当前位置:文档之家› Ku波段宽带低噪声放大器的关键技术研究

Ku波段宽带低噪声放大器的关键技术研究

Ku波段宽带低噪声放大器的关键技术研究
Ku波段宽带低噪声放大器的关键技术研究

宽带低噪声放大器设计毕业设计

本科毕业设计 学院 专业 年级 姓名 设计题目宽带低噪声放大器设计 指导教师职称 ****年* 月* 日

目录 摘要 (1) Abstract. (1) 1概述 (1) 2低噪声放大器设计的原理 (2) 2.1噪声系数 (2) 2.2低噪声放大器的功率增益以及分配电压增益 (2) 2.3端口驻波比 (3) 2.4工作带宽与增益平坦度 (3) 2.5动态范围以及压缩点 (3) 2.6三阶截断点 (4) 2.7低噪声放大器的稳定性 (4) 3器件的选择 (4) 3.1放大器的选择 (5) 3.2放大器的介绍 (5) 3.3电源的供电 (5) 3.4选用器件的介绍 (5) 4模拟电路设计 (5) 4.1方案选择 (6) 4.2模拟电路设计 (6) 4.3电源电路 (6) 5电路的调试 (8) 5.1调试过程 (8) 5.2测试结果 (8) 5.3系统的改进措施 (10) 6总结 (11) 参考文献 (11)

宽带低噪声放大器设计 学生姓名:*** 学号:*********** 学院:专业: 指导老师:职称: 摘要:本文介绍了一个15V单电源供电的低噪声放大器设计,设计采用三级级联的方式。该系统主要是宽带低噪声放大器,为了满足要求,采用了高速运算放大器μa741作为前两级放大,末级用CA3140作为功率放大电路。测试结果表明,放大倍数为100倍,带宽有1MHz。 关键词:μa741;放大器;带宽;噪声系数 The design of the low noise amplifier with broadband Abstract: This article describes the design of a single 15V power supply and low noise amplifier. The system has three amplifier consisted ofμa741 and CA3140, which meet the requirements of broadband and low noise. Test results show that a amplifier with bandwidth 1MHz is 100 times. Keywords: μa741;amplifier;Bandwidth;noise figure 1概述 我们知道低噪声放大器是射频电路的重要组成部分,并且在有源滤波器等电子电路当中宽带低噪声放大器起着重要作用。而且在射频微波电路当中,放大器也起着重要作用,它的好坏直接决定了射频微波电路的功能的实现,具有很重要的现实意义,所以在制做低噪声放大器的时候我们要注意它的各项指标是否能够达标。 除此之外,我们知道随着社会的发展,以及各项科学技术的发展,对通信带宽的要求也越来越宽因此各种通信设备在宽频带上的工作要求不再是以前的一个或者几个频点。由于我国对放大器设计的技术相对来说还不算很先进,所以更需要后起之秀对放大器设计进行进一步的探索和研究。 随着时代的发展,人们对通信质量的要求也更高,其中包括要使工作频率更高、工作频率更宽以及噪声系数更小,这已经成为各项科学技术设备发展的趋势。本文介绍了一种比较简单易行的宽带低噪声放大器设计方法。本设计利用具有低噪声,高速运算的放大器μa741,以及DC-DC交换器TPS61087DCR作为此宽带的噪声放大器

网络安全态势评估与预测关键技术研究

网络安全态势评估与预测关键技术研究 (吉林省人力资源和社会保障信息管理中心?130022) 摘要:随着社会经济的不断发展以及科学技术水平的提高,网络发展规模也在不断的扩大,相应的网络结构也变得越来越复杂,各种网络攻击行为给网络环境的安全造成了很大的威胁,严重影响着网络系统的和谐稳定,在很大程度上制约着网络的应用。基于此,本文对网络安全态势的评估技术和预测关键技术进行分析研究,加强网络安全管理,从而为广大用户提供安全的网络环境。 关键词:网络安全态势;评估与预测;关键技术;分析探究 引言:随着时代的不断发展和进步,网络已经融入到人们日常生活的方方面面,逐渐改变着人们的生活方式和行为习惯,人们每天都会应用网络进行交流以及获取各种信息,网络的广泛应用不仅提升了信息的传播速度,扩大了信息影响范围,同时还能够突破时间、地点、空间的限制,使得信息可以高效的进行传播。有时一条信息仅用几分钟的时间就可以被传播到世界的各个角落,为人们的生活提供了极大的便利。但是,网络攻击和网络病毒的普遍存在也威胁着网络

