当前位置:文档之家› MTL5500series data sheets

MTL5500series data sheets

MTL5500series data sheets
MTL5500series data sheets

L EUROPE (EMEA) Tel: +44 (0)1582 723633 Fax: +44 (0)1582 422283

MTL5500

I/O MODULES by application

INTERFACE

four-channel, digital input

The MTL5510 enables four solid-state outputs in the safe area to be controlled by up to four switches or proximity detectors located in a hazardous area. Each pair of output transistors shares a common terminal and can switch +ve or –ve polarity signals. A range of module configurations is available (see Table 1) through the use of selector switches. When proximity detector modes are selected, LFD is enabled and the output switches to OFF if a line fault is detected.

SPECIFICATION

See also common specification

Number of channels

4, configured by switches

Location of switches

Zone 0, IIC, T6 hazardous area

Div 1, Group A hazardous location

Location of proximity detectors

Zone 0, IIC, T4-6 hazardous area if suitably certified

Div 1, Group A, hazardous location

Hazardous-area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for

proximity detectors (NAMUR)

Voltage applied to sensor

7 to 9V dc from 1kΩ ±10%

Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2kΩ in input circuit)

Outputs open if input < 1.2mA (> 10kΩ in input circuit)

Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User-selectable via switches on the side of the unit.

Open-circuit alarm on if Iin < 50μA

Open-circuit alarm off if Iin > 250μA

Short-circuit alarm on if Rin < 100Ω

Short-circuit alarm off if Rin > 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact

input

500Ω to 1kΩ in series with switch

20kΩ to 25kΩ in parallel with switch

Safe-area outputs

Floating solid-state outputs compatible with logic circuits

Operating frequency: dc to 500Hz

Max. off-state voltage: ± 35V

Max. off-state leakage current: ± 50μA

Max. on-state resistance: 25Ω

Max. on-state current: ± 50mA

LED indicators

Green: power indication

Yellow: four: indicates output active

Red: indicates line fault + faulty channel’s yellow LED flashes Maximum current consumption

40mA at 24V (with all output channels energised)

Power dissipation within unit

0.96W at 24V, with 10mA loads

Safety description (each channel)

V

o =10.5V I

o

=14mA P

o

=37mW U

m

= 253V rms or dc

Terminal Function

1 Input

channel

A

2 Input channel AB common (+)

3 Input

channel

B

4 Input

channel

C

5 Input channel CD common (+)

6 Input

channel

D

7 Output

channel

4

8 Output channel 3/4 common

9 Output

channel

3

10 Output

channel

2

11 Output channel 1/2 common

12 Output

channel

1

13 Supply

–ve

14 Supply

+ve

See Instruction Manual INM5500 for further mode information.

INTERFACE

four-channel, multi-function, digital input

The MTL5510B enables four solid-state outputs in the safe area to be controlled by up to four switches or proximity detectors located in a hazardous area. Each pair of output transistors shares a common terminal and can switch +ve or –ve polarity signals. A range of module configurations is available (see Table 1) through the use of selector switches. These include start/stop operations and pulse output modes.

SPECIFICATION

See also common specification

Number of channels

4, configured by switches

Location of switches

Zone 0, IIC, T6 hazardous area

Div 1, Group A hazardous location

Location of proximity detectors

Zone 0, IIC, T4-6 hazardous area if suitably certified

Div 1, Group A, hazardous location

Hazardous-area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for

proximity detectors (NAMUR)

Voltage applied to sensor

7 to 9V dc from 1kΩ ±10%

Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2kΩ in input circuit)

Outputs open if input < 1.2mA (> 10kΩ in input circuit)

Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User-selectable via switches on the side of the unit.

Open-circuit alarm on if Iin < 50μA

Open-circuit alarm off if Iin > 250μA

Short-circuit alarm on if Rin < 100Ω

Short-circuit alarm off if Rin > 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact

input

500Ω to 1kΩ in series with switch

20kΩ to 25kΩ in parallel with switch

Safe-area outputs

Floating solid-state outputs compatible with logic circuits

Operating frequency: dc to 500Hz

Max. off-state voltage: ± 35V

Max. off-state leakage current: ± 50μA

Max. on-state resistance: 25Ω

Max. on-state current: ± 50mA

LED indicators

Green: power indication

Yellow: four: indicates output active

Red: LFD indication + faulty channel’s yellow LED flashes Maximum current consumption

40mA at 24V (with all output channels energised)

Power dissipation within unit

0.96W at 24V, with 10mA loads

Safety description (each channel)

V

o =10.5V I

o

=14mA P

o

=37mW U

m

= 253V rms or dc

* Note that terminal connections may not be the same on these models

See Instruction Manual INM5500 for further mode information.

Terminal Function

1 Input

channel

A

2 Input channel AB common (+)

3 Input

channel

B

4 Input

channel

C

5 Input channel CD common (+)

6 Input

channel

D

7 Output

channel

4

8 Output channel 3/4 common

9 Output

channel

3

10 Output

channel

2

11 Output channel 1/2 common

12 Output

channel

1

13 Supply

–ve

14 Supply

+ve

INTERFACE

single channel, with line fault detection

The MTL5511 enables a safe-area load to be controlled by a switch or proximity detector located in a hazardous-area. When selected, open or short circuit conditions in the field wiring are detected by the line-fault-detect (LFD) facility and also indicated on the top of the module. Phase reversal for the channel is selected by a switch on the side of the module and output is provided by changeover relay contacts.

SPECIFICATION

See also common specification

Number of channels

One

Location of switches

Zone 0, IIC, T6 hazardous area

Div. 1, Group A hazardous location

Location of proximity detector

Zone 0, IIC, T4–6 hazardous area if suitably certified

Div. 1, Group A hazardous location

Hazardous-area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for

proximity detectors (NAMUR)

Voltage applied to sensor

7 to 9V dc from 1kΩ ±10%

Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2kΩ in input circuit)

Outputs open if input < 1.2mA (> 10kΩ in input circuit)

Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User-selectable via switches on the side of the unit. A line fault is indicated by an LED. The channel output relay is de-energised if an input line fault is detected.

Open-circuit alarm on if Iin < 50μA

Open-circuit alarm off if Iin > 250μA

Short-circuit alarm on if Rin < 100Ω

Short-circuit alarm off if Rin > 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact

input

500Ω to 1kΩ in series with switch

20kΩ to 25kΩ in parallel with switch

Safe-area output

Single pole relay with changeover contacts

Note: reactive loads must be adequately suppressed

Relay characteristics

Response time: 10ms maximum

Contact rating: 250V ac, 2A, cos? >0.7

40V dc, 2A, resistive load LED indicators

Green: power indication

Yellow: channel status, on when output is energised

Red: LFD indication, on when line fault is detected Maximum current consumption

25mA at 24V

Power dissipation within unit

0.6W at 24V

Safety description (each channel)

V

o

=10.5V I

o

=14mA P

o

=37mW U

m

= 253V rms or dc Terminal Function

1 Input

–ve

2 Input

+ve

3 To earth leakage detector

10 Output normally-closed contact

11

C

ommon

12 Output normally-open contact

13 Supply

–ve

14 Supply

+ve

The MTL5513 enables two solid-state outputs in the safe area to be controlled by two switches or proximity detectors located in the hazardous area. The C h1/C h2 output transistors share a common terminal and can switch +ve or -ve polarity signals. Independent output phase reversal and line fault detection are enabled via switches for each output. LFD indication is provided on the top of the module.

SPECIFICATION

See also common specification

Number of channels

Two

Location of switches

Zone 0, IIC, T6 hazardous area Div. 1, Group A hazardous location Location of proximity detectors

Zone 0, IIC, T4–6 hazardous area if suitably certified Div. 1, Group A hazardous location Hazardous-area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for proximity detectors (NAMUR)Voltage applied to sensor

7 to 9V dc from 1k Ω ±10%Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2k Ω in input circuit) Outputs open if input < 1.2mA (> 10k Ω in input circuit)Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User-selectable for each channel via switches on the side of the unit. Line faults are indicated by an LED for each channel. Open-circuit alarm on if Iin < 50μA Open-circuit alarm off if Iin > 250μA Short-circuit alarm on if Rin < 100ΩShort-circuit alarm off if Rin > 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact input 500Ω to 1k Ω in series with switch 20k Ω to 25k Ω in parallel with switch

Phase reversal

Independent for each channel, user-selectable Safe-area outputs

Floating solid-state outputs compatible with logic circuits Operating frequency: dc to 500Hz Max. off-state voltage: ± 35V Max. off-state leakage current: ± 50μA Max. on-state resistance: 25ΩMax. on-state current: ± 50mA

MTL5513 SWITCH/

PROXIMITY DETECTOR INTERFACE

two-channel, with line fault detection and phase reversal

LED indicators

Green: power indication

Yellow: two: channel status, on when outputs are on Red: two: LFD indication, on when line fault detected Maximum current consumption

27mA at 24V

Power dissipation within unit

0.65W typical at 24V, with 10mA loads 0.78W max. with 50mA loads

Safety description (each channel)

V o =10.5V I o =14mA P o =37mW U m = 253V rms or dc

Terminal Function

1 Input –ve (Ch 1)

2 Input +ve (Ch 1) 4 Input –ve (Ch 2) 5 Input +ve (Ch 2)

6 To earth leakage detector 10 Output (Ch 2)

11 Output (Ch 1/Ch 2) 12

Output (Ch 1) 13 Supply –ve 14

Supply +ve

MTL5514 SWITCH/

PROXIMITY DETECTOR INTERFACE

single channel with line fault detection and phase reversal

The MTL5514 enables a safe–area load to be controlled, through a relay, by a proximity detector or switch located in a hazardous area. Line faults are signalled through a separate relay and indicated on the top of the module. Switches are provided to select phase reversal and to enable the line fault detection.

