当前位置:文档之家› 消弧保护装置原理

消弧保护装置原理

消弧保护装置原理

消弧保护装置原理

说的直白一点就是:当电路出现短路发生电弧接地时,迅速转化为金属接地。金属性接地后,非故障相上的过电压立即稳定,系统中的设备可以在这个电压下安全运行;由于电弧被熄灭,过电压被限制在安全水平,故障不会再继续发展。过电压的能量降低到过电压保护器允许的能量指标以内,避免了过电压保护器爆炸事故;母线过电压被限制在较低的水平,可避免激发铁磁谐振过电压。

我国电力系统中性点的运行方式主要有:中性点不接地,中性点经消弧线圈接地和中性点直接接地三种,前两种接地系统称为“小电流接地系统”。在小电流接地系统中单相接地故障是最常见的,约占配电网故障的80%以上。单相接地时,由于故障电流小,使得故障选线较困难。常规变电所是靠绝缘监视装置发出信号,告知运行人员。然后由运行人员通过接在电压互感器二次相电压中表的量值来判断故障点。由于绝缘监视装置只能判断某一电压等级系统有接地,而不能指出故障点所在的线路,所以为了找出故障点,必须依次短时断开各条线路开关,再以自动重合闸恢复供电。这样,严重影响了供电的可靠性。近年来,随着综合自动化设备在供电系统中的应用,对小电流接地选线已经能够做到:单相接地后可直接判断故障点所在线路。这样就为我们迅速查找故障点提供了可靠的保证。正确应用综合自动化设备中小电流接地选线功能,是一个值得研究和重视的问题。

在中性点非直接接地电网中发生单相接地故障时.由于故障电流相对较小.且三相相问电压仍保持对称.不会影响对负荷的正常供电.因而发生单相接地故障后允许继续运行一段时间。

我国6~35 kV电网多采用中性点非直接接地运行方式.以提高供电可靠性6~35 kV电网采用中性点不接地运行方式时.若发生单相金属性接地故障.非故障相对地电压会升高到正常相电压的√3倍.不会危害正常电气设备的绝缘。但是。如果发生间歇性单相弧光接地.则会产生很高的弧光过电压.非故障相的过电压幅值可高达正常相电压的3.5倍.严重威胁电气设备的绝缘.甚至造成绝缘击穿。进而发展成相间短路故障。

为了限制弧光过电压.传统上6~35 kV电网多采用中性点经消弧线圈接地的运行方式。消弧线圈可以补偿单相接地故障时的电容电流.从而减小单相接地电流.进而促使电弧自行熄灭,因而可以消除弧光过电压。

随着电网规模的扩大及电缆线路的增多.发生单相接地故障时的电容电流很大.用消弧线圈补偿电容电流的方法已不能有效消除弧光接地过电压。

消弧柜工作原理:

消弧柜实质上是一种具有消弧、消谐及过电压保护功能的电压互感器柜(PT柜),其消弧工作原理,使用了消弧柜的6~35 kV电网采用中性点不接地运行方式电网正常运行时.消弧柜中的3个分相控制的高压真空接触器(KM)都处于分断状态.电压互感器(PT)二次侧输出的三相电压正常.零序电压值几乎为零.微机智能控制器负责对电网的零序电压和三相电压进行实时监测电网出现单相接地故障时,故障相电压上升,非故障相电压下降.零序电压大大增加。当零序电压达到一定值时,控制器即判定系统发生了单相接地故障.并通过对各相电压的计算分析,判断出接地故障的相别.向对应相的高压真空接触器发出合闸命令.把故障相直接在装置内实现金属性接地.同时向中央控制室发出报警信号.以便通知运行人员及时处理电网故障。无论单相接地故障是间歇性弧光接地还是稳定的电弧接地.由于消弧柜直接把故障相在装置内变成了金属性接地.故障相的对地电压降为零。原来故障点的电弧必然熄灭.避免了弧光过电压的产生,而其他两相的对地电压则限制在线电压的水平上。

消弧和消谐的工作原理

消弧和消谐的工作原理是不一样的。消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。 正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地迅速消除而不致引起过电压。 消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。绕组的电阻很小,电抗很大。消弧线圈的电感可用改变接入绕组的匝数加以调节。在正常运行状态下,由于系统中性点的电压是三相不对称电压,数值很小,所以通过消弧线圈的电流也很小,电弧可能自动熄灭。 一般采用过补偿方式,就是电感电流略大于电容电流 消弧线圈是一种带铁芯的电感线圈。它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地迅速消除而不致引起过电压。 消弧线圈和消弧消谐及过电压保护装置长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。 现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。 一、相接地电容电流的危害 中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面: 1.弧光接地过电压的危害 当电容电流一旦过大,接地点电弧不能自行熄灭。当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。

真空断路器灭弧原理和方法分析-民熔

真空断路器灭弧原理和方法-民熔 真空断路器,系三相交流50Hz额定电压为12KV的电力系统的户内开关设备,民熔真空断路器作为电网设备、工矿企业动力设备的保护和控制单元。适用于要求在额定工作电流下的频繁操作,或多交开断短路电流的场所。 灭弧是断路器的重要应用之一,电弧不仅会损坏设备线路,还会影响人身安全。一般来说,常用的灭弧方法有四种,包括机械灭弧、磁吹弧等。本文介绍了常用的灭弧方法和几种常用断路器的原理。首先讨论了常用的灭弧方法,包括以下四种:

1机械灭弧:限位装置使电弧迅速拉长。这种方法常用于开关器件。 2灭磁弧:在与触头串联的磁吹线圈产生的磁场作用下,在电磁力的作用下拉长电弧,吹入由固体介质组成的灭弧罩内,与固体介质接触,使电弧冷却熄灭。 3窄缝(纵缝)灭弧方法:在电弧形成的磁场的电场作用下,电弧被拉长,进入灭弧罩窄(纵)槽内。将纵向电弧分为若干段并与之接触的固体弧段迅速熄灭。这种结构主要用于交流接触器。

4栅极灭弧法:当触头分离时,所产生的电弧在电力的作用下被推入一组金属光栅中,并分成若干段。每一块相互绝缘的金属网格相当于一个电极,因此正负极之间会有许多电压降。对于交流电弧,当电弧过零时,阴极附近会出现150V~250V的介电强度,使电弧无法维持和熄灭。由于栅极灭弧效果比直流灭弧效果强得多,在交流电器中常采用栅极灭弧。 这些方法主要针对一些低压断路器。为了了解使用这些方法的原因,有必要阐明断路器的灭弧原理。以下是一些常用断路器的讨论。真空断路器中断电弧原理。真空断路器在分闸瞬间,由于触头间存在电容,两触头间的绝缘被击穿,产生真空电弧。由于触头的形状和结构,真空弧柱迅速向弧柱外的真空区扩散。当开断电流接近零时,触头间电弧的温度和压力急剧下降,使电弧无法维持和熄灭。灭弧后几μs内,触头间真空间隙的耐压水平迅速恢复。

消弧消谐装置与接地变

消弧消谐装置与接地变

接地变的作用 接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 三相接地变:接地变压器的作用是在系统为△型接线或Y型接线,中性点无法引出时,引出中性点用于加接消弧线圈或电阻,此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 单相接地变:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。 3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。即当系统发生接地故障时,在绕组中将流过正序、负序和零序电流,该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多接地变只提供中性点接地小电阻,而不需带负载,所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,

真空灭弧室的基本结构和工作原理

真空灭弧室的基本结构和工作原理 真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其主要作用是,通过管内真空优良的绝缘性使中高压电路切断电源后能迅速熄弧并抑制电流,避免事故和意外的发生,主要应用于电力的输配电控制系统,还应用于冶金、矿山、石油、化工、铁路、广播、通讯、工业高频加热等配电系统。具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠和无污染等特点。真空灭弧室从用途上又分为断路器用灭弧室和负荷开关用灭弧室,断路器灭弧室主要用于电力部门中的变电站和电网设施,负荷开关用灭弧室主要用于电网的终端用户。 我公司生产的多种型号的真空灭弧室,按其用途、参数、开断容量可分为断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器用真空灭弧室和分段器用真空灭弧室等。 其结构形式均由气密绝缘外壳、导电回路、屏蔽系统、波纹管等部分组成。 1、 气密绝缘系统 由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组成了气密绝缘系统。为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。不锈钢波纹管的作用不仅能将真空灭弧室内部的真空状态与外部的大气状态隔离开来,而且能使动触头连同动导电杆在规定的范围内运动,以完成真空开关的闭合与分断操作。 2 、导电系统 定导电杆、定跑弧面、定触头、动触头、动跑弧面、动导电杆构成了灭弧室的导电系统。其中定导电杆、定跑弧面、定触头合称定电极,动触头、动跑弧面、动导电杆合称动电极,由真空1.排气管保护罩 2.排气管密封刀口 3.环氧树脂填料 4.定端盖版 5.定导电杆 6.屏蔽筒 7.玻壳(或陶瓷壳) 8.定触头座 9.定触头 10.动触头 11.动触头座 12.动导电杆 13.波纹管 14.均压罩 15.动端盖版 16.导向套

消弧和消谐的工作原理

消弧与消谐得工作原理就是不一样得.消弧就是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作得真空接触器直接接地,有利于母线保护动作、这样可以避免谐波得产生。消谐主要就是消除二次谐波以及高次谐波,有利于电网得安全运行. 正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈得电感性电流与单相接地得电容性故障电流相互抵消,使故障电流得到补偿,补偿后得残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地迅速消除而不致引起过电压。 消弧线圈主要就是由带气隙得铁芯与套在铁芯上得绕组组成,它们被放在充满变压器油得油箱内。绕组得电阻很小,电抗很大。消弧线圈得电感可用改变接入绕组得匝数加以调节。在正常运行状态下,由于系统中性点得电压就是三相不对称电压,数值很小,所以通过消弧线圈得电流也很小,电弧可能自动熄灭。 一般采用过补偿方式,就就是电感电流略大于电容电流 消弧线圈就是一种带铁芯得电感线圈.它接于变压器(或发电机)得中性点与大地之间,构成消弧线圈接地系统。正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈得电感性电流与单相接地得电容性故障电流相互抵消,使故障电流得到补偿,补偿后得残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地迅速消除而不致引起过电压. 消弧线圈与消弧消谐及过电压保护装置长期以来,我国6~35KV(含66KV)得电网大多采用中性点不接地得运行方式。此类运行方式得电网在发生单相接地时,故障相对地电压降为零,非故障相得对地电压将升高到线电压(UL),但系统得线电压维持不变。因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网得供电得可靠性. 现有得运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障"得概念加以明确界定。如果单相接地故障为金属性接地,则故障相得电压降为零,其余两健全相对地电压升高至线电压,这类电网得电气设备在正常情况下都应能承受这种过电压而不损坏。但就是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3、5倍相电压得过电压,这样高得过电压如果数小时作用于电网,势必会造成电气设备内绝缘得积累性损伤,如果在健全相得绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路得重大事故。 一、相接地电容电流得危害 中性点不接地得高压电网中,单相接地电容电流得危害主要体现在以下四个方面: 1。弧光接地过电压得危害 当电容电流一旦过大,接地点电弧不能自行熄灭。当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压得3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中得绝缘薄弱环节,而且对整个电网绝缘都有很大得危害. 2.造成接地点热破坏及接地网电压升高 单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻得原因,使整个接地网电压升高,危害人身安全. 3.交流杂散电流危害 电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。 4。接地电弧引起瓦斯煤尘爆炸 二、消弧线圈得作用 电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接