环境安全,可能会损害网络设备,为用户信息带来一定的安全风险,应该采取有效措施加以应对,不断提升网络环境的安全性。 一、网络安全态势评估与预测体系的基本结构 (一)网络安全态势评估与预测体系中的主要技术 在当前网络环境发展中,网络安全态势评估与预测体系可以有效的发现网络中存在的各种安全问题,从而加强对网络信息的安全管理。网络安全态势评估与预测结合了很多的网络信息安全管理的技术,其中主要包括杀毒软件、防火墙等,在网络安全受到威胁时可以进行及时的检测运行和报警,通过对网络安全进行的实时监测,使得网络安全态势评估与预测可以对网络安全情况提供相应的评估,同时还能有效预测出网络环境的整体变化规律和趋势。 (二)网络安全态势评估与预测体系的基本构成 网络安全态势评估与预测体系主要包括以下几方面内容:(1)提取特征,通过相应的网络安全态势评估与预测技术,可以对网络环境中的各种信息数据进行筛选,最终提出能够体现网络安全态势基本特征的重要信息。(2)安全评估,在获取网络安全态势基本特征信息的基础上,结合相关网络安全技术评估网络的实际运行情况,有效确立网络安全态势的评估模型[1]。(3)态势感知,通过对网络安全态势评估信息的有效识别,探寻出其中的基本关系,逐渐形成一种安全

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

宽带高频功率放大器

5.4 宽带高频功率放大器 以LC谐振回路为输出电路的功率放大器,因其相对通频带只有百分之几甚至千分之几,因此又称为窄带高频功率放大器。这种放大器比较适用于固定频率或频率变换范围较小的高频设备,如专用的通讯机、微波激励源等。除了LC谐振回路以外,常用于高频功放电路负载还有普通变压器和传输线变压器两类。这种以非谐振网络构成的放大器能够在很宽的波段内工作且不需调谐,称之为宽带高频功率放大器。 以高频变压器作为负载的功率放大器最高工作频率可达几百千赫至十几兆赫,但当工作频率更高时,由于线圈漏感和匝间分布电容的作用,其输出功率将急剧下将,这不符合高频电路的要求,因此很少使用。以传输线变压器作为负载的功率放大器,上限频率可以达到几百兆赫乃至上千兆赫,它特别适合要求频率相对变化范围较大和要求迅速更换频率的发射机,而且改变工作频率时不需要对功放电路重新调谐。本节重点分析传输线变压器的工作原理,并介绍其主要应用。 5.4.1 传输线变压器 1. 传输线变压器的结构及工作原理 传输线变压器是将传输线(双绞线、带状线、或同轴线)绕在高导磁率铁氧体的磁环上构成的。如图5-24(a)所示为1:1传输线变压器的结构示意图。 传输线变压器是基于传输线原理和变压器原理二者相结合而产生的一种耦合元件,它是以传输线方式和变压器方式同时进行能量传输。对于输入信号的高频频率分量是以传输线方式为主进行能量传输的;对于输入信号的低频频率分量是以变压器方式为主,频率愈低,变压器方式愈突出。 如图5-24(b)为传输线方式的工作原理图,图中,信号电压从1、3端输入,经传输线 R上。如果信号的波长与传输线的长度相比拟,变压器的传输,在2、4端将能量传到负载 L 两根导线固有的分布电感和相互间的分布电容就构成了传输线的分布参数等效电路,如图 5-24(d)所示。若认为分布参数为理想参数,信号源的功率全部被负载所吸收,而且信号的上限频率将不受漏感、分布电容及高导磁率磁芯的限制,可以达到很高。 图5-24 1:1传输线变压器的结构示意图及等效电路

基于FPGA的直接数字频率合成器设计

1 JANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计 学院:电气信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师:戴霞娟、陈海忠 时间: 2015.9.24