SPECIFICATION

See also common specification

Number of channels

One

Location of switch

Zone 0, IIC, T6 hazardous area Div.1, Group A, hazardous location Location of proximity detector

Zone 0, IIC, T4–6 hazardous area, if suitably certified Div.1, Group A, hazardous location Hazardous–area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for proximity detectors (NAMUR)Voltage applied to sensor

7 to 9V dc from 1k Ω ±10%Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2k Ω in input circuit) Outputs open if input < 1.2mA (> 10k Ω in input circuit)Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User-selectable via switches on the side of the unit. Line faults are indicated by an LED. Line fault relay is energised and channel output relay de-energised if input line-fault detected Open-circuit alarm on if I in < 50μA Open-circuit alarm off if I in > 250μA Short-circuit alarm on if R in < 100ΩShort-circuit alarm off if R in > 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact input 500Ω to 1k Ω in series with switch 20k Ω to 25k Ω in parallel with switch

Safe-area output

Channel: Single pole relay with changeover contacts LFD: Single pole relay with changeover contacts

Note: reactive loads must be adequately suppressed

Relay characteristics Response time: 10ms maximum Contact rating: 250V ac, 2A, cos? >0.7 40V dc, 2A, resistive load

LED indicators

Green: power indication

Yellow: channel status, on when output circuit is closed Red: LFD indication, on when line fault is detected Maximum current consumption

25mA at 24V dc

Power dissipation within unit

0.6W at 24V Safety description

V o =10.5V I o =14mA P o =37mW U m = 253V rms or dc

Terminal Function

1 Input –ve

2 Input +ve

3 To earth leakage detector 7

LFD NC contact 8 LFD C

ommon 9 LFD NO contact 10

Output NC contact 11 Output C ommon 12 Output NO contact 13

Supply – ve 14

Supply +ve

MTL5516C SWITCH/PROXIMITY DETECTOR INTERFACE

two-channel, with line fault detection

The MTL5516C enables two safe-area loads to be controlled by a switch or proximity detector located in a hazardous-area. When selected, open or short circuit conditions in the field wiring are detected by the line-fault-detect (LFD) facility and also indicated on the top of the module. Phase reversal for each channel is selected by a switch on the side of the module and output is provided by changeover relay contacts.

SPECIFICATION

See also common specification

Number of channels

Two

Location of switches

Zone 0, IIC, T6 hazardous area Div. 1, Group A hazardous location Location of proximity detector

Zone 0, IIC, T4–6 hazardous area if suitably certified Div. 1, Group A hazardous location Hazardous-area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for proximity detectors (NAMUR)Voltage applied to sensor

7 to 9V dc from 1k Ω ±10%Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2k Ω in input circuit) Outputs open if input < 1.2mA (> 10k Ω in input circuit)Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User-selectable via switches on the side of the unit. Line faults are indicated by an LED for each channel. The channel output relay is de-energised if an input line fault is detected.Open-circuit alarm on if I in < 50μA Open-circuit alarm off if I in > 250μA Short-circuit alarm on if R in < 100ΩShort-circuit alarm off if R in > 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact input 500Ω to 1k Ω in series with switch 20k Ω to 25k Ω in parallel with switch

Safe-area output

Two single-pole relays with changeover contacts

Note: reactive loads must be adequately suppressed

Relay characteristics

Response time: 10ms maximum Contact rating: 250V ac, 2A, cos? >0.7 40V dc, 2A, resistive load

LED indicators

Green: power indication

Yellow: two: channel status, on when output is energised Red: two: LFD indication, on when line fault detected Maximum current consumption

35mA at 24V

Power dissipation within unit

0.84W at 24V

Safety description (each channel)

V o =10.5V I o =14mA P o =37mW U m = 253V rms or dc

Terminal Function

1 Input –ve (Ch 1)

2 Input +ve (Ch 1) 4 Input –ve (Ch 2) 5 Input +ve (Ch 2) 6 To earth leakage detector 7 Normally-closed contact (Ch 2) 8 Common (Ch 2) 9 Normally-open contact (Ch 2) 10 Normally-closed contact (Ch 1) 11 C ommon (C h 1) 12 Normally-open contact (Ch 1) 1

3 Supply –ve 1

4 Supply +ve

MTL5517 SWITCH/ PROXIMITY DETECTOR INTERFACE

two-channel with line fault detection

and phase reversal

The MTL5517 enables two safe-area loads to be controlled, through a relay, by proximity detectors or switches located in a hazardous area. Line faults are signalled through a separate relay and indicated on the top of the module. Switches are provided to select phase reversal and to enable the line fault detection.

SPECIFICATION

See also common specification

Number of channels

Two

Location of switch

Zone 0, IIC, T6 hazardous area

Div.1, Group A, hazardous location

Location of proximity detector

Zone 0, IIC, T4–6 hazardous area, if suitably certified

Div.1, Group A, hazardous location

Hazardous-area inputs

Inputs conforming to BS EN60947–5–6:2001 standards for

proximity detectors (NAMUR)

Voltage applied to sensor

7 to 9V dc from 1kΩ ±10%

Input/output characteristics

Normal phase

Outputs closed if input > 2.1mA (< 2kΩ in input circuit)

Outputs open if input < 1.2mA (> 10kΩ in input circuit)

Hysteresis: 200μA (650Ω) nominal

Line fault detection (LFD) (when selected)

User selectable by switches on the side of the module. LIne faults are indicated by the LED for each channel.

Line fault relay is energised and channel output relay de-

energised if input line-fault detected

Open-circuit alarm on if I

in < 50μA

Open-circuit alarm off if I

in > 250μA

Short-circuit alarm on if R

in < 100Ω

Short-circuit alarm off if R

in

> 360Ω

Note: Resistors must be fitted when using the LFD facility with a contact input 500Ω to 1kΩ in series with switch

20kΩ to 25kΩ in parallel with switch

Safe-area output

Channel: Two single-pole relays with normally open contacts LFD: Single pole relay with changeover contacts

Note: reactive loads must be adequately suppressed

Relay characteristics

Response time: 10ms maximum

Contact rating: 250V ac, 2A, cos? >0.7

40V dc, 2A, resistive load LED indicators

Green: power indication

Yellow: two: channel status, on when output is energised Red: two: LFD indication, on when line fault detected Maximum current consumption

35mA at 24V

Power dissipation within unit

0.84W at 24V

Safety description (each channel)

V

o

=10.5V I

o

=14mA P

o

=37mW U

m

= 253V rms or dc

Terminal Function

1Input–ve(C

h1)

2Input+ve(C

h1)

3To earth leakage detector

4Input–ve(C

h2)

5Input+ve(C

h2)

6To earth leakage detector

7Line fault detection

8Output (Ch 2)

9Output (Ch 2)

10Line fault detection

11Output (Ch 1)

12Output (Ch 1)

13Supply –ve

14Supply +ve

MTL5521 SOLENOID/ALARM DRIVER

loop-powered, IIC

The MTL5521 is a loop-powered module which enables a device located in the hazardous area to be controlled from the safe area. The MTL5521 can drive a certified intrinsically safe low-power load, as well as non-energy-storing simple apparatus such as an LED.