直流系统级差配合

直流系统级差配合 前言 随着我国电力工业的不断进步,电力系统向超高压、大容量方向发展,为这些大容量电力设备提供控制、保护、信号、操作电源,直流系统的安全、可靠、经济运行就必须提到一个新的高度。 正常运行时,直流系统为断路器提供合闸电源,为继电保护及自动装置、通讯等提供直流电源;故障时,特别是交流电源中断情况下,直流系统为继电保护及自动装置、断路器合跳闸、事故照明提供安全可靠的直流电源,是电力系统继电保护、自动装置和断路器正确动作的基本保证。在直流回路中,熔断器、断路器是直流系统各出线过流和短路故障主要的保护元件,可作为馈线回路供电网络断开和隔离之用,其选型和动作值整定是否适当以及上下级之间是否具有保护的选择性配合,直接关系到能否把系统的故障限制在最小范围内,这对防止系统破坏、事故扩大和主设备严重损坏至关重要。因此,加强熔断器、断路器选择及配置的准确性,对提高电力系统运行的安全可靠性具有重要意义。 1 级差配合存在的主要问题 由于变电站直流系统供电内容多,回路分布广,在一个直流网络中往往有许多支路需要设置断路器或熔断器进行保护,并往往分成三级或四级串联,这就存在着正确选择保护方案和保护上下级之间的配合问题。 1.1 交直流断路器混用 由于交、直流的燃弧及熄弧过程不同,额定值相同的交直流断路器开断直流电源的能力并不完全一样,用交流断路器代替直流断路器或交、直流断路器混用是保护越级误动的主要原因之一。 断路器瞬时动作采用磁脱扣原理,判据为通过的电流峰值,断路器标定的额定值为有效值,而交流电的峰值高于有效值,在相同定值下,在直流回路中交流断路器实际额定值高于

直流断路器。另外,因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路不能有效、可靠地熄灭直流电弧,容易造成上级越级动作。 1.2 熔断器质量及参数问题 各生产厂家提供的熔断器技术数据是在产品型式试验时得到的,且校验熔断器的分断能力是在交流电源周期分量有效值下做的,熔体动作选择配合特性曲线也是交流安秒特性曲线。这与变电站直流系统发生短路故障时的实际情况有一定差距。 各熔断器厂家及设计手册提供的级差配合是按同一型号、同熔体材料确定上、下级差,从而保证满足选择性的,当回路中有不同类型的熔断器时,熔断器之间的级差配合更应引起高度重视。同时,由于目前低压电器生产厂家较多,不能完全保证产品质量,所以即使同一厂家、同一型号的熔体,其参数也有一定的分散性。 1.3 上、下级间的额定值级差选择不当 熔断器采用热效应原理,而断路器是磁效应与热效应相结合,安秒特性曲线不同,配合级差也不同。对于断路器之间、断路器与熔断器之间的级差配合不应照搬熔断器间的配合规定。 2 熔断器、直流断路器级差配置现场试验 为了适应新颁DL/T5044-2003《电力工程直流设计技术规程》(以下简称设计规程)有关规定,验证变电站直流系统中断路器和熔断器几种典型的级差配置方案是否满足选择性保护的要求,探索直流断路器之间的级差配合、直流断路器与熔断器的配合及其上下级之间的选择配置,选择了石家庄供电公司所辖变电站直流系统中部分直流断路器、熔断器的典型保护级差配合方案进行了现场试验,并对具备延时功能的三段式直流断路器也进行了试验验证,确认了实现选择性保护的配合条件。 2.1 短路电流的选取 按照直流断路器及熔断器安装现场可能出现的最大短路电流,将试验元件串联安装进行