1 目录 绪论.......................................................................................... 错误!未定义书签。 一、背景与意义 (2) 二、设计要求与整体设计 (2) 2.1 设计要求 (2) 2.2 数字信号发生器的系统组成 (3) 2.3 DDS技术 (3) 三、硬件电路设计及原理分析 (4) 3.1 硬件电路设计图 (4) 3.2 设计原理 (5) 四、程序模块设计、仿真结果及分析 (5) 4.1顶层模块设计 (6) 4.2分频模块设计 (6) 4.3时钟模块设计 (11) 4.4数据选择模块设计 (12) 4.5正弦波产生模块设计........................................................ 错误!未定义书签。 4.6三角波产生模块设计 (15) 4.7方波产生模块设计............................................................ 错误!未定义书签。 4.8锯齿波模块设计 (18) 五、软硬件调试 (21) 5.1正弦波 (22) 5.2锯齿波 (22) 5.3方波 (23) 5.4三角 (23) 六、调试结果说明及故障分析 (24) 七、心得体会 (24) 八、参考文献 (25) 九、附录 (25)

通信网络安全关键技术研究

通信网络安全关键技术研究 发表时间:2018-11-02T17:19:11.070Z 来源:《知识-力量》2018年12月上作者:胡晓玥姜天琪 [导读] 如今我们已经完全进入到了信息化的社会,大家越来越离不开计算机,计算机技术在人们的生活中发挥的作用越来越大。大家都知道,尽管计算机通信网络的作用 (渤海大学信息科学与技术学院,辽宁省锦州市 121000) 摘要:如今我们已经完全进入到了信息化的社会,大家越来越离不开计算机,计算机技术在人们的生活中发挥的作用越来越大。大家都知道,尽管计算机通信网络的作用非常大,但是其中存在着很多的安全风险因素,这就引起了社会广大群众的高度重视,有些计算机风险因素是通信网络自身造成的,还有的风险来源于恶意的外界攻击,本文主要分析的是通信网络安全的关键性技术,仅供参考。 关键词:通信网络;安全;关键技术 1通信网络安全风险分析 1.1内部原因 通信网络安全风险的内部原因指的是由计算机自身的原因造成的,比如说计算机硬件的问题,还有网络结构的问题等。计算机性能和质量主要是由计算机硬件设施决定的,尽管现在的计算机信息技术发展已经很成熟,但是网路系统庞大而且具有非常复杂的结构,所以时间长了计算机内部的组件就会遭到破坏,网络的安全性还受到网络结构设计的直接影响,因为网络各个系统之间的联系是非常紧密的,若是网路内部的安全性受到了威胁,那么整个网络危险将会不断的加大。在对网络结构进行设计的时候,需要将公开服务器和外网、内部网络进行隔离,从而保证通信网络的安全性,因为网络拓扑结构的设计若是有不足就会对网络安全性造成极大的影响和威胁。除此之外,为了保证具有问题的通信数据在进入到主机之前就将其拒绝,需要提前对外网服务请求进行筛选。 1.2外部原因 计算机通信网络安全会受到外部因素的影响,比如说自然环境归于恶劣或者是线路失火、断电以及黑客网络病毒等都可能会对计算机网络安全造成威胁,对计算机网络安全影响非常大的一个自然因素就是雷击,所以为了避免网络工程受到危害,在建设的过程中需要加入防雷的建设。黑客对网络安全造成的危机是难以防范的,由于计算机通信网络是一个开放的网络,而且对网络安全的防护机构也缺乏专业性,所以,黑客才会有更多的机会侵入网络,对计算机信息系统进行篡改、窃取,如果信息数据被泄露会使得信息系统的功能收到限制,不仅如此,还有可能造成严重的经济犯罪。