SPECIFICATION

See also common specification

Number of channels

One

Location of load

Zone 0, IIC, T4–-6 hazardous area if suitably certified Div. 1, Group A hazardous location

Minimum output voltage Equivalent output circuit

Input voltage

20 to 35V dc

Hazardous-area output

Minimum output voltage: 12.8V at 48mA Maximum output voltage: 24V from 180ΩCurrent limit: 48mA Output ripple

< 0.5% of maximum output, peak to peak Response time

Output within 10% of final value within 100ms

48

Output current (mA)

Output voltage (V)

21.412.8 Terminal Function

1 Output –ve

2 Output +ve

3

To earth leakage detector 11 Supply –ve 12

Supply +ve

LED indicator

Yellow: output status, on when output circuit is active Maximum current consumption

90mA at 24V

Power dissipation within unit

1.4W at 24V Safety description

V o =25V I o =147mA P o =919mW U m = 253V rms or dc

MTL5522 SOLENOID/ALARM DRIVER

loop-powered, IIB

The MTL5522 is a loop-powered module which enables a device located in the hazardous area to be controlled from the safe area. The MTL5522 can drive a certified intrinsically safe low-power load, as well as non-energy-storing simple apparatus such as an LED. The unit's input/output isolation allows the control switch to be connected into either side of the 24V dc supply circuit.

SPECIFICATION

See also common specification

Number of channels

One

Location of load

Zone 0, IIB, T4–6 hazardous area if suitably certified Div. 1, Group C hazardous location

Minimum output voltage Equivalent output circuit

Input voltage

20 to 35V dc

Hazardous-area output

Minimum output voltage: 9.9V at 70mA Maximum output voltage: 24V from 158ΩCurrent limit: 70mA Output ripple

< 0.5% of maximum output, peak to peak Response time

Output within 10% of final value within 100ms

70

Output current (mA)Output voltage (V)

21.4

9.9

Terminal Function

1 Output –ve

2 Output +ve

3

To earth leakage detector 11 Supply –ve 12

Supply +ve

LED indicator

Yellow: output status, on when output circuit is active Maximum current consumption

125mA (typ.) at 24V

Power dissipation within unit

1.4W at 24V Safety description

V o =25V I o =166mA P o =1.04W U m = 253V rms or dc

With the MTL5523 interface, an on/off device in a hazardous area can be controlled by a voltage signal in the safe area. It is suitable for driving loads such as solenoids. Line fault detection (LFD), which operates irrespective of the output state, is signalled by a safe-area solid-state switch which de-energises MTL5523, if a field line is open or short–circuited. Earth fault detection can be provided by connecting an MTL4220 earth leakage detector to terminal 3.

SPECIFICATION

See also common specification

Number of channels

One

Location of load

Zone 0, IIC, T4–6 hazardous area if suitably certified Div. 1, Group A, hazardous location

Minimum output voltage Equivalent output circuit

Hazardous-area output

Minimum output voltage: 12.8V at 48mA Maximum output voltage: 24V from 180ΩCurrent limit: 48mA Output ripple

< 0.5% of maximum output, peak to peak Control input

Suitable for switch contacts, an open collector transistor or logic drive

Output turns on if input switch closed, transistor on or < 1.4V applied across terminals 11 & 12

Output turns off if input switch open, transistor off or > 4.5V applied across terminals 11 & 12Response time

Output within 10% of final value within 100ms Line fault detection (LFD)

Open or short circuit in field cabling de-energises solid state line-fault signal.

LFD transistor is switched on, provided that the field circuit impedance is > 55Ω and < 6k5Ω. Line fault signal characteristics

Maximum off-state voltage: 35V

Maximum off-state leakage current: 10μA Maximum on-state voltage drop: 2V Maximum on-state current: 50mA

Note: LFD signal is Zener-diode protected against inductive loads

MTL5523

SOLENOID/ALARM DRIVER

with line fault detection, IIC

LED indicators

Green: power indication

Yellow: output status, on when output circuit is active Red: LFD indication, on when line fault is detected Maximum current consumption

100mA at 24V dc

Power dissipation within unit

1.2W with typical solenoid valve, output on

2.0W worst case Safety description

V o =25V I o =147mA P o =919mW U m = 253V rms or dc

48

Output current (mA)

Output voltage (V)

21.412.8 Terminal Function

1 Output –ve

2 Output +ve

3 To earth leakage detector 7 Line fault signal -ve 8 Phase reversal link 9 Phase reversal link 10 Line fault signal +ve 11 C

ontrol –ve 12 C ontrol +ve

13 Supply –ve 14 Supply +ve

MTL5524 SOLENOID/ALARM DRIVER

powered, logic drive with phase reversal

The MTL5524 enables an on/off device in a hazardous area to be controlled by a volt-free contact or logic signal in the safe area. It can drive loads such as solenoids, alarms, LEDs and other low power devices that are certified as intrinsically safe or are classified as non-energy storing simple apparatus. By connecting a second safe-area switch or logic signal, the output can be disabled to permit, for example, a safety system to override a control signal.

SPECIFICATION

See also common specification

Number of channels

One

Location of load

Zone 0, IIC, T4–6 hazardous area if suitably certified Div.1, Group A, hazardous location

Minimum output voltage Equivalent output circuit

Hazardous-area output

Minimum output voltage: 12.8V at 48mA Maximum output voltage: 24V from 180ΩCurrent limit: 48mA Output ripple

< 0.5% of maximum output, peak-to-peak Control input

Suitable for switch contacts, an open collector transistor or logic drive

0 = input switch closed, transistor on or <1.4V applied across terminals 11 & 12

1 = input switch open, transistor off or >4.5V applied across terminals 11 & 12Response time

Output within 10% of final value within100ms

48

Output current (mA)

Output voltage (V)

21.412.8LED indicators

Green: power indication

Yellow: output status, on when output circuit is active Maximum current consumption

100mA at 24V dc

Power dissipation within unit

1.3W with typical solenoid valve, output on 1.9W worst case Safety description

V o =25V I o =147mA P o =919mW U m = 253V rms or dc

Terminal Function

1 Output –ve

2 Output +ve

3

To earth leakage detector 8 Phase reversal link 9 Phase reversal link 11 C

ontrol –ve 12 C ontrol +ve 13 Supply –ve 14

Supply +ve

MTL5525 SOLENOID/ALARM DRIVER

low current, loop-powered, IIC

The MTL5525 enables an on/off device in a hazardous area to be controlled by a volt-free contact or logic signal in the safe area. It can drive loads such as solenoids, alarms, LEDs and other low power devices that are certified as intrinsically safe or are classified as non-energy storing simple apparatus. By connecting a second safe-area switch or logic signal, the output can be disabled to permit, for example, a safety system to override a control signal.

SPECIFICATION

See also common specification

Number of channels

One

Location of load

Zone 0, IIC, T4–6 hazardous area if suitably certified Div.1, Group A, hazardous location

Minimum output voltage Equivalent output circuit

Hazardous-area output

Minimum output voltage: 7V at 48mA Maximum output voltage: 24V from 300ΩCurrent limit: 48mA Output ripple

< 0.5% of maximum output, peak-to-peak Control input

Suitable for switch contacts, an open collector transistor or logic drive

0 = input switch closed, transistor on or <1.4V applied across terminals 11 & 12

1 = input switch open, transistor off or >4.5V applied across terminals 11 & 12Response time

Output within 10% of final value within100ms

48

Output current (mA)Output voltage (V)

21.47.0

LED indicators Green: power indication

Yellow: output status, on when output circuit is active Maximum current consumption

100mA at 24V dc

Power dissipation within unit

1.3W with typical solenoid valve, output on 1.9W worst case Safety description

V o =25V I o =83.3mA P o =521mW U m = 253V rms or dc

Terminal Function

1 Output –ve

2 Output +ve

3

To earth leakage detector 8 Phase reversal link 9 Phase reversal link 11 C

ontrol –ve 12 C

ontrol +ve 13 Supply –ve 14

Supply +ve

4/20mA, smart, for 2- or 3-wire transmitters

The MTL5541 provides a fully-floating dc supply for energising a conventional 2- or 3-wire 4/20mA transmitter which is located in a hazardous area, and repeats the current in another floating circuit to drive a safe-area load. For smart 2-wire transmitters, the unit allows bi-directional communications signals superimposed on the 4/20mA signal.