消弧消谐及过电压保护综合装置使用说明

消弧消谐选线及过电压 保护综合装置 保定尚源电力科技有限公司

一、产品概述 随着社会发展,电力系统的安全运行及供电的可靠性已显得越来越重要。长期以来,我国6~66KV的配电网大多采用中性点不接地运行方式。这种运行方式在单相接地时允许短时间带故障运行,因而大大提高了系统的供电可靠性。 我们公司研制开发的消弧消谐及过电压综合装置,该装置原理新颖,功能完善,自动化程度高,其在安装维护、可靠性、控制功能等方面国内领先。快速消除接地电弧及弧光过电压、铁磁谐振。可广泛适用于我国电力、冶金、化工、煤炭和石油等行业的3~35KV配电网中。 智能消弧消谐及过电压综合装置的主要功能: 本装置是利用智能控制、过电压限制技术和单相开关等组成一套自动控制系统。采用对二次的PT开口三角处投入大功率消谐电阻,以吸收谐振能量,消除谐振;采用限制故障相的恢复电压幅值及恢复电压的上升速度,消除弧光接地;技术先进,运行可靠。 其主要功能如下: 1)替代电压互感器柜,并提供电压检测信号。 2)具有过电压保护功能,能将大气过电压和操作过电压限制到较低的电压水平,保证了电网及电气设备的绝缘安全,使因过电压引起的事故大为 减少。 3)替代消弧线圈,能够快速消除间歇性弧光接地故障,抑制间歇性弧光接地过电压,防止事故的进一步扩大,降低线路的事故跳闸率。 4)能够快速有效的限制并消除各种谐振过电压,防止长时间的谐振过电压对系统绝缘结构的加速老化,防止谐振过电压对电网中设置的避雷器以 及小感性负载的影响,增加系统运行的安全可靠性,延长系统中设备的 使用寿命。 二、技术参数 1、适用范围 本装置可适用于6~35KV电压等级中性点非有效接地配电网的消弧、消谐及过电压保护,广泛用于电力系统的变电所或发电厂以及冶金、矿山、石化等企业的供电系统,对提高系统供电可靠性及安全运行有明显的效果。 2、工作环境 智能消弧消谐及过电压综合装置的所有元件可安装在开关柜内,与其他高压开关柜组屏在一起,体积小、成本低、安装方便。其使用环境要求如下:1)环境温度:-25℃~+40℃ 2)环境温度:90%(25℃),50%(40℃) 3)海拔高度:≦2000米 4)无严重影响本装置绝缘性能的污染物及爆炸性介质的场所。 3、性能指标 1)智能消弧消谐及过电压综合装置额定参数 额定频率:50HZ 额定电压:6KV、10KV、35KV 2)控制器额定参数 工作电压:交流220V

各类断路器的灭弧原理

引用各类断路器的灭弧原理 电机设备2010-10-27 15:24:38 阅读30 评论0 字号:大中小订阅 本文引用自缘分的天空《各类断路器的灭弧原理》 引用 缘分的天空的各类断路器的灭弧原理 真空断路器灭弧原理? 在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几μs内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后, 不会发生电弧重燃而被分断。这就是其灭弧的原理。 SF6开关的灭弧原理 10kV SF6断路器灭派性能优良,不仅在于SF6气体本身,而且采用旋弧式灭弧室。目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理从图1可见:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。 油断路器的灭弧原理 当油断路器开断电路时,只要电路中的电流超过0.1A,电压超过几十伏,在断路器的动触头和静触头之间就会出现电弧,而且电流可以通过电弧继续流通,只有当触头之间分开足够的距离时,电弧熄灭后电路才断开。1OkV少油断路器开断20KA时的电弧功率,可达一万千瓦以上,断路器触头之间产生的电 弧弧柱温度可达六七千度,甚至超过1万度。 油断路器的电弧熄灭过程是,当断路器的动触头和静触头互相分离的时候产生电弧,电弧高温使其附近的绝缘油蒸发气化和发生热分解,形成灭弧能力很强的气体(主要是氢气)和压力较高的气泡,使电 弧很快熄灭。 灭弧的种类:灭弧有磁吹,纵缝灭弧,横吹的等等! 磁吹当然是利用磁力来灭弧。因为电弧本身就是一个比较大的电流,用线圈通上电流,当然线圈必须是在电弧的两边,把电弧加在中间!当有电弧的时候,线圈用自己本身的磁力,把电弧拉长,让他自动 熄灭! 可以引申以下,原先的断路器是用油来灭弧(当然不是单纯的用油),也就是电弧形成时,会把油电离,电离出来的氢气会把电弧吹灭!现在的SF6断路器的灭弧能力是氢气的6-8倍,所以现在的断路器 都是用FS6灭弧。 纵缝是把电弧引到缝里面,从而灭弧。