计算机病毒传播范围是非常广泛的,而且病毒的危害还是非常大的,如果对计算机病毒的控制不当,可能会使得病毒侵入网络系统,导致系统瘫痪,一些重要的信息数据也会丢失,阻碍通信网络的正常运行。 2通信网络安全关键技术 2.1信息加密技术 所谓的信息安全其实是包含两个方面的内容的,其中一方面指的是网络信息传播的安全性,另一方面则是信息内容的安全性。为了保证网络信息传播的安全性,需要对由于有害信息传播引发的后果进行负责,所以,应该合理的控制网络信息,最主要的做法就是在信息传播时对所有的信息进行筛选个过滤,严禁有害信息的传播。为了保证网络信息内容的安全性,需要保证信息的真实性和保密性以及完整性,这也可以避免不法分子对网络信息系统的攻击,从而保护用户信息。为了保护通信网络安全,最常用的一种手段就是信息加密技术,运用此技术能够降低信息被盗的风险,避免信息在传输过程当中发生意外事故。在商务交易中应用信息加密技术是非常广泛的,主要是分为两种技术方法,分别是对称加密和非对称加密。其中对称加密是信息双方的加密和解密数据都是一样的,这种加密方式适用于含有较多数据量的信息,非对称加密信息指的是信息双方共同使用一对密钥。 2.2内部安全协议技术 在网络运行当中的任何一个环节都有控制协议的存在,互联网络之间的连接离不开控制协议,若是没有控制协议的支持互联网的连接将会受到严重的影响,通信网络中非常重要的控制协议发挥着重大作用,既可以保证资源的合理分配,而且还能够实现计算机通信的基本功能。网络内部安全协议存在着非常大的安全隐患,恶意攻击者想要破译网络安全协议,从而获取信息数据,所以要想实现内部安全协议技术,需要对信息数据进行鉴别。利用网络内部安全协议技术能够提高计算机的整体性能,加强计算机的安全性,保证数据传输的完整性。 2.3身份认证技术 身份认证技术主要指的是通过电子化手段对信息传输双方的身份进行确认,并进一步检查传输数据的完整性和真实性,这样做的目的就是对信息数据进行确认。现在,数字签名和数字证书两种方式是在计算机通信网络安全中得以认证的两种技术方法。对文章信息的认证,审核等工作,主要是通过数字签名来实现的,当对信息进行审核发现没有问题之后还应该负责文件生效的工作。为了实现数字签名技术,需要做一系列的准备工作,应该将散列函数和公开密钥算法进行有机结合,负责发送信息的一方参考散列函数把需要进行传输的信息转化成散列值,然后对其进行加密,通过私钥加密的散列值会自动转换成数字签名的形式,然后将信息进行传输。负责接收信息的一方在收到信息提醒之后,需要对数字签名进行破解,主要是通过发送者的公开密钥进行破解,之后再对解密达到的散列值和接收者自己推断的散列值进行对比分析,如果传输的信息是正确的话,那么,两个值数就应该是一样的。使用数字签名技术,可以对信息内容的真实性进行有效的鉴别,所以可以避免一些经过篡改伪造信息的传播。数字证书与数字签名有不同的地方,用户若想得到相关的数字证书,需要有专业机构的认证考核,通过之后才能得到数字证书,所以由此看来,数字证书与身份识别符类似,利用数字证书能够识别信息数据的真实性。 2.4网络入侵检测技术 通信网络技术的安全性受网络入侵的影响,而且影响程度是非常大的,一些非常重要的信息以及敏感程度较高的信息都会随着网络的入侵受到破坏。网络信息技术与之前相比已经有了很大的提升与进步,所以,在这个过程中大家对于网络安全性的要求也随之提高,为了保证网络的安全性,需要提高网络入侵检测技术的水平,此项技术也是预防安全风险的最关键的技术之一。如今随着信息技术的进步,网络完全威胁程度也越来越高,所以对网络入侵检测技术的要求也在不断地提高,已经不仅仅局限于对入侵程序进行拦截和定期进行安全监测,为了识别网络的安全状态,需要提高网络入侵检测技术的水平,所以需要分析计算机内部管理以及信息协议,从而对网络安全进行实

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

直接数字频率合成知识点汇总(原理_组成_优缺点_实现)