SPECIFICATION

See also common specification

Number of channels

One

Location of transmitter

Zone 0, IIC, T4–6 hazardous area if suitably certified

Div. 1, Group A hazardous location

Safe-area output

Signal range: 4 to 20mA

Under/over-range: 0 to 24mA

Safe-area load resistance: 0 to 360Ω @ 24mA

to

450Ω @ 20mA Safe-area circuit output resistance: > 1MΩ

Safe-area circuit ripple

< 50μA peak-to-peak

Hazardous-area input

Signal range: 0 to 24mA (including over-range)

Transmitter voltage: 16.5V at 20mA

Transfer accuracy at 20°C

Better than 15μA

Temperature drift

< 0.8μA/°C

Response time

Settles to within 10% of final value within 50μs Communications supported

HART? (terminals 1 & 2 only)

LED indicator

Green: power indication

Maximum current consumption (with 20mA signal) 51mA at 24V

Power dissipation within unit (with 20mA signal)

0.7W at 24V

Safety description

Terminals 2 to 1 and 3:

V

o =28V I

o

=93mA P

o

=651mW U

m

= 253V rms or dc

Terminals 1 to 3:

Simple apparatus ≤1.5V, ≤0.1A and ≤25mW; can be connected without further certification into any IS loop with an open-circuit voltage <28V Terminal Function

1

C

urrent

input

2 Transmitter

supply

+ve

3

C

ommon

10 Output +ve via 220Ω for HART apps.

11 Output

–ve

12 Output

+ve

13 Supply

–ve

14 Supply

+ve

The MTL5544 provides fully-floating dc supplies for energising two conventional 2-wire or 3-wire 4/20mA or ‘smart’ transmitters located in a hazardous area, and repeats the current in other circuits to drive two safe-area loads. For smart transmitters, the unit allows bi-directional transmission of digital communication signals superimposed on the 4/20mA signal so that the transmitter can be interrogated either from the operator station or by a hand-held communicator.

SPECIFICATION

See also common specification

Number of channels

Two

Location of transmitter

Zone 0, IIC, T4–6 hazardous area if suitably certified Div. 1, Group A hazardous location Safe-area output

Signal range: 4 to 20mA Under/over-range: 0 to 24mA Safe-area load resistance: 0 to 360Ω @ 24mA 0 to 450Ω @ 20mA Safe-area circuit output resistance: > 1M ΩSafe-area circuit ripple

< 50μA peak-to-peak Hazardous-area input

Signal range: 0 to 24mA (including over-range) Transmitter voltage: 16.5V at 20mA Transfer accuracy at 20°C

Better than 15μA Temperature drift

< 0.8μA/°C Response time

Settles to within 10% of final value within 50μs Communications supported

HART? (terminals 1 & 2 and 4 & 5 only)LED indicator

Green: power indication

Maximum current consumption (with 20mA signals)

96mA at 24V dc

Power dissipation within unit (with 20mA signals)

1.4W at 24V dc

Safety description (each channel)

Terminals 2 to 1 and 3, and 5 to 4 and 6:V o =28V I o =93mA P o =651mW U m = 253V rms or dc Terminals 1 to 3 and 4 to 6:

Simple apparatus ≤1.5V, ≤0.1A and ≤25mW; can be connected without further certification into any IS loop with an open-circuit voltage <28V

two channel, 4/20mA, smart, for 2- or 3- wire transmitters

Terminal Function

1 Ch1 current input

2 Ch1 transmitter supply +ve

3 C h1 common

4 Ch2 current input

5 Ch2 transmitter supply +ve

6 C h2 common

7 Ch2 output +ve via 220Ω for HART apps.

8 Ch2 output –ve

9 Ch2 output +ve 10 Ch1 output +ve via 220Ω for HART apps. 11 Ch1 output –ve

12

Ch1 output +ve 13 Supply –ve

14 Supply +ve

The MTL5544 can also be used to drive two safe-area loads from a single 2-wire transmitter (i.e. 1 in, 2 out) by interconnecting the input channels as shown in the diagram here.

Note: In this mode the HART data is transferred via channel 1 output only.

for 4–20mA smart valve positioners

with line fault detection

The MTL5546 accepts a 4/20mA floating signal from a safe-area controller to drive a current/pressure converter (or any other load up to 800Ω) in a hazardous area. For smart valve positioners, the module also permits bi-directional transmission of digital communication signals so that the device can be interrogated either from the operator station or by a hand-held communicator. Process controllers with a readback facility can detect open or short circuits in the field wiring: if these occur, the current taken into the terminals drops to a preset level.

SPECIFICATION

See also common specification

Number of channels

One

Location of I/P converter

Zone 0, IIC, T4–6 hazardous area if suitably certified

Div. 1, Group A, hazardous location

Working range

4 to 20mA

Digital signal bandwidth

500Hz to 10kHz

Maximum load resistance

800Ω (16V at 20mA)

Minimum load resistance

90Ω (short-circuit detection at < 50Ω)

Output resistance

> 1MΩ

Under/over range capability

Under range = 1mA

Over range = 24mA (load ≤ 520Ω)

Input and output circuit ripple

< 40μA peak-to-peak

Transfer accuracy at 20°C

Better than 20μA

Temperature drift

< 1.0μA/°C

Input characteristics

< 6.0V with the field wiring intact

< 0.9mA with the field wiring open or short-circuit

Response time

Settles within 200μA of final value within 100ms Communications supported

HART?

LED indicator

Green: power indication

Maximum current consumption (with 20mA signal) 35mA at 24V dc

Power dissipation within unit (with 20mA signal)

0.8W at 24V

Safety description

V

o =28V I

o

=93mA P

o

=651mW U

m

= 253V rms or dc

Terminal Function

1 Output

–ve

2 Output

+ve

11 Input

–ve

12 Input

+ve

13 Supply

–ve

14 Supply

+ve

two-channel, for 4–20mA smart valve posi-tioners with line fault detection

The MTL5549 accepts 4/20mA floating signals from safe-area controllers to drive 2 current/pressure converters (or any other load up to 800Ω) in a hazardous area. For smart valve positioners, the module also permits bi-directional transmission of digital communication signals so that the device can be interrogated either from the operator station or by a hand-held communicator. Process controllers with a readback facility can detect open or short circuits in the field wiring: if these occur, the current taken into the terminals drops to a preset level.

SPECIFICATION

See also common specification

Number of channels

Two

Location of I/P converter

Zone 0, IIC, T4–6 hazardous area if suitably certified

Div. 1, Group A, hazardous location

Working range

4 to 20mA

Digital signal bandwidth

500Hz to 10kHz

Maximum load resistance

800Ω (16V at 20mA)

Minimum load resistance

90Ω (short-circuit detection at < 50Ω)

Output resistance

>

1MΩ

Under/over range capability

Under range = 1mA

Over range = 24mA (load ≤ 520Ω)

Input and output circuit ripple

<40μA

peak-to-peak

Transfer accuracy at 20°C

Better than 20μA

Temperature drift

<

1.0μA/°

C

Input characteristics

< 6.0V with the field wiring intact

< 0.9mA with the field wiring open or short-circuit

Response time

Settles within 200μA of final value within 100ms Communications supported

HART?

LED indicator

Green: power indication

Maximum current consumption (with 20mA signals) 70mA at 24V dc

Power dissipation within unit (with 20mA signals)

1.6W at 24V

Safety description (each channel)

V

o =28V I

o

=93mA P

o

=651mW U

m

= 253V rms or dc

Terminal Function

1 Output –ve (Ch 1)

2 Output +ve (Ch 1)

4 Output –ve (Ch 2)

5 Output +ve (Ch 2)

8 Input –ve (Ch 2)

9 Input +ve (Ch 2)

11 Input –ve (Ch 1)

12 Input +ve (Ch 1)

13 Supply

–ve

14 Supply

+ve

The MTL5575 converts a low-level dc signal from a temperature sensor mounted in a hazardous area into a 4/20mA current for driving a safe-area load. Software selectable features include linearisation, ranging, monitoring, testing and tagging for all thermocouple types and 2-, 3- or 4-wire RTDs. (For thermocouples requiring cold-junction compensation, the HAZ-C JC plug can be ordered with the product and includes an integral C JC sensor). C onfiguration is carried out using a personal computer. A single alarm output is provided and may be configured for high or low process alarm or to provide notice of early thermocouple failure.