消弧消谐PT柜原理完整版

消弧消谐P T柜原理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

消弧消谐柜(PT柜)原理 GYXH消弧、消谐及过电压保护装置 我国现有的运行规程规定,对3~35kV中性点非直接接地的电网,发生接地故障时,允许继续运行两小时,如经上级有关部门批准,还可以延长。但规程对于“单相接地故障”的概念未做明确界定,如单相接地故障为金属性接地,故障相电压降为零,其余两相的对地电压将升高至线电压U L,因而这类电网的电气设备如变压器、电压/电流互感器、断路器及电缆等的对地绝缘水平,都能满足长期承受线电压作用而不损坏的要求。但是,如果单相接地故障为弧光接地,则其过电压一般为~倍的相电压,在这样高的过电压持续作用下,势必造成固体绝缘的积累性损伤,在健全相形成绝缘的薄弱环节,进而发展为相间短路事故。 传统观念认为,3~35kV电网属于中压配电网,此类电网中内部过电压幅值不高,所以,危及电网绝缘安全的主要因素不是内部过电压,而是大气过电压,因而长期以来采取的过电压保护措施仅仅针对防止大气过电压,主要技术措施仅限于装设各种类型的避雷器,其保护值较高,对于内部过电压起不到限制作用。 随着电网的发展,架空线路逐步被固体绝缘的电缆线路所取代。由于固体绝缘击穿的积累效应,其内部过电压,特别是电网发生单相间歇性弧光接地时产生的弧光接地过电压及由此激发的铁磁谐振过电压,已成为这类电网安全运行的一大威胁。其中以单相弧光接地过电压最为严重。弧光接地过电压会使电压互感器发生饱和,激发铁磁谐振,导致电压互感器严重过载,造成熔断器熔断或互感器烧毁。由于弧光接地过电压持续时间长,能量极易超过避雷器的承受能力,导致避雷器爆炸。 目前国内大多采用消弧线圈补偿或自动跟踪补偿式消弧线圈接地方式解决弧光接地过电压问题,其优点是:1、降低了故障点的残流,有利于接地电弧的熄灭;2、避免了长时间燃弧而导致相间弧光短路。3、对于金属性接地,系统可带故障运行两小时,减少了跨步电压差。缺点是:1、容易产生串联谐振过电压和虚幻接地现象;2、放大了变压器高压侧到低压侧的传递过电压;3、使小电流选线装置灵敏度降低甚至无法选线;4、用电感电流去抵消电容电流时,对于弧光接地时的高频分量部分无法抵消,因而不能有效地限制弧光接地过电压。 国外采取中性点直接接地的方式,国内也有少数地区电网采取了经小电阻接地的方式。虽然抑制了弧光接地过电压,但牺牲了对用户供电的可靠性。这种系统在发生单相接地时,不论负荷是否重要,一律人为增加接地电流,使断路器跳闸,扩大了停电范围和时间。由于加大了故障电流,发生弧光接地时,会加剧故障点的烧毁。 消弧及过电压保护装置(以下简称GYXH)是保定市广源电气有限公司研发的新型消弧产品,该产品在系统发生弧光接地时,将弧光接地转化为金属性接地,彻底消除了弧光接地过电压,考虑到柜内具有电压互感器,因而该GYXH还可作为PT柜,根据用户需要可增加了消谐、PT切换等PT柜的功能,另外,还可配备内置选线。上述功能使得GYXH具备了消弧、消谐、PT切换的作用,由于一机多能,节约了现场宝贵的空间。 正常运行时微机控制器不断检测PT提供的电压信号,一旦系统发生PT断线、单相金属接地或单相弧光接地时,PT辅助绕组(开口三角)的电压立即由低电平转为高电平,微机控制器启动中断,并根据PT二次电压的变化,判断故障类型和相别。 如果是PT单相断线故障,则装置输出开关量接点信号;如果是单相金属性接地故障,则装置输出开关量接点信号,也可根据用户要求由微机控制器向真空接触器发出动作命令;如果是单相弧光接地故障,则微机控制器向真空接触器发出动作命令,真空接触器快速动作将不稳定的弧光接地转化为稳定的金属性接地;在上述故障发生时,装置输出开关量接点信号,同时可通过RS485接口与微机监控系统实现数据远传。 对于中性点不直接接地系统加装GYXH后: 1、在发生弧光接地时,装置内故障相的真空接触器可快速合闸,将弧光接地转化为金属性接地不仅使故障点的电弧立即熄灭,同时也彻底消除了弧光接地过电压; 2、本装置具有较高的性价比,能取代消弧线圈及其配套设备、电压互感器柜及其保护装置以及小电流接地选线装置,节约现场的安装空间。 3、本装置的保护功能不受电网大小和运行方式的影响; 4、装置结构简单,安装方便,适用于供、用电企业的中性点不直接接地电网。 5、保护功能全,装置具有消弧功能、PT功能及内部与外部各类过电压保护功能;根据用户的现场需要,还可以增加PT切换、小电流选线等功能,对防止事故的进一步扩大,减轻运行维护人员的工作量有重要意义。 l???????型号含义 GYX H—□ / □ ???????????????????????????装置的额定电流 ???????????????????????????装置的额定电压 ???????????????????????????广源消弧及过电压保护装置