直接数字频率合成知识点汇总(原理_组成_优缺点_实现) 直接数字频率合概述DDS同DSP(数字信号处理)一样,也是一项关键的数字化技术。DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。DDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术。 直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。 直接数字频率合成原理工作过程为: 1、将存于数表中的数字波形,经数模转换器D/A,形成模拟量波形。 2、两种方法可以改变输出信号的频率: (1)改变查表寻址的时钟CLOCK的频率,可以改变输出波形的频率。 (2)、改变寻址的步长来改变输出信号的频率.DDS即采用此法。步长即为对数字波形查表的相位增量。由累加器对相位增量进行累加,累加器的值作为查表地址。 3、D/A输出的阶梯形波形,经低通(带通)滤波,成为质量符合需要的模拟波形。 直接数字频率合成系统的构成直接数字频率合成主要由标准参考频率源、相位累加器、波形存储器、数/模转换器、低通平滑滤波器等构成。其中,参考频率源一般是一个高稳定度的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS的实质是对相位进行可控等间隔的采样。 直接数字频率合成优缺点优点:(1)输出频率相对带宽较宽 输出频率带宽为50%fs(理论值)。但考虑到低通滤波器的特性和设计难度以及对输出信号杂散的抑制,实际的输出频率带宽仍能达到40%fs。 (2)频率转换时间短

功率放大器设计的关键:输出匹配电路的性能要点

功率放大器设计的关键:输出匹配电路的性能 对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm 的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在 0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图 1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输

实验四线性宽带功率放大器

47 实验四 线性宽带功率放大器 一、实验目的 了解线性宽带功率放大器工作状态的特点 二、实验内容 1. 了解线性宽带功率放大器工作状态的特点 2. 掌握线性功率放大器的幅频特性 三、实验原理及实验电路说明 1. 传输线变压器工作原理 现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。当然,所付出的代价是输出功率和功率增益都降低了。因此,一般来说,宽带功率放大器适用于中、小功率级。对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。 最常见的宽带高频功率放大器是利用宽带变压器做耦合电路的放大器。宽带变压器有两种形式:一种是利用普通变压器的原理,只是采用高频磁芯,可工作到短波波段;另一种是利用传输线原理和变压器原理二者结合的所谓传输线变压器,这是最常用的一种宽带变压器。 传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。图9-1为4:1传输线变压器。图9-2 为传输线变压器的等效电路图。

的扩展方法是相互制约的。为 了扩展下限频率,就需要增大 初级线圈电感量,使其在低频 段也能取得较大的输入阻抗, 如采用高磁导率的高频磁芯和 增加初级线圈的匝数,但这样 做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频 率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈 的匝数,但这样做又会使下限频率提高。 把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决 带宽问题。传输线变压器有两种工作方式:一种是按照传输线方式来工作, 即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好 相互抵消。因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。 这种工作方式称为传输线模式。另一种是按照变压器方式工作,此时线圈 中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。这种方式称 为变压器模式。传输线变压器通常同时存在着这两种模式,或者说,传输 变压器正是利用这两种模式来适应不同的功用的。 当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小, 可以忽略,故变压器方式起主要作用。由于磁芯的磁导率很高,所以虽然 传输线段短也能获得足够大 的初级电感量,保证了传输 线变压器的低频特性较好。 图9-3传输线变压器高频段等效电路图 48

DDS 直接数字频率合成器 实验报告(DOC)

直接数字频率合成器(DDS) 实验报告 课程名称电类综合实验 实验名称直接数字频率合成器设计 实验日期2015.6.1—2013.6.4 学生专业测试计量技术及仪器 学生学号114101002268 学生姓名陈静 实验室名称基础实验楼237 教师姓名花汉兵 成绩

摘要 直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。本篇报告主要介绍设计完成直接数字频率合成器DDS的过程。其输出频率及相位均可控制,且能输出正弦波、余弦波、方波、锯齿波等五种波形,经过转换后在示波器上显示。经控制能够实现保持、清零功能。除此之外,还能同时显示出频率控制字、相位控制字和输出频率的值。实验要求分析整个电路的工作原理,并分别说明了各子模块的设计原理,依据各模块之间的逻辑关系,将各电路整合到一块,形成一个总体电路。本实验在Quartus Ⅱ环境下进行设计,并下载到SmartSOPC实验系统中进行硬件测试。最终对实验结果进行分析并总结出在实验过程中出现的问题以及提出解决方案。 关键词:Quartus Ⅱ直接数字频率合成器波形频率相位调节 Abstract The Direct Digital Frequency Synthesizer is a technology based on fully digital technique, a frequency combination technique syntheses a required waveform from concept of phase. This report introduces the design to the completion of the process of direct digital frequency synthesizer DDS. The output frequency and phase can be controlled, and can output sine, cosine, triangle wave, square wave, sawtooth wave, which are displayed on the oscilloscope after conversation. Can be achieved by the control to maintain clear function. Further can simultaneously display the value of the frequency, the phase control word and the output frequency. The experimental design in the Quartus Ⅱenvironment, the last hardware test download to SmartSOPC experimental system. The final results will be analyzed, the matter will be put forward and the settling plan can be given at last. Key words:Quartus ⅡDirect Digital Frequency Synthesizer waveform Frequency and phase adjustment