SPECIFICATION

See also common specification

Number of channels

One

Signal source

Types J, K, T, E, R, S, B or N THCs to BS 60584 and XK EMF input

Pt 100, Pt 500, Pt 1000

2/3/4-wire platinum RTDs to BS 60751Cu-50 & Cu-53

Ni 100/500/1000 DIN 43760Location of signal source

Zone 0, IIC, T4-6 hazardous area

Division 1, Group A, hazardous location Input signal range

–75 to +75mV, or 0 to 400Ω (0 to 1000Ω Pt & Ni sensors)Input signal span

3 to 150mV, or 10 to 400Ω (10 to 1000Ω Pt & Ni sensors)RTD excitation current

200μA nominal

Cold junction compensation

Automatic or selectable

Cold junction compensation error

≤ 1.0°C

Common mode rejection

120dB for 240V at 50Hz or 60Hz (500ms response)Series mode rejection

40dB for 50Hz or 60Hz

Calibration accuracy (at 20°C)

(includes hysteresis, non-linearity and repeatability) Inputs: (500ms response)

mV/THC: ± 15μV or ± 0.05% of input value (whichever is greater)RTD: ± 80m Ω Output: ± 11μA Temperature drift (typical) Inputs:

mV/THC: ± 0.003% of input value/°C RTD: ± 7m Ω/°C Output: ± 0.6μA/°C

Example of calibration accuracy and temperature drift (RTD input - 500ms response)

Span: 250ΩAccuracy: ± (0.08/250 + 11/16000) x 100% = 0.1% of span Temperature drift: ± (0.007/250 x 16000 + 0.6) μA/°C = ±1.0μA/°

C

Safety drive on sensor burnout

Upscale, downscale, or off Early burnout Early burnout detection for thermocouples (when selected) Alarm trips when loop resistance increase is > 50ΩOutput range

4 to 20mA nominal into 600Ω max. (direct or reverse)Alarm output

Relay ON in alarm, 250mA @ 35V max Maximum lead resistance (THC)

600Ω

Response time

Configurable - 500 ms default

(Accuracy at 100/200ms - contact MTL)LED indicator

Green: power and status indication

Yellow: alarm indication, on when contacts are closed Maximum current consumption (with 20mA signal)

50mA at 24V

Power dissipation within unit (with 20mA signal)

1.2W at 24V Safety description

Refer to certificate for entity parameters. Um=253V rms or dc.s Configurator

A personal computer running MTL PCS45 software with a PCL45US

B serial interface.

MTL5575

TEMPERATURE CONVERTER

THC or RTD input + Alarm

Terminal Function

1 TH C

/EMF/RTD input –ve 3 TH C

/EMF/RTD input +ve 4 3-wire RTD input –ve 5 4-wire RTD input +ve 8

Output –ve/Alarm relay 9 Alarm relay 11 Output –ve 12 Output +ve 13 Supply –ve 14

Supply +ve

The primary function of the MTL5599, which can be used with all other MTL5500 Series units, is to provide termination and earthing facilities for unused cable cores from hazardous areas.

SPECIFICATION

See also common specification Weight

60g

MTL5599

DUMMY ISOLATOR

测色与配色

纺织与材料学院 --测色与配色作业 专业班级:轻化工程1303班 姓名: 学号:4130 完成日期:2016年7月1日

读后感 颜色科学是门重要的边缘学科,它的应用面极广,涉及到轻纺 化工、电影电视、造纸印刷、玻璃陶瓷、光源照明、颜色计量、军 工伪装、遥感技术,口腔学等许多部门,因此加强理论和应用技术 是必然的趋势。 在印染工业中测配色是生产中的一项重要任务。传统的测配色 主要用人工的方法,这不仅工作量大,费时耗料,而且在生产样品 与来样之间的色差,也是由丰富辨色经验的人靠视觉进行,辨色的 结果与人的心理状态、年龄、环境有极大的关系,带有很大主观性,因而供需双方有时会产生相当大的差异,使双方发生争执。随着科 学技术的发展测配色的技术也有了很大程度的改进。从人工目测发 展为仪器测量。很大程度上解决了这一问题。 色度学是研究人眼对颜色感觉规律的一门科学。颜色是一种受 物理学、视觉生理学、心理学影响的综合量,为了能够得到一致的 色度度量效果,同一色度数据,国际照明委员会(CIE)规定了一套标 准度色系统。由于不同的三原色的量(即三刺激值)能匹配各种颜色,因此可借三原色的三刺激值来表示各种颜色。CIE于1931年建立了 一个国际通用色度学系统,即CIE1931标准色度学系统,完善了色 度学的理论。用R,G和B代表颜色分量。因为1931CIE-RGB存在一 些问题,后来在此基础上以三个假想的原色光。建立起一个新的色 度学系统CIE1934XYZ表色系统。用X, Y和Z代表三原色的三刺激值。虽然CIE1931色度系统能准确表示颜色,但色品坐标x和y变 化的大小与人眼颜色视觉差别变化并不一致,就是说CIE1931色度 系统是非均匀颜色空间。为此,国际照明委员会在1976年提出了1976LAB均匀颜色空间系统。CIE 1976 LAB均匀颜色空间,是 CIE1931标准色度学系统的非线性变换,它将X, Y, Z直角坐标颜 色空间转换为柱而极坐标,分别对应与眼睛视觉相一致的明度L*和 色度a*, b*,其中a、b*与色调、饱和度的感觉相一致。L*为明度,表示黑一白轴;色度a*表示红一绿轴,色度b*表示黄一蓝轴。L*为100时,表示对光完全散射的漫射体;L*为0时表示对光完全吸收的 黑体,a*值越大样品的色调越红;b*值越大色调就越黄。只要测量出 样品三刺激值,就可以按公式计算出L*, a*, b*的值。公式中X, Y, Z为完全反射漫射体的三刺激值两样品的颜色不同就存在着色差,则根据色差公式计算出即可。色差在颜色测量和生产质量控制 方而有广泛的应用。两样品的色差△E*和目视色差感觉关系如

计算机测色与配色论文

计算机测色与配色论文 题目:计算机测色与配色 学院:纺织与材料学院 专业班级:13级轻化01班 学生姓名:卢聪 学号:41301030107

计算机测色与配色系统的发展状况 自古以来,每一个人都能用语言或实物来表示颜色。然而,颜色作为一门科学发展起来仅仅是近半个多世纪以来的事。颜色科学是一门仍在发展中的学科,现已取得许多成就,并且在工业界各行各业得到了广泛的应用。比较突出的是现代颜色测量技术的发展和计算机技术的结合,具体来说就是计算机测色配色系统,它给颜色科学在工业界的实际应用开拓了广阔的前景并提供了普及的条件。在先进国家中,与着色有关的行业如:纺织印染、染料、颜料制造、涂料、塑料着色加工及油墨等行业普遍采用这类系统作为有色产品的开发、生产、质量控制、销售的有力工具,普及率很高。它给使用者带来了生产科学化,高效率和经济效益。 六十年代一些生产着色剂的跨国公司在大型计算机上进行了大量的计算机测色配色方面的研究并取得里程碑意义的突破,确立了在一定程度上至今还在应用的计算机配色数学模型和算法。小型机的出现,为计算机测色六十年代一些生产着色剂的跨国公司在大型计算机上进行了大量的计算机测色配色方面的研究并取得里程碑意义的突破,确立了在一定程度上至今还在应用的计算机配色数学模型和算法。小型机的出现,为计算机测色配色在工业界实际应用创造了条件,因此,七十年代小型机测色配色系统使这项技术在与着色有关的工业界掀起了一个电子配色的热潮。可是价格昂贵的小型计算机和光谱光度计加上并非万能的配色系统还是使绝大多数人停留在传统的手工

作坊式的配色和调色方法。普及应用的时机并未成熟。然而计算机测色配色技术已经由少数人的研究状态进入了工业实际应用的阶段。八十年代计算机测色配色系统经历了真正的变革,光谱光度计、软件都有了巨大的发展,特别是微机的出现和飞速发展给这项技术的真正普及应用带来了光明的前景。进入九十年代,从欧美到港台,再到国内,电脑测色配色系统已以相当普及的价格成为工厂甚至连锁店的普通工具。它使使用者在生产活动中能以科学的方法高效地进行配色或调色,节约大量的人力物力,降低原材料成本;以符合国际标准的测色方法和公式客观地评价产品的颜色质量;使得生产和商业活动中的产品颜色要求由实物传递过渡到数字传递,从而顺应信息时代的要求并可在因特网上传递。 电脑测色配色技术的发展趋势 (1)化验室自动试样系统 国际上纺织服装行业竞争非常激烈,需要有极其快速的应变能力,对面料的要求不仅仅是小批量多品种多色号,而且要求的颜色质量很苛刻,交货期也很短。使得印染厂往往一天内要处理上百个色号,在这种压力下,必须使用电脑配色系统,并且和自动滴料(CCK)系统组成一整套化验室自动试样系统。印染厂化验室的这种配套的自动试样系统包括:电脑配色系统,自动称料配液系统(单色染料配液),自动滴料系统(配方染液配制)和多种自动小样染色机。在港澳台地区的一些印染厂,没有这类设备已经不能应付市场的需求和竞争。 (2)电脑配色系统应用的第二个领域是和印花图案设计描稿CAD

13届 测色配色复习题目(含部分答案)