消弧消谐装置有关问题

装置的基本功能及特点 1.能将系统的大气过电压和操作过电压限制到较低的电压水平,保证了电网及电气设备的绝缘安全。 2.装置动作速度快,可在20ms之内动作,能快速消除间歇性弧光及稳定性弧光接地故障,抑制弧光接地过电压,防止事故进一步扩大,降低线路的事故跳闸率。 3.能够快速、有效地消除系统的谐振过电压,防止长时间谐振过电压对系统绝缘破坏,防止谐振过电压对电网中装设的避雷器及小感性负载的损伤。 4.装置动作后,允许160A的电容电流连续通过2小时,用户可以在完成转移负荷的倒闸操作之后再处理故障线路。 5.能够准确查找单相接地故障线路,对防止事故的进一步扩大,对减轻运行和维护人员的工作量有重要意义。 6.由装置的工作原理可知,其限制过电压的机理与电网对地电容电流的大小无关,因而其保护性能不随电网运行方式的改变而改变,大小电网均可使用,电网扩容也没有影响。 7.本装置中的电压互感器可以向计量仪表和继电保护等装置提供系统的电压信号,能够替代常规的PT柜。 8.能够测量系统的单相接地电容电流。 9.装置设备简单,体积小,安装、调试方便,适用于变电站,同样适用于发电厂的高压厂用电系统;适用于新建站,也适用于老电站的改造。 10.性价比高,相对于消弧线圈系统而言,性能价格比很高。 ★装置主要组成部件及其功能 ZRXHG-Ⅳ消弧消谐过电压保护装置组成原理如图1所示,其主要有以下六个部件组成:1.大容量ZNO非线性元件组成的组合式过电压保护器TBP TBP是一种特殊的高能容的氧化锌过电压保护器,与一般的氧化锌避雷器(MOA)相比,具有以下优点: (1)TBP组合式过电压保护器采用的是大能容的ZNO非线性电阻和放电间隙相组合的结构,由于间隙元件与ZNO阀片的配合,解决了保护器的荷电率及工频老化问题。 (2)TBP组合式过电压保护器的冲击系数为1,各种电压波形下的放电电压值相等,不受过电压波形影响,过电压保护值准确,保护性能优良。 (3)TBP组合式过电压保护器采用四星型接法,可将相间过电压大大降低,与常规避雷器相比,相间过电压降低了60-70%,保护可靠性大大提高。 TBP组合式过电压保护器是本装置中限制各类过电压的第一器件,主要用来限制大气过电压和操作过电压。 2.可分相控制的高压永磁真空接触器(KA-KC) 这是一种特殊的高压永磁真空接触器,其三相分体,各相一端分别接至母线,另一端接地。正常运行时真空接触器处于断开状态,受微机控制器控制而动作,各相之间闭锁,当其中任一相闭合使该相母线接地后,其它两相中的任何一相绝对不会动作闭合。 KA-KC的作用是:当系统发生弧光接地时,使其由不稳定的弧光接地故障转变成稳定的金属性接地,从而保护了系统中的设备。

直流断路器的操作原理及分类

直流断路器的基本理解 指的是用于直流零碎运转方法转换或毛病切除的断路器。用来对直流配电零碎的设备和电气停止过载、短路维护之用,可普遍用于电力、邮电、交通、工矿企业等行业。 直流断路器的操作原理 流断路器主回路包括一个支持动触头的下部衔接排,一个上部衔接排和外表镀银的触头,合闸安装由一个带合闸线圈的大块罐状磁铁构成。该磁铁包容了一个动磁芯、触头压力弹簧和一个磁芯复位弹簧;一切这些部件均被装置在操作杆上。拨叉单位装置在操作杆的顶端。 过流脱扣安装包括一个由层压的薄片组成的衔铁,一个连到由弹簧掌握的操作杆上的动磁芯,因为该杆的感化可以设定脱扣整定值。五对辅佐接点均为由动触头掌握的换向触头。它们位于合闸安装下部的塑料盒内。灭弧室包含角板,隔板和去离子板,以上这些都装置在两块灭弧板之间。当断路器因为过流或正常的分闸敕令而分闸的话,推动机构将会带动动触头分闸。该推动机构异样感化于5个换向辅佐接点。 直流断路器的两大分类 1. 两段式直流断路器。两段式直流断路器在短路电流是下级开关额外电流的8~10倍规模、4~5级级差合营下,准确举措,合营优越。 2. 三段式直流断路器。三段式直流断路器,下级为三段式,下级为两段式或三段式直流断路器时,级差为2级,在短路电流为下级断路器额外电流的25~40倍规模均准确举措。 直流断路器与交流断路器的主要区别 两者的区别在于去灭弧才能上。由于交换每一个周期都有过零点,在过零点轻易熄弧,而直流开关没有过零点,熄弧才能很差,所以要添加额定的灭弧安装。总的来说就是直流难灭弧,而交换有过零,灭弧轻易。 如需进一步了解相关断路器产品的选型,报价,采购,参数,图片,批发等信息,请关注https://www.doczj.com/doc/7a13349521.html,/