“网络空间安全”重点专项2018年度项目申报指南

“网络空间安全”重点专项2018年度 项目申报指南 为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》提出的任务,国家重点研发计划启动实施 “网络空间安全”重点专项。根据本重点专项实施方案的部署,现发布2018年度项目申报指南。 本重点专项总体目标是:聚焦网络安全紧迫技术需求和重大科学问题,坚持开放发展,着力突破网络空间安全基础理论和关键技术,研发一批关键技术装备和系统,逐步推动建立起与国际同步,适应我国网络空间发展的、自主的网络空间安全保护技术体系、网络空间安全治理技术体系和网络空间测评分析技术体系。 本重点专项按照网络与系统安全防护技术研究、开放融合环境下的数据安全保护理论与关键技术研究、网络空间虚拟资产保护创新方法与关键技术研究等3个创新链(技术方向),共部署7个重点研究任务。专项实施周期为5年 (2016-2020 年)。 1.网络与系统安全防护技术研究方向 1.1物联网与智慧城市安全保障关键技术研究(关键技术类) 面向物联网节点计算资源、体积、功耗受限和规模、复杂度提升带来的安全挑战,研究物联网安全体系架构;研究在大连

接、异构数据、时延复杂的条件下,能够与物联网节点融合的一体化安全机制;研究基于标识技术的安全物联网互联互通架构,基于标识的加密技术在物联网中的应用;研究大规模信任服务机理及关键技术,包括安全协商、数据完整性与私密性、跨域设备身份与认证服务等;研究大规模设备监控技术,实现在无安全代理条件下设备自动发现、识别及状态、行为智能感知;研究智慧城市安全保障总体技术架构;研究支持智慧城市统一管理且支持隐私保护的智慧小区或智慧家庭适用的安全技术架构及其相关原型系统。 考核指标: 1.提出适应智慧城市与物联网安全目标的模型和体系框架,指导智慧城市与物联网安全实践; 2.研制安全物联网原型平台,支持大规模物联网对象的分级分层管理与安全解析,物联网设备发现、识别和监控以及身份认证、密钥管理服务均支持10亿规模; 3.设计完成采用国家标准密码算法的物联网管理域的强逻辑隔离安全机制,安全隔离方案应通过国家主管部门的安全审查; 4.设计完成多物联网管理域之间的受控互联互通机制与协议,支持基于身份和基于角色的授权策略映射,支持时间、环境以及安全上下文敏感的授权管理,其中时间粒度应不大于1分钟,支持的环境鉴别应包括物理位置、网络接入途径、操作系统安全配置等因素;

射频功率放大器宽带匹配如何解决

射频功率放大器宽带匹配如何解决 在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。 1方案设计 同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。 1.1 同轴变换器原理 同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。

同轴变换器处于集中参数与分布参数之问。因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。 当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。在大多数情况下,电缆长度不能超过最小波长的八分之一。为了保证低频响应良好,还必须有一定绕组长度,可以依据下列经验公式来估算在频率高端和频率低端时所需绕组的长度。 在高频端: lmax≤ 18 O00n/fh(cm) (1) (1)式中,fh为最高工作频率(MHz);n为常数,一般取为0.08左右。 在低频端: lmin≥ 50Rl / [ (1 u/uo ) × fl ] (2) (2)式中,fl为最低工作频率(MHz);u/uo为磁芯在时的相对磁导率。 磁芯的影响可以用等效电感来反应,等效电感决定了频段低段反射量的大小,计算为: L=uo ur n2 (S/J) (3)