1 3 届测色配色复习题目 一.名词解释 1.单色光:单一波长的光(物理学),较窄波长范围内的光在颜色测量中通常被看成是单色光(颜色测量学定义)。 2.复色光:由不同波长的光组合在一起的光。 3.颜色的明度:是指色彩的明亮程度,表示物体明亮程度的一种属性。 4.颜色的彩度:是指色彩的鲜艳程度,它表示颜色中所含有色成分的比例。 5.颜色的色相:是色彩彼此相互区分的特性,是色彩最重要、最基本的特征。 6.条件等色:两种颜色的本质(分光反射率分布)本来就不同,而将这两种颜色判断为等色的现象就是条件等色,也叫同色异谱(俗称跳灯)。 7.色温:把某个黑体加热到一个温度,其发射的光的颜色与某个光源所发射的光的颜色相同时,这个黑体加热的温度称之为该光源的颜色温度,简称色温。 8.同色异谱指数:当某一条件变化后,原来匹配的两个样品之间的色差大小,用M表示。 9.提升力:是指染色深度随染料用量增加而递增的性能。提升力好的染料具有较好的染深性,可以通过增加染料用量获得深色染色效果;提升力差的染料则达到一定深度后,得色不再随染料用量增加而加深。 二.填空题 10.色光的三原色是指红、绿、蓝,也称加法三原色。 11.色料的三原色是指黄、品红、青。 12.CIE于1971年正式推荐了四种测色的“标准照明和观测条件”,包括 垂直/45°;45°/垂直;垂直/漫射;漫射/垂直。 13.分光测色仪通常采用的“标准照明和观测条件”为 d/0 (“45/0”、“0/45”、“d/0”、“0/d”) 14.纺织品测色常用的色差公式名称包括(至少写出2个) CIEL*a*b* 、 、 CIE94 、 ISO 。 CMC (l:c) 中, l= 2 ,c= 1 。 15.纺织品测色常用的色差公式CMC (L-c)

GETPIVOTDATA 函数的使用方法

GETPIVOTDATA 函数 返回存储在数据透视表中的数据。如果报表中的汇总数据可见,则可以使用函数GETPIVOTDATA 从数据透视表中检索汇总数据。 通过以下方法可以快速地输入简单的GETPIVOTDATA 公式:在返回值所在的单元格 中,键入=,然后在数据透视表中单击包含要返回的数据的单元格。 语法 GETPIVOTDATA(data_field,pivot_table,field1,item1,field2,item2,...) GETPIVOTDATA 函数语法具有下列参数: ?Data_field为包含要检索的数据的数据字段的名称,用引号引起来。 ?Pivot_table为在数据透视表中对任何单元格、单元格区域或命名的单元格区域的引用。此信息用于决定哪个数据透视表包含要检索的数据。 ?Field1, Item1, Field2, Item2为 1 到126 对用于描述要检索的数据的字段名和项名称,可以按任何顺序排列。字段名和项名称(而不是日期和数字)用引号引起来。对于OLAP 数据透视表,项可以包含维的源名称以及项的源名称。OLAP 数据透视表的一对字段和项如下所示: "[产品]","[产品].[所有产品].[食品].[烤制食品]" 说明 ?在函数GETPIVOTDATA 的计算中可以包含计算字段、计算项及自定义计算方法。?如果pivot_table 为包含两个或更多个数据透视表的区域,则将从区域中最新创建的报表中检索数据。 ?如果字段和项的参数描述的是单个单元格,则返回此单元格的数值,无论是文本串、数字、错误值或其他的值。

?如果某个项包含日期,则值必须表示为序列号或使用DATE 函数填充,以便在其他位置打开工作表时将保留该值。例如,某个项引用了日期“1999 年 3 月 5 日”,则应输入36224 或DATE(1999,3,5)。时间可以输入为小数值或使用TIME 函数来输入。 ?如果pivot_table 并不代表找到了数据透视表的区域,则函数GETPIVOTDATA 将返回错误值#REF!。 ?如果参数未描述可见字段,或者参数包含其中未显示筛选数据的报表字段,则GETPIVOTDATA 函数将返回#REF!。 示例 包含数据透视表的区域为: GETPIVOTDATA("Sales",$A$4) 返回“销售额”字段的总计值¥49,325。 GETPIVOTDATA("Sum of Sales",$A$4) 也返回“销售额”字段的总计值¥49,325。字段名可以按照它在工作表上显示的内容直接输入,也可以只输入主要部分(没有“求和项”、“计数项”等)。 GETPIVOTDATA("Sales",$A$4,"Month","March") 返回“三月”的总计值¥30,337。 GETPIVOTDATA("Sales",$A$4,"Month","March","Product","Produce","Sales person","Buchanan")

Easyboot的使用教程

Easyboot的使用教程1,启动Easyboot 2、注册之后再次打开EZBOOT工具, 3、然后将软件自带的菜单、文本及屏幕布局删掉

结果就变成如下所示

然后点击文件——保存——退出 再进入EZBOOT安装目录,进入:disk1\eboot目录,删除选中的文件, ——有的教程说:保留default.ezb文件而删除其余文件,我个人实践,也可以保留cdmenu.ezb文件而删除其他文件 然后再次打开EZBOOT工具,可以先行设置选项——配置,按图示进行设置

设置好后再次保存——退出 然后可以将准备好的IMG、IMA文件放入disk1\eboot目录,事先准备好一张800*600大小的BMP图像,文件名为:BACK.BMP,也放在disk1\eboot目录; 另外有个文件HD-4.GHO文件放入disk1目录

再次打开EZBOOT工具,这时你就可以看到,背景图变成自己设置的了 4、自定义光盘菜单 接下来的操作就是根据自己的特点进行光盘菜单、屏幕布局、文本显示的设置 在这里就光盘菜单进行重点说明: 1)常用菜单对应的执行命令: 自动安装GhostXP_SP3到C盘run ghostxp.img 运行Windows PE 微型系统run pe.bin——这个文件可以从别人做好的GHOST光盘中提取 深山红叶DOS工具(增强版) run dos.img 效率源大容量磁盘修复程序run xly2007.img 微软内存检测工具(支持DDR2) run memtest.img 将硬盘瞬间分四个区(慎用!) run ghosthd4.img 手动运行GHOST V11.0.2.1573 run ghost_manual.img

电脑测色配色系统介绍

电脑测色配色系统简答 一.问:运用本系统是否需要特定的染料? 答:不需要。ORINTEX公司只提供配色软件。所使用的染料全部是工厂目前正在使用的所有染料。利用工厂现有的染料建立自己的数据库。 二.问:如何建立数据库? 答:配色所需的数据库是利用本厂的染料和工艺亲自建立。数据库的建立方法如下: ①确定浓度梯度点:每一染料可选5-8个不同的浓度点(浓度梯度), 如:0.01%, 0.03%, 0.1%, 0.3%, 1.0%, 2.0%, 3.0%, 4.0%。 ②按照工厂现行的染色工艺,将选择的每一浓度点打出小样。 打出的浓度梯度样品如下图所示: 0.01% 0.03% 0.1% 0.3% 1.0% 2.0% 3.0% 4.0% 在打小样的过程中,应严格控制操作,保证此八个浓度梯度小样染色工艺的一致性。小样的染色工艺和条件的控制应尽可能和大生产一致。 ③染好的样品要用烘箱烘干或自然晾干,切记勿用熨斗熨烫。将此八 个浓度点的颜色样由浅到深,通过分光光度计(测色头)读取,储存在计算机里。

计算机将浓度点和该浓度点的实际颜色样建立一一对应的关系,即颜色深度随浓度增加而加深的关系曲线(K/S值与浓度C的关系曲线),有了这条关系曲线后,计算机就可以进行配色了。 三.问:电脑配色具有哪些优势? 答:电脑配色与传统人工配色相比,具有速度快、准确性高、降低成本等。本系统在给出配方的同时,能得到如下信息:配方与标样的色差、同色异谱值、成本、牢度等。能够预测配方与标样在不同光源下的色差值。另外,该软件能够与自动配液系统实现计算机联网,使配色、配液一体化。 四.问:对于不同批次的原材料(基布),对配色结果有没有影响? 答:有影响。但是该软件能够自动修正由于基底的变化而带来的影响。 该软件只要求在建数据库时,保证基布的一致性即可。染色时,由于基布的变化,使得第一次配方的颜色与标样有差异,但通过配方修正功能,自动消除基布变化带来的影响,使配方的颜色与标样一致;对于不同批次的基布在配色前,系统可将基布读入计算机中,来抵消由于基布的不同而带来的第一次配色时颜色的差异。 五.问:电脑配色系统配色时,多长时间能配出一个颜色? 答:本系统配色效率及高,一般通过打样1-2次就能达到标样的颜色。 六.问:如果染料的力份变了(染化料不稳定),如何处理? 答:首先,本系统具有力份自动计算功能,该功能可自动计算不同批次染化料的差异。配色时,计算机根据力份自动调整染料的用量。本软件对染料没有选择性,对于国内染料不稳定的现象,有一定的调整功能。 七.问:购买此软件后,是否需要购买相应的配套染色设备? 答:不需要。该软件主要应用于化验室,它的唯一要求是在建立数据库时,准确称量染化料,严格控制工艺条件。染色设备就用目前车间或化验室现有的设备就可以了。 八.问:电脑配色系统是如何配色的? 答:配色的基本过程为: 数据库的准备与建立→计算机读取来样(标样)→选择可能的染料及个数→计算机自动配色,给出配方→根据配方打样(仿

