武汉至咸宁城际铁路二标连续梁满堂支架临时结构检算资料 中国铁建 中铁十一局集团武咸城际铁路二标项目经理部 二〇一一年十一月

目录 一、项目概况 (1) 二、临时结构方案 (3) 三、支架布置图 (6) 四、支架计算书 (9) 五、相片资料 (23)

一、项目概况 1. 概况 武咸城际铁路位于湖北省南部,北连"九省通衢"武汉,南接鄂南著名的生态城市咸宁,自武汉枢纽武昌站引出,途经东湖新技术开发区、庙山经济开发区,江夏区纸纺镇、于贺站进入咸宁市境内。全线运营长度90.12km,新建正线长度77km,其中武汉市境内长51.6km,咸宁市境内长25.4km。 WXSG-2标段位于湖北省咸宁市境内,起点桩号为DK53+500,终点桩号为DK76+062,全长22.562公里。十六潭特大桥位于湖北省咸宁市甘鲁村以及咸安区经济开发区境内,在DK69+960-DK70+000处采用(40+64+40)m连续梁跨越横温路,银泉大道行车道为双向4车道,正宽约24m,与线路夹角144°。 图1 线路关系图 连续箱梁全长145.2m,计算跨径40+64+40m,为单箱单室、变高度、变截面结构。中支点处梁高5.4m,跨中2m直线段及边跨7.6m直线段处梁高均为3.00m,梁底下缘按二次抛物线变化;箱梁顶宽12.2米,箱梁底宽为变截面,中支点处为6.91m,其余按5.54m~6.150m线性变化;顶板厚度除梁端附近外均为37cm;底板厚度44~72cm,按圆曲线线性变化;腹板厚度50~70cm,按折线变化。全梁在端支点、中跨中及中支点处共设5个横隔板,横隔板设有过人门洞,供检查人员通过。 箱梁采用纵、横、竖三向预应力体系。主桥箱梁共分7个节段,其中2A0#块长27m、2A1#块长17.5m、2A2#块长27.1m、中跨合拢段2m。

满堂支架设计计算实例

满堂支架设计计算(一)1.《京承高速公路—陡子峪大桥工程施工图》 2. 《公路钢筋砼及预应力砼桥涵设计规范》JTJ023-85 (0#台—1#墩)出京线 3.目录《公路桥涵施工技术规范》JTJ041-2000 4. 《扣件式钢管脚手架安全技术规范》JGJ130-2001 5. 《公路桥涵钢结构及木结构设计规范》JTJ025-86 6.《简明施工计算手册》1 一、设计依据.......................................................................................二、地基容许承载力1 二、地基容许承载力..............................................................................根据本桥实际施工地质柱状图,地表覆盖层主要以亚粘素填土为主,地基承载力三、箱梁砼自重荷载分布 (1) 较好。四、模板、支架、枕木等自重及施工荷载 (2) 为了保证地基承载力不小于12t/ 五、支架受力计算㎡,需要进行地基处理。地基表皮层进行土层换填,换填如下:开挖标高见图纸,底层填0.5m中砂,经过三次浇水、分层碾压(平、立杆稳定计算 (15) 板震动器)夯实,地基面应平整,夯实后铺设5cm2、立杆扣件式钢管强度计算……………………………………………………6 石子,继续

压实,并进行承载力检测。整平地基时应注意做好排水设施系统,防止雨水浸泡地基,、纵横向水平钢管承载力...............................................................36 导致地基承载力下降、基础发生沉降。钢管支架和模板铺设好后,按6 4、地基承载力的检算.....................................................................120%设计荷载进行预压,避免不均匀沉降。、底模、分配梁计算 (57) 三、箱梁砼自重荷载分布12 、预拱度计算 (6) 根据设计图纸,箱梁单重为819t。 墩顶实心段砼由设于墩顶的底模直接传递给墩身,此部分不予检算。对于空心段 箱梁,根据《0#台-1#墩出京线30米跨箱梁满堂支架施工总体布置图》,综合考虑箱梁横截面面积和钢管支架立杆纵向间距,空心段箱 梁腹板等厚段下方,纵桥向间距最 d=大的立杆受力最不利。根据立杆纵桥向布置,受力最不利立杆纵向间距取为一、设计依据 (0.9+1.2)/2=1.05m。本计算书主要检算该范围箱梁和支架受力。载均匀传至地基。 1、底模、外模面积共:15.16×四种形式,横向间距为30=454.80m 钢管支架立杆纵向间距为30cm、60cm、90cm、120cm2共重:120cm+3×60cm+3×90cm+60cm+3×90cm+3×60cm+120cm。

碗扣支架计算书

目录 一、计算概况 (3) 二、计算依据 (3) 三、荷载分析 (3) 四、设计计算参数确定 (4) 五、底板底模竹胶板计算 (5) (一)跨中A-A断面荷载计算 (5) 1、荷载分析 (5) 2、强度计算 (6) 3、刚度验算 (6) (二)跨边B-B断面荷载计算 (6) 1、荷载分析 (7) 2、强度计算 (7) 3、刚度验算 (8) 六、腹板钢模板计算 (8) (一)水平荷载 (8) (二)截面参数及材料力学性能指标 (8) (三)承载力检算 (9) 1、强度 (9) 2、刚度 (9) 七、底模纵向方木计算 (9) (一)跨中A-A断面荷载计算 (9) 1、荷载分析 (10) 2、强度计算 (10) 3、刚度验算 (11) (二)跨边B-B断面荷载计算 (11) 1、荷载分析 (11) 2、强度计算 (12) 3、刚度验算 (12)