网络安全的几项关键技术

网络安全的几项关键技术 商用网络在互联网上得以运行, 首先应建立或使原有的网络升级为内部网, 而专用的内部网与公用的互联网的隔离则有赖于防火墙技术。有了防火墙, 商家们便可以比较安全地在互联网上进行相应的商业活动。 1. 防火墙技术 “防火墙”是一种形象的说法, 其实它是一种由计算机硬件和软件的组合, 使互联网与内部网之间建立起一个安全网关( scurity gateway),从而保护内部网免受非法用户的侵入。所谓防火墙就是一个把互联网与内部网隔开的屏障。 防火墙有二类, 标准防火墙和双家网关。标准防火墙系统包括一个UNIX工作站, 该工作站的两端各接一个路由器进行缓冲。其中一个路由器的接口是外部世界, 即公用网; 另一个则联接内部网。标准防火墙使用专门的软件,并要求较高的管理水平,而且在信息传输上有一定的延迟。双家网关(dual home gateway) 则是标准防火墙的扩充,又称堡垒主机(bation host) 或应用层网关(applications layer gateway), 它是一个单个的系统, 但却能同时完成标准防火墙的所有功能。其优点是能运行更复杂的应用, 同时防止在互联网和内部系统之间建立的任何直接的边疆, 可以确保数据包不能直接从外部网络到达内部网络,反之亦然。 随着防火墙技术的进步, 双家网关的基础上又演化出两种防火墙配置, 一种是隐蔽主机网关, 另一种是隐蔽智能网关( 隐蔽子网)。隐蔽主机网关是当前一种常见的防火墙配置。顾名思义,这种配置一方面将路由器进行隐蔽, 另一方面在互联网和内部网之间安装堡垒主机。堡垒主机装在内部网上, 通过路由器的配置, 使该堡垒主机成为内部网与互联网进行通信的唯一系统。目前技术最为复杂而且安全级别最商的防火墙是隐蔽智能网关, 它将网关隐藏在公共系统之后使其免遭直接攻击。隐蔽智能网关提供了对互联网服务进行几乎透明的访问, 同时阻止了外部未授权访问者对专用网络的非法访问。一般来说, 这种防火墙是最不容易被破坏的。 2. 数据加密技术 与防火墙配合使用的安全技术还有数据加密技术是为提高信息系统及数据的安全性和保密性, 防止秘密数据被外部破析所采用的主要技术手段之一。随着信息技术的发展, 网络安全与信息保密日益引起人们的关注。目前各国除了从法律上、管理上加强数据的安全保护外, 从技术上分别在软件和硬件两方面采取措施, 推动着数据加密技术和物理防范技术的不断发展。按作用不同, 数据加密技术主要分为数据传输、数据存储、数据完整性的鉴别以及密钥管理技术四种。 (1)数据传输加密技术。 目的是对传输中的数据流加密, 常用的方针有线路加密和端——端加密两种。前者侧重在线路上而不考虑信源与信宿, 是对保密信息通过各线路采用不同