计算机测色与配色

计算机测色配色系统的研究 摘要:简单阐述了电脑测色配色的基本原理;介绍了电脑测色配色系统的硬件系统和软件系统,如分光仪配色系统和YP色彩应用配色系统基础资料的建立等;详细的论述了电脑测配色系统在纺织印染中测色和配色中的应用以及计算机配色系统利用现有的仪器和设备建立一个色彩数据库。并且配色以后我们还可以检验颜色匹配是否正确。如果颜色偏差超过△E的要求范围,我们还可以迅速修正配方,直到达到标准。 引言 利用计算机配色方法来配色,将油墨颜色的数据储存在计算机里,它的针对性很强,由于每个印刷厂都有自己的特点,它的针对性

使得对工作的经验要求减低。并且它还可以节约时间,减少油墨的浪费,最重要的是节约了成本。 1.计算机配色系统的功能简介 我们利用计算机配色系统建立一个色彩数据库,这个数据库中的色种是我们印刷时用的基本墨,即CMYK和专色油墨。然后我们利用仪器测量和专业软件计算,快速得到所需要的配方。配色以后我们还可以迅速修正配方,直到达到标准。一般我们以△E为标准来判断我们所得到颜色是否合格。而传统的配色方法主要通过人工目测和经验来判断色相,再进行实验,然后再通过目测方法和经验对配方进行多次修正,这种方法存在了大量的人为主观因素,不稳定性很大,难以精确控制印刷所需要的颜色。所以说与传统配色方法相比,利用计算机配色系统配色不仅节约了大量的时间,减少了油墨的浪费,还更客观地控制印刷品的颜色。同时计算机配色系统还能把废墨当基础墨输入到数据库里,应用在下次配色中,从而大大降低了油墨成本。 2.计算机配色系统的基本原理 计算机配色基本原理是当一束白光照射到颜色物体表面时,光一部分被吸收另外一部分被物体反射或透射出去,配色系统主要考虑的是反射光。反射光的波长即决定了眼睛所看到的颜色,而在计算油墨配方时,简单来讲就是计算机配色系统通过计算光的吸收值K 与光的反射值S,计算反射光谱反射率。这种配色的结果无论何种光源照明,观察者是谁,产品的颜色总是与实际样品一样。就能够计算出油墨配方。但是,通常情况下,传统的光谱配色对每个波长点进行同等匹配,而实际上,物体不同波长处的同等大小变化,所引起的颜色感知变化却有明显差异,因而应该对不同波长给予不同权重的匹。配色之前必须先有一个油墨的基础数据库,其中各个基础油墨的K、S 值都需要

计算机测配色正式稿

计算机测配色实验报告 一、实验目的 1.掌握人工拼色的基本原理和基本方法; 2.熟悉Datacolor SF600系列软件的使用; 3.了解计算机测配色数据库的建立; 4.根据数据库测出标准样的配方; 5.了解人工拼色与计算机测配色的差别与成本; 二、实验原理 1.拼色原理 拼色是以“减法”混色原理作为理论基础的。实际应用中由于找不到理想的三原色,常以红、黄、蓝作为代用三原色(也称一次色)。如果用两种不同的一次色拼混,可以得到橙、绿、紫等二次色;若以两种不同的二次色拼混,或以任意一种原色与灰色相拼,可得到三次色。拼色结果如下所示: 一次色红黄蓝红黄 二次色橙绿紫橙 三次色黄灰蓝灰红灰 (棕) (橄榄) (咖啡) 2.计算机配色仪工作原理 照明光投射于不透明织物时,除少量表面反射外,大部分光线被织物吸收和散射。光的吸收主要是染料所致,不同的染料选择吸收的光的波长不同,导致织物呈现各种色泽。同时,染料越多,吸收地越多,反射出来的光线越少,可见,染料浓度和该织物反射率之间存在一定的函数关系。Kubelka-Munk的K/S 函数可作为测配色中的理论依据。 (K/S) λ=(1-Rλ)2 /2 R λ 式中R为反射率,λ为波长。 因为假设散射作用全由纺织妨碍了所致,即S与染料浓度无关,则: (K/S) λ=KλC 在可见光400-700nm范围内,以20nm作间隔,取16个波长点测量,可得到一下方程组: (K/S) λ,400=(K/S)λ,400 + K1,400·C1 + K2,400·C2 + … + K n,400·C n (K/S) λ,420=(K/S)λ,420 + K1,420·C1 + K2,420·C2 + … + K n,420·C n · · · (K/S) λ,700=(K/S)λ,700 + K1,700·C1 + K2,700·C2 + … + K n,700·C n 根据Mc Ginnis 的研究,用三种浓度满足上式,则浓度上的自由度很小,不妨先考虑考虑在一些波长上上式两边出现微小差异,然后用最小二乘法求极小差值是的解,即产生了配方。 三、实验材料、药品和仪器

GetData使用方法

使用场合:1、想引用别人论文中的某个数据(曲线)图,但论文中没有这个图的数据,直接把图抓过来显得太逊了,希望提取出这个图中的数据信息生成矢量图;2、希望从这个图中提取出数据用于自己的研究;软件来源:此软件由俄国人开发(好多这种功能强大的小软件都是俄国人开发的,pfpf) https://www.doczj.com/doc/7413423782.html,上可以下载到试用版,21天的试用期,好像无功能限制,目前最新版本:2.24,有中文和英文界面可供选择,其他有俄文、乌克兰文、日文、朝鲜文,居然还有印度尼西亚文(开发者有印尼朋友?); 使用方法: 1 启动GetData Graph Digitizer,打开要处理的图像文件; 2 设置背景颜色和曲线颜色(“操作->设定背景/线段颜色”),后续拾取数值点的操作要基于颜色信息; 3 设置坐标轴的位置和起始值范围(“操作->设定标尺刻度”) 4 “操作->数字化区域”,启动“数字化区域”方法提取数据点,曲线上提取点的密度由“操作->数字化区域->栅格设置”下dx的值控制(值越大越稀疏),设置好栅格后鼠标变为黑色箭头,用之拖出一个矩形区域,区域内部的曲线就会被自动提取了。这种方法的好处是可以非常简单的(一次操作)提取出所有的数据点,如果选上了不想要的点可以用“操作->数据点移除器”去除,如果点的顺序不对可以用“操作->重新排序工具”改为正确的顺序; 4.1 另一种“自动跟踪线段”方法需要多次手工选取曲线上的点,比较麻烦; 另:1 选取刻度点的时候,微调鼠标位置的方法是按住Ctrl再移动鼠标; 2 如果有两条颜色不同的数据线,只需要抓其中一条,则可以指定线条颜色和背景颜色,这样就不会受另一条线的干扰了; 3 如果曲线在某些地方变化剧烈,需要增加一些点,【操作->点捕捉模式】,点选需要增加数据点的位置,然后用【重排序工具】重新排列就行了; 4 “设置->语言”中可以更改界面的语言; https://www.doczj.com/doc/7413423782.html,/question/279264039.html