消弧消谐的原理及作用

消弧消谐柜的原理作用 说的直白一点就是:当电路出现短路发生电弧接地时,迅速转化为金属接地。金属性接地后,非故障相上的过电压立即稳定,系统中的设备可以在这个电压下安全运行;由于电弧被熄灭,过电压被限制在安全水平,故障不会再继续发展。过电压的能量降低到过电压保护器允许的能量指标以内,避免了过电压保护器爆炸事故;母线过电压被限制在较低的水平,可避免激发铁磁谐振过电压。消弧和消谐的工作原理是不一样的。消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。正常运行时,消弧线圈中无电流通过。而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。这样,就可使接地迅速消除而不致引起过电压。JZXH消弧消谐选线及过电压保护装置使用说明书 一、概述我国3~35KV(含66KV)的电网大多采用中性点不接地的运行方式。此类电网在发生单相金属性直接接地时,非故障相的对地电压将升高到线电压,三相线电压量值不变,且仍具有120。的相位差,三相用电设备的工作并未受到影响,因而不影响电能的正常传输。所以国家标准规定这类电网在发生单相接地故障后允许短时间带故障运行,提高了该类电网的供电的可靠性。现有的运行规程规定,中性点非有效接地系统发生单相接地故障时,允许运行两小时,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为间歇性弧光接地,则会在系统中产生达3.5倍相电压峰值的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,在健全相的绝缘薄弱环节造成绝缘对地击穿,进而发展成为相间短路事故。在间歇性电弧接地暂态过程中,实际系统会形成多频振荡回路,不仅会产生高幅值的相对地过电压,而且还可能出现高幅值的相间过电压,使相间绝缘弱点闪络,发展成为相间短路事故。目前,限制弧光接地过电压的主要措施仍是电网中性点经消弧线圈接地。但消弧线圈并不能限制间隙性电弧接地过电压,甚至因消弧线圈的存在,电弧重燃可能在恢复电压最大时刻才发生,使弧光接地过电压更高。消弧线圈不能补偿接地电流中的高频分量和有功分量,高频性的间隙电弧接地不能消除;在有功分量大于一定值时,故障点接地电弧同样不能自熄。实际运行经验也证明,在中性点经消弧线圈接地的3~35KV配电网中,由电弧和谐振引发的事故时有发生。随着城乡电网的发展以及生产、生活对供电可靠性的要求越来越高,每次绝缘事故造成的危害及波及面势必增加,为此我公司自主研发出了JZXH消弧消谐选线及过电压保护装置,集消弧、消谐、小电流接地选线及过电压保护等功能为一体,将中性点非有效接地电网的相对地及相间过电压限制在电网安全运行的范围之内,彻底解决各种过电压对设备及电网安全运行的威胁,提高这类电网的供电可靠性。 二、产品的主要功能JZXH消弧消谐选线及过电压保护装置用于3~35KV中性点非有效接地电力系统中,对这类系统运行中的各类过电压加以限制,特别是对谐振过电压和单相弧光接地过电压加以限制和消除,并提供灵敏、可靠的单相接地保护,以有效地提高该类电网的运行安全性及供电可靠性。其主要功能: 1.电压互感器柜,提供电压监测功能。 2.消弧线圈,消除间隙性弧光接地故障,并具有消弧线圈所不具有的限制弧光接地过电压的功能。3.各类消谐器,限制并消除谐振过电压。 4.各类小电流选线装置,灵敏、准确地选出单相接

10kV消弧消谐柜技术说明和技术方案

消弧消谐及过电压保护装置(SHK-XGB) ⒈工程系统状况: 消弧消谐及过电压保护装置安装运行在10KV母线上, 10KV系统参数如下: ⒈1额定电压: 10kV ⒈2最高运行电压:12kV ⒈3额定频率: 50HZ ⒈4中性点接地方式:不接地 ⒈5 10KV系统单相接地电容电流:待定(根据实际计算得出) ⒈6 直流操作电压:DC220V ⒉装置的使用环境条件 ⒉1使用场所:无酸碱腐蚀处 ⒉2海拔高度:≤2000m ⒉3相对湿度:月平均相对湿度不大于90%,日平均相对湿度不大于95% ⒉4环境温度:-30℃∽+40℃ ⒉5污秽等级:不超过Ⅱ级(不得有粉尘、煤气、烟气等具有爆炸性的混合物) ⒊装置的用途: 消弧及过电压保护装置(SHK-XGB)用于10KV中性点不直接接地系统,有效地保护设备的相间和相对地绝缘,防止由单相故障发展为相间短路事故 ⒋装置的组成: 该装置主要由小电流接地选线装置ZDX、电压互感器PT、一次消谐器XX、微机控制器ZK、交流真空接触器JZ、三相组合式过电压保护器TBP、高压限流熔断器FU、高压隔离开关、CT和接地测量电流表等组成。 ⒌装置的工作原理: 正常运行时微机控制器不断检测PT提供的电压信号,一旦系统发生PT断线、单相金属接地或单相弧光接地时,PT辅助二次的开口三角电压立即由低电平转为高电平,微机控制器启动中断,

并根据PT二次电压的变化,判断故障类型和相别。 如果是PT单相断线故障,则装置输出开关量接点信号,同时可通过RS485(或RS232)接口与微机监控系统实现数据远传。 如果是单相金属性接地故障,则装置输出开关量接点信号,也可根据用户要求由微机控制器向真空接触器发出动作命令,同时可通过RS485(或RS232)接口与微机监控系统实现数据远传。 如果是单相弧光接地故障,则微机控制器向真空接触器发出动作命令,真空接触器在30ms内快速动作将不稳定的弧光接地转化为稳定的金属性接地。装置输出开关量接点信号,同时可通过RS485(或RS232)接口与微机监控系统实现数据远传。 小电流接地选线装置: 模块化设计,结构紧凑,技术先进,高速32位ARM内核处理器使运算实时性和动作准确性得以保证。 实时监控系统状态,实时运算,根据信号采集、数据处理结果,发出相应的信号。 工业标准的RS-485通讯接口,可以实时向上位机传送系统的运行状态,上位机也可以通过此通讯口对消弧控制器发出指令。 故障追忆功能,大容量Flash存储器保存最近32次历史故障记录。 具有良好的电磁兼容性,适合在强电磁干扰的复杂环境中应用。整机符合IEC61000-4-4标准。 双硬件看门狗电路确保软件运行的可靠性。 中文液晶显示,运行状态清晰,菜单式操作,方便易用。 ⒍装置的关键技术: 6.1利用特制的可分相操作的单相真空接触器将弧光接地迅速转化为金属接地; 6.2 使用我公司的专利技术限流熔断器FU对其进行保护; 6.3本装置采用了公司的专利产品三相组合式过电压保护器TBP,可将电网中各类过电压限制到较低水平,并能有效地保护线路的相间绝缘; 6.4 利用工频熄弧理论、高频熄弧理论以及谐波分析的方法,研制出专用的单片机控制器,判断单相接地故障属性及相别,并控制真空接触器是否动作。 ⒎装置的优点: ⒎1装置可有效地将弧光接地过电压等各种过电压限制到较低