宽带功率放大器预失真技术综述

宽带功率放大器预失真技术综述 摘要:随着无线需求和无线业务的不断增加,传输信号必将不断向高质量高速率宽带宽发展。在宽带应用中,由于传输信号带宽增加,宽带功率放大器不同于窄带输入下的无记忆特性,将表现出频率有关的记忆非线性特性。本文重点阐述了功率放大器的线性化技术,数字预失真的基本原理及学习结构,功率放大器的基本模型及模型的评估指标。 关键词:功率放大器,线性化,数字预失真,模型 0引言 随着无线通信技术的日益发展和普遍使用,为高速多媒体业务需求而开发的移动通信 3G技术在通讯容量与质量等方面将不能满足人们日趋增长的需求,而且移动4G系统也日益商用化,其系统不只是单一地为了适应宽带和用户数的增长,更为重要的是它适应多媒体的传输需求,将多媒体等洪量信息通过信道高速传输出去,而且对通讯服务质量提出了更高的要求。近年来,随着全球对环保要求的提高,人们关注的不仅仅是频谱效率的提高问题,还关注到功率效率、能量效率的提高问题。绿色通信的概念正是在这样的背景下提出的,大量提高功效和能效的技术也涌现出来。绿色通信技术主要采用创新性的分布式技术、高功率放大器、多载波等技术以减小能量消耗。作为无线通信系统中不可或缺的重要部件之一,关于功率放大器的线性化研究及其实现,对推动绿色通信概念及理论的深入发展、对节能减排的意义重大,是一项具有理论意义和实际应用价值的课题。 功率放大器是通信系统中的一个关键部件,功放的非线性特性引起的频谱扩张会对邻道信号产生干扰,并且带内失真也会增加误码率。随着新业务的发展,现代无线通信系统中广泛采用了正交幅度调制(Quadrature Amplitude Modulation, QAM)、正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术等高频谱利用率的调制方式。这些调制方式对发射机中射频功放的线性度提出了很高的要求。因此为了保障通信系统的功率效率和性能,必须有效的补偿放大器的非线性失真,使放大器能够高效的线性工作。 1功率放大器的线性化技术 为了更好地利用频谱资源和实现更高速率的无线传输,通常会选择具有更高效、更先进的无线通信技术,如QAM和OFDM技术,QAM技术采用非恒定包络调制方式,对放大器线性度要求高,与非线性功率放大器在通信系统中的共同使用,会由于功率放大器对信号产生的畸变,使信号频谱扩展,导致对相邻信道其他用户的干扰,恶化系统误比特率(bit error rate, BER)性能。OFDM技术以其高的频谱利用率、很强的抗多径干扰及窄带干扰能力、便于移动接收等优点,成为无线通信高速率传输中十分有竞争力的一种技术。但是OFDM 技术对同步误差的高度敏感性以及高的峰均比(peak-to-average power ratio, PAPR)是OFDM 系统面临的主要难题。高PAPR会使传输的射频信号工作在功率放大器的临近饱和区,从而在接收端产生无法恢复的畸变。另外,对于便携移动设备,比如手机,平板电脑,功率放大器是产生功耗的最大的一部分,如果采用一定的线性化技术来提高功率放大器的效率,就能在很大程度上减小便携移动设备的耗电量,从而延长待机时间。 国内外关于功率放大器的非线性特性及线性化技术的研究,截止目前,已先后提出了一系列技术,各种技术都有自己的优、缺点。常用的功率放大器线性化技术有:功率回退技术(power back off, PBO)[1][2]、包络消除和恢复技术(envelope elimination and restoration,

直接数字频率合成器开题报告

毕业设计(论文)开题报告 题目基于FPGA的直接数字频率合成 专业名称通信工程 班级学号09042138 学生姓名周忠 指导教师刘敏 填表日期2013 年 1 月8 日

一、选题的依据及意义: 直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。其电路系统具有较高的频率分辨率,可以实现快速的频率切换(<20ns),频率分辨率高(0.01HZ),频率稳定度高,输出信号的频率和相位可以快速程控切换,输出相位可连续,可编程以及灵活性大等优点。DDS技术很容易实现频率、相位和幅度的数控调制,广泛用于接收本振、信号发生器、仪器、通信系统、雷达系统等,尤其适合调频无线通信系统 本课题使用可编程器件实现直接数字频率合成设计,它比传统的数字频率合成方式有着显著的优越性,与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。 二、国内外研究概况及发展趋势(含文献综述): 直接数字频率合成(DDS)技术是第三代频率合成技术。20世纪70年代以来,随着数字集成电路和电子技术的发展,出现了一种新的合成方法——直接数字频率合成。它从相位的概念出发进行频率合成,采用了数字采样存储技术,具有精确的相位,频率分辨率,快速的转换时间等突出优点,是频率合成技术的新一代技术。直接数字频率合成作为新一代数字频率技术发展迅速,并显示了很大的优越性,已经在军事和民用领域得到广泛的应用,例如在雷达(捷变频雷达、有源相控雷达、低截获概率雷达)、通信(跳频通信、扩频通信)、电子对抗(干扰和反干扰)、仪器和仪表(各种合成信号源)、任意波形发生器、产品测试、冲击和振动、医学等方面的应用。 DDS技术作为一项具有广泛前景和生命力的频率合成技术,越来越受到人们的重视。随着微电子技术的飞速发展,国外一些大公司Qualcomm、ADI等竞相推出DDS芯片,来满足设计人员的要求。许多性能优良的DDS产品不断的推向市场。 Qualcomm公司推出了DDS系列Q2220Q2230等其中Q2368的时钟频率

相关主题
文本预览
相关文档 最新文档