八、底模横向方木计算 (13) (一)跨中A-A断面荷载计算 (13) 1、荷载分析 (13) 2、强度计算 (14) 3、刚度验算 (15) (二)跨边B-B断面荷载计算 (15) 1、荷载分析 (16) 2、强度计算 (16) 3、刚度验算 (17) 九、贝雷梁钢管支架受力计算 (17) (一)跨中A-A断面荷载计算 (18) 1、荷载分析(S1、S3部分立杆间距为0.9m时) (18) 2、荷载分析(S2、S4部分立杆间距为0.6m时) (19) (二)跨边B-B断面荷载计算 (20) 1、荷载分析(S1部分立杆间距为0.9m时) (20) 2、荷载分析(S2部分立杆间距为0.6m时) (21) 十、贝雷梁钢管支架重量计算 (22) 十一、垫层混凝土强度验算 (24) (一)跨中A-A断面荷载计算 (24) 1、荷载分析(S1、S3部分,支架间距90cm×120cm) (24) 2、荷载分析(S2、S4部分,支架间距60cm×120cm) (25) (二)跨边B-B断面荷载计算 (26) 1、荷载分析(S1部分,立杆横向间距0.9m) (26) 2、荷载分析(S2部分,立杆横向间距0.6m) (27) 十二、地基土承载力验算 (28)

碗扣支架承载力计算书示范

碗扣支架承载力计算书 满堂支架承载力计算书 (30+45*2+30联) 一、编制说明: 高架桥第七联为30+45*2+30m,施工采用满堂支架,梁高从1.8m到2.5m渐变,腹板宽度由0.45m到0.7m渐变,为保证支架承载力满足施工要求,而编制计算书。 二、编制依据: 1、公路施工手册《桥涵》 三、支架承载力计算书: 1、翼缘板: 1)砼重量:1/2×(0.55+0.22) )×3.375×150×25=4873KN 2)施工人员及设备荷载:1.OKN/m2×3.375×150=507KN 3)振捣产生荷载:2.OKN/m2×3.375×150=1013KN 4)模板及支架自重:1.OKN/m2×3.375×150=507KN 合计:4873×1.2+507×1.4+1013×1.4+507×1.2=8584 KN 碗扣支架采用行距1.2m,步距0.9m总计需用3×167=501根 立杆单根极限承载力3OKN 施工所需承载力8584/501=17KN<30KN 因此布置1.2×0.9,满足施工要求。 2、主箱梁总体: 1)砼重量:(1595.6 m3-389.8m3)×25=30145KN 2)振捣产生荷载: 1.OKN/㎡×8×150=1200KN 3)振捣产生荷载:2.OKN/㎡×8×150=2400KN 4)模板及支架自重: 1.OKN/㎡×8×150=1200 KN 合计:30145×1.2+1200×1.4+2400×1.4+1200×1.2=42654 KN 碗扣支架采用行距1.2m步距0.9m,在每跨两侧12m范围内加密行距0.6m步距0.9m,总计8*167+3*91=1609KN, 施工所需承载力42654/1609=26.5KN<30KN, 因此上述布置满足要求。 3、主箱梁高为2.5m处验算:

案例一:满堂支架

支架分析设计北京迈达斯技术有限公司

支架分析设计 概要 此例题介绍使用midas Civil建立并计算满堂支架结构的刚度、强度及稳定性的详细教程。 此例题的步骤如下: I. 简介 II. 建立新项目并设定操作环境 III. 定义特性信息 IV. 建立几何模型 V. 建立边界条件 VI. 添加荷载 VII. 定义分析控制数据 VIII. 运行分析 IX. 查看结果

I. 简介 本例题通过跨径为32m 混凝土简支现浇梁满堂支架的结构模型,详细介绍midas Civil建立结构模型、施加边界条件和施工荷载、查看分析结果等具体步骤,进行强度、刚度、稳定性及应力分析的方法。 满堂支架高度 18.4m,横向宽度16.2m,纵向长度32.4m,支架上方纵向倒扣 C 36b 的槽钢,钢材材质为 A3 钢,上部荷载通过 25mm竹胶板及150mm×150mm方木传递到槽钢,支架竖向层高1.2m,横向、纵向水平间距为0.9m,见下图,结构构造尺寸可参考《建筑施工碗口式钢管脚手架安全技术规范》。 该例题数据仅供参考

II. 建立新项目并设定操作环境 ?主菜单选择文件>新项目 ?主菜单选择文件> 保存:输入文件名并保存 ?主菜单选择工具> 单位系:选择单位(可设为默认) 建模过程中,可以点击状态栏中单位系变化单位体系

III. 定义特性信息 ?主菜单选择特性> 材料特性值 点击添加 选择设计类型:钢材 选择规范:JTJ(S)1 选择数据库:A3 点击适用2 选择设计类型:用户定义3 弹性模量:1.6272e+001 泊松比:0.42 容重:5.394e-009 点击确定 1规范根据实际选择,可以选择GB12(S) 2确定和适用均可,适用不关闭窗口 3根据计算要求填入必要数据

相关主题
文本预览
相关文档 最新文档