直流断路器2005

直流断路器级差配合的研讨 主讲人:房兆源教授 亚东亚电气集团 重庆科源电气有限公司

一、直流电源系统中为什么要用专用的直流断路器 因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路中不能有效、可靠地熄灭直流电弧,造成上下级越级动作。 河北电力公司某110KV 变电站直流屏馈线开关原采用交流C45N型断路器,曾两次越级动作造成事故。 二、级间配合的重要性 在电力系统中,直流电源作为继电保护、自动装置控制操作回路、灯光音响信号及事故照明等电源之用,是继电保护、自动装置和断路器正确动作的基本保证。直流系统中直流断路器是主要的保护电器,其选型和动作值整定是否适当以及上下级之间是否有保护性的选择性配合,直接关系到能否把系统故障限制到最小范围内,对防止系统破坏、事故扩大和设备损坏至关重要。 由于变电站直流系统的供电内容多,回路分布广,在一个直流网络中往往有许多支路设置直流断路器来进行保护,并往往分成三级或四级串联,这就存在保护元件如何正确选型号及上下级间选择性保护的问题。 所谓选择性保护是指配电系统中两个或几个断路器之间的电流—时间特性的配合,当在给定范围内出现过电流故障时,指定在这个范围动作的断路器动作,而其它的断路器不动作,从而将受故障的影响负载支路数目保持在最小程度。 三、直流断路器的分类 1.常用直断路器的分类: (1)两段型保护:过载长延时+短路瞬时保护 GM32-25~40 (北京人民电器厂) 5SX-25~40 (西门子公司) 5252S-DC (ABB) C32H-DC (梅兰日兰) NDM1-63 (良信) (2)三段型保护:过载长延时+短路短延时+短路瞬时保护 GMB32-25 (北京人民) GMB100-50、80 (北京人民) 2.按脱扣电流分: C型:脱扣电流为额定电流的5~10倍 D型:脱扣电流为额定电流的10~14倍

真空断路器灭弧原理

真空断路器灭弧原理 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。 真空灭弧室是真空断路器的灭弧和绝缘部件。主要有动触头、静触头、动端跑弧面、动端法兰、静端法兰、瓷柱、不锈钢支撑法兰、屏蔽罩、动静导电杆、玻壳和波纹管等,经过清洗由玻璃封装、真空焊、亚弧焊、排气等工艺程序处理后封装而成。各主要零部件均密封在玻壳中,玻壳不仅通过动静法兰起到密封作用,还能起到绝缘作用。波纹管系一动态密封的弹性元件,通过真空灭弧室在操动机构的作用下可完成分合闸动作,而又不会破坏其真空度。

真空灭弧室制造成一个整体,不能拆装,损坏后应整体更换。 真空电弧的熄灭是基于利用高真空介质(一般为压强低于10-4mm汞柱的稀薄气体)的绝缘强度及在这种气体中的电弧生成物(带电粒子和金属蒸汽)具有极高的扩散速度,在电弧电流过零后,触头间隙的介质强度可以迅速恢复起来的原理而实现的。燃弧过程中的金属蒸汽和带电粒子在强烈的扩散中为屏蔽罩所冷凝,带三条阿基米德螺旋槽的跑弧面使电弧电流在其流经路线上的触头间产生一个横向磁场,这时电弧电流在主触头上沿切线方向快速移动,从而降低了主触头表面的温度,减少了主触头的烧损,稳定了断路器的开断性能,提高了断路器的寿命。

消弧消谐及过电压保护装置

AL-XHZ系列消弧消谐及过电压保护装置 一、概述 传统消弧技术概述 长期以来,我国3~66KV的电网大多采用中性点不接地的运行方式。这种电网具有结构简单、投资小,供电可靠性高的优点。该电网发生稳定单相接地故障时,系统线电压不变,只是非故障相的对地电压升高到线电压,虽然该系统中的电气设备的绝缘均可承受长期线电压的强度可以带故障运行两小时。但是,如果系统发生的单向接地故障为间歇性弧光接地,则会在系统中产生高达3.5倍相电压峰值的过电压,如此高的过电压如果数小时作用于电网,会对电气设备的绝缘造成损伤,甚至会造成健全相对地绝缘击穿,进而发展成为相间短路事故。在间歇性弧光接地过程中,还会形成多频段振荡回路,不仅会产生高幅值的相对地过电压,而且还可能出现高幅值相间过电压,使相间绝缘闪络,造成相间短路事故。 随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日益严重起来。运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性孤光接地时产生的孤光接地过电压,及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。为了解决上述问题,不少电网在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障电流减小,从而达到自然熄弧的目的。运行经验表明,虽然消弧线圈对抑制间歇性弧光接地过电压有一定作用,但在使用中也发现消弧线圈存在的一些问题。 1、由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿却有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时仅高频电流及阻性电流就可以维持电弧的持续燃烧。 2、当电网发生断线、非全向、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。 3、消弧线圈体积大,组件多,成本高,安装所占场地较大,运行维护复杂,而且随着电网的扩大,消弧线圈也要随之更换,不利于电网的远景规划。

相关主题
文本预览
相关文档 最新文档