测色与配色

一、填空 第九章 1.在成像系统中使用合适的硬件、软件和算法来控制和调整颜色的过程称为颜色管理. 2.把计算机主机与输入设备、显示设备和输出设备相连所构成的彩色成像系统就是为系统的预期应用提供满意颜色质量的颜色管理系统。 3.设备相关的颜色各种设备都有自己的颜色空间,设备的颜色空间是与设备相关的. 颜色数据在各种设备之间的交换是在各个设备的颜色空间之间转换。 设备无关的颜色是基于人眼的视觉色空间的。 4.颜色转换的基本原则:同一颜色要在不同设备上保证仍然是同一颜色. 5.ICC主要的工作是:对所有的图象文件格式进行整合,并在统一标准下定义各种颜色复制设备的颜色特征文件(ICC profile), 也被简称为ICC。 6.颜色管理系统工作的核心:建立描述设备颜色的特征文件,建立颜色连续空间,利用设备特征文件就可以完成该设备的色空间和L*a*b*色度空间之间进行映射转换,色彩转换模块(Color Management Module)简称(CMM)。 7.色彩信息管理应做到下列的匹配:1、输入设备间的颜色匹配。2、原稿颜色与显示器颜色之间的匹配。3、输出设备间的颜色匹配。 8.颜色管理过程有3个要素:校正、特性化、转换 第八章 计算机配色的三种方式:色号归档检索、反射光谱匹配、三刺激值匹配。 第五章 1.孟塞尔表色系统中的色卡基本上可以近似地看成是一个均匀颜色空间。 2. 孟塞尔表色系统是以色卡的形式出现的,但由于对色相、明度、彩度都按特定的顺序编号,因此在实际中,也可以把各种不同的颜色用孟塞尔标号,即以一组孟塞尔表色系统的参数来表示,其表示方法为: 首先写孟塞尔色相,然后写孟塞尔明度,在明度后划一斜线,接着写孟塞尔彩度,即:H·V/C=色相·明度/彩度例如:5R·4/14,5R为红色,明度中等,饱和度很高,所以它是一个中等深度的非常鲜艳的红色。 3.在孟塞尔表色系统中,表示颜色明亮程度属性的量,称明度,用V表示。表示颜色鲜艳程度的量,称彩度,以C表示。表示色相属性的量,称色相,以H表示。在以孟塞尔表色系统构成的柱坐标系中,Z轴为孟塞尔明度(V),θ为孟塞尔色相(H),r为孟塞尔彩度(C)。 4.孟塞尔表色系统是把染好的色卡,按一定的顺序排列起来制成图册,作为物体知觉色的标准。 5.知觉色是基于颜色知觉的色。所谓颜色知觉是为了区别人对物体形状和大小判断的视觉功能,指的是单纯由于光刺激(物体的反射光)而产生的视觉特性。 6.在太阳光的照明条件下,用眼睛直接观察物体时,通过大脑的分析判断而产生的颜色视觉特性,称之为色知觉,此时的颜色称之为知觉色。 第四章 1.测色条件:绝大多数被测样品不是完全反射漫射体,存在不均匀的吸收、透射、各种不同角度的反射。 2.ρ(l)的测定:测量不透明物体的分光反射率ρ(l)是以完全反射漫射体作为参照标准。(完全反射漫射体就是反射率在各个波长下均等于1的理想的均匀反射体,它无损失,全部反射入射光,并且在各个方向上亮度均相等。不透明物体的分光反射率ρ(l)是在同样

电脑测色配色系统介绍

电脑测色配色系统简答 问:运用本系统是否需要特定的染料 答:不需要。ORINTE)公司只提供配色软件。所使用的染料全部是工厂目前正在使用的所有染料。利用工厂现有的染料建立自己的数据库。 问:如何建立数据库 答:配色所需的数据库是利用本厂的染料和工艺亲自建立。数据库的建立方法如下: ①确定浓度梯度点:每一染料可选5-8个不同的浓度点(浓度梯度)如:%, %, %, %, %, %, %, %。 ②按照工厂现行的染色工艺,将选择的每一浓度点打出小样 打出的浓度梯度样品如下图所示: % % % % % % % % 在打小样的过程中,应严格控制操作,保证此八个浓度梯度小样染色工艺的一致性。小样的染色工艺和条件的控制应尽可能和大生产一致。 ③染好的样品要用烘箱烘干或自然晾干,切记勿用熨斗熨烫。将此八个浓度点的颜色样由浅到深,通过分光光度计(测色头)读取,储存在计算

机里 计算机将浓度点和该浓度点的实际颜色样建立对应的关系,即颜色深度随浓度增加而加深的关系曲线(K/S值与浓度C的关系曲线),有了这条关系曲线后,计算机就可以进行配色了。 三?问:电脑配色具有哪些优势 答:电脑配色与传统人工配色相比,具有速度快、准确性高、降低成本等。本系统在给出配方的同时,能得到如下信息:配方与标样的色差、同色 异谱值、成本、牢度等。能够预测配方与标样在不同光源下的色差值。另外, 该软件能够与自动配液系统实现计算机联网,使配色、配液一体化。 四?问:对于不同批次的原材料(基布),对配色结果有没有影响 答:有影响。但是该软件能够自动修正由于基底的变化而带来的影响。 该软件只要求在建数据库时,保证基布的一致性即可。染色时,由于基布的变化,使得第一次配方的颜色与标样有差异,但通过配方修正功能,自动消除基布变化带来的影响,使配方的颜色与标样一致;对于不同批次的基布在

GETPIVOTDATA函数的使用方法

G E T P I V O T D A T A函数的 使用方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

GETPIVOTDATA 函数 返回存储在数据透视表中的数据。如果报表中的汇总数据可见,则可以使用函数 GETPIVOTDATA 从数据透视表中检索汇总数据。 注释通过以下方法可以快速地输入简单的 GETPIVOTDATA 公式:在返回值所在的单元格中,键入 =,然后在数据透视表中单击包含要返回的数据的单元格。 语法 GETPIVOTDATA(data_field,pivot_table,field1,item1,field2,it em2,...) GETPIVOTDATA 函数语法具有下列: Data_field为包含要检索的数据的数据字段的名称,用引号引起来。 Pivot_table为在数据透视表中对任何单元格、单元格区域或命名的单元格区域的引用。此信息用于决定哪个数据透视表包含要检索的数据。 Field1, Item1, Field2, Item2为 1 到 126 对用于描述要检索的数据的字段名和项名称,可以按任何顺序排列。字段名和项名称(而不是日期和数字)用引号引起来。对于 OLAP 数

据透视表,项可以包含维的源名称以及项的源名称。OLAP 数据透视表的一对字段和项如下所示: "[产品]","[产品].[所有产品].[食品].[烤制食品]" 说明 在函数 GETPIVOTDATA 的计算中可以包含计算字段、计算项及自定义计算方法。 如果 pivot_table 为包含两个或更多个数据透视表的区域,则将从区域中最新创建的报表中检索数据。 如果字段和项的参数描述的是单个单元格,则返回此单元格的数值,无论是文本串、数字、错误值或其他的值。 如果某个项包含日期,则值必须表示为序列号或使用 DATE 函数填充,以便在其他位置打开工作表时将保留该值。例如,某个项引用了日期“1999 年 3 月 5 日”,则应输入 36224 或 DATE(1999,3,5)。时间可以输入为小数值或使用 TIME 函数来输入。 如果 pivot_table 并不代表找到了数据透视表的区域,则函数GETPIVOTDATA 将返回错误值 #REF!。 如果参数未描述可见字段,或者参数包含其中未显示筛选数据的报表字段,则 GETPIVOTDATA 函数将返回 #REF!。 示例

GetData 图数字化仪使用方法

GetData Graph Digitizer用法 GetData Graph Digitizer 2.22 Quick Start Step 1 Step 2 Open image file (File=>Open Image). Set the scale by setting four points Xmin, Xmax, Ymin and Ymax, and by assigning logical coordinates to these points ("Xmin value", etc.). To set the scale use Operations=>Set the scale menu or context menu (right mouse button). Picture below illustrates how Xmin, Xmax, etc., can be set in the case of sample graph. Xmin and Xmax are assigned values 20 and 80 respectively, Ymin and Ymax are assigned values 1e+14 and 1e+15. The scale is logarithmic along Y axis, this can be set in "Adjust scale" window under Operations=>Adjust scale menu. Step 3 Digitize graph. Automatically digitize, using one of the two methods. 1) Operations=>Auto trace lines. Choose starting point by clicking left mouse button, or right mouse button to additionally choose direction for line tracing. The same can be done through context menu ("Auto trace lines" item). 2) Operations=>Digitize area. First you will be asked to set grid type, distance between grid lines, and other options. Then choose the area to digitize by holding left mouse button and dragging the grid (in case of rectangular grid hold down Shift to rotate the grid). You can move the grid by holding down Ctrl. Manually digitize, using point capture mode (Operations=>Point capture mode). In this mode data points can be also moved; to move a point first select it with right mouse button, and then set it at a new location by left button. Data points can be also set by double clicking left mouse button in Magnifier window, or Shift + clicking in main window or in Magnifier window. To remove points it is convenient to use eraser tool (Operations=>Data points eraser). Step 4 Copy obtained data to the clipboard (File=>Copy data to buffer or Ctrl+Alt+C) or export to one of the following formats: TXT, XLS, XML, DXF or EPS (File=>Export data). Data can also be copied to buffer directly from Information window (Ctrl+C or Ctrl+INS). Settings for export to the buffer and for export to the text file can be changed in the "Options" window under Settings=>Options menu.

相关主题
文本预览
相关文档 最新文档