当前位置:文档之家› 集成、基于近似模型优化ProE_Ansys_iSIGHT_Brace_Opt

集成、基于近似模型优化ProE_Ansys_iSIGHT_Brace_Opt

物流管理数学建模

物流园区绩效评价与空间布局优化研究 摘要 物流园区是现代物流一体化、集约化发展的产物,同时也是适应经济、物流、环境等发展的需要。系统而科学规划和建设我国物流园区是时代的呼唤,也是我国经济快速和可持续发展的要求,是提升物流企业的竞争水平和降低社会物流成本的触发器。本文在分析甘肃省物流园区建设布局与评价等方面的基础上,通过分析物流园区的形成机理,建立了物流园区空间布局优化模型和物流园区绩效评价指标体系,并且对于如何优化、提高提出了一些建议。 关键词:物流园区;绩效评价;模糊综合评价

一、问题的提出 要实现物流园区的绩效优化管理,首先就要完成物流园的绩效评价。要对一个物流园进行科学的绩效评价,除了一些一般的共性评价指标外,还必须根据物流园区特殊的地域和功能特点的个性评价指标。甘肃物流园区除了众所周知的地域和居高不下的成本特征外,还具有鲜明的组合功能特征,承担着包括西北应急物流中心、西藏供应中转站以及维护边疆稳定在内的诸多非经济功能。所以以甘肃物流园区为研究样本建立绩效评价的指标体系,从而建立物流区绩效评价与空间布局的优化模型,并运用所建立的模型对甘肃物流园区的绩效水平及布局合理性作出总体评价就显得迫切需要。 二、问题的分析 物流园区绩效评价指标体系具有一般评价体系的整体性、层次性、动态性等特征,由于物流园区自身的特点,其绩效评价指标体系也有其自身的特征。 甘肃省的经济总量扩张、基础设施不断完善、城市化步伐加快,这样就为甘肃省物流业的发展带来了新的机遇。十二五期间,甘肃省将重点建设“一个物流核心圈、四大物流通道、六大物流枢纽城市、六大物流聚集区”,建设一批特色物流中心,最终形成主干线贯通、支线流畅、覆盖全省、服务西部、面向中亚西亚的多层次、全方位、多功能并与区域经济联动发展的物流产业新格局。 甘肃物流存在的问题就甘肃省物流的现状看,现代物流的发展尚处在起步阶段,物流规

快递员配送路线优化模型(完整资料).doc

【最新整理,下载后即可编辑】 快递员配送路线优化模型 摘要 如今,随着网上购物的流行,快递物流行业在面临机遇的同时也需要不断迎接新的挑战。如何能够提高物流公司的配送效率并降低配送过程中的成本,已成为急需我们解决的一个问题。下面,本文将针对某公司的一名配送员在配送货物过程中遇到的三个问题进行讨论及解答。 对于问题一,由于快递员的平均速度及在各配送点停留的时间已知,故可将最短时间转换为最短路程。在此首先通过Floyd 求最短路的算法,利用Matlab程序将仓库点和所有配送点间两两的最短距离求解出来,将出发点与配送点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈,即最佳配送方案。 对于问题二,依旧可以将时间问题转化为距离问题。利用问题一中所建立的模型,加入一个新的时间限制条件,即可求解出满足条件的最佳路线。 对于问题三,送货员因为快件载重和体积的限制,至少需要三次才能将快件送达。所以需要对100件快件分区,即将50个配送点分成三组。利用距离矩阵寻找两两之间的最短距离是50个配送点中最大的三组最短距离的三个点,以此三点为基点按照准则划分配送点。

关键字:Floyd算法距离矩阵哈密尔顿圈二边逐次修正法矩阵翻转 问题重述 某公司现有一配送员,,从配送仓库出发,要将100件快件送到其负责的50个配送点。现在各配送点及仓库坐标已知,货物信息、配送员所承载重物的最大体积和重量、配送员行驶的平均速度已知。 问题一:配送员将前30号快件送到并返回,设计最佳的配送方案,使得路程最短。 问题二:该派送员从上午8:00开始配送,要求前30号快件在指定时间前送到,设计最佳的配送方案。 问题三:不考虑所有快件送达的时间限制,现将100件快件全部送到并返回。设计最佳的配送方案。配送员受快件重量和体积的限制,需中途返回取快件,不考虑休息时间。 符号说明 D:n个矩阵 n V:各个顶点的集合 E:各边的集合 e:每一条边 ij w:边的权 ()e G:加权无向图 , v v:定点 i j

最优化理论与算法(第八章)

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=?L L (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 {} 1()0 (1,,);()0 ,,i e i e X x c x i m c x i m m +===≥=L L ,称之为可行域(约束域)。 {}1,,e E m =L ,{}1,,e I m m +=L ,{}()()0 i I x i c x i I ==∈ 称()E I x U 是在x X ∈处的积极约束的指标集。积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x * *=U ,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

运输优化模型参考

运输 问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i 个客户

优化模型在生活中的应用

优化模型在生活中的应用 人类生活在丰富多彩、变化万千的现实世界里,无时无刻不在运用智慧和力量去认识、利用、改造这个世界,从而不断地创造出日新月异、五彩缤纷的物质文明和精神文明。而在我们认识、利用和改造世界时我们往往离不开数学方法,数学建模则是利用数学方法解决实际问题的一种实践。通过抽象,简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 人们生活是离不开数学的,衣食住行等各个方面都需要数学,倘若能在这些实际问题中建立各种各样的比较典型的数学模型,在遇到生活中的这些琐碎小事时,就能更高效、更正确地进行处理了。 必须说明的是,建立数学模型需要用系统的某种特征的本质的数学表达式(或是用数学术语)对部分现实世界的描述即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述所研究的客观对象或系统在某一方面的存在规律。 优化模型是生活过程中必须用到的的数学模型,其建立目的就是为了得到最大化的工作效益以及减少投资等一系列最优条件。一般来说,我们在生活中经常应用这种模型,却没有将其抽象出来,明文对其进行规定。 1.模型类型说明举例 在姜启源先生等人主编的《数学模型》一书中提到过这样一个例子: “一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤.目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪。” 在上述描述中,我们将设计到的特征,用数值明确地表示出来,通过构建数学式子便可很快的计算出最佳的出售时机。建模解答过程如下: 模型假设每天投入4元资金使生猪体重每天增加常数r(=2公斤);生猪出售的市场价格每天降低常数g(=0.1元). 模型建立给出以下记号:t ~时间(天).w ~生猪体重(公斤);~p 单价 (元/公斤);R-出售的收入(元);C-t 天投入的资金(元);Q-纯利润(元). 按照假设,)1.0(8),2(80=-==+=g gt p r rt w .又知道t C pw R 4,==,再考虑到纯利润应扣掉以当前价格(8元/公斤)出售80公斤生猪的收入,有808?--=C R Q ,得到目标函数(纯利润)为 其中1.0,2==g r .求)0(≥t 使)(t Q 最大.

优化问题的数学模型及基本要素

第1章 优化设计 Chapter 1 Optimization Design 1-1 优化设计 1-1-1 最优化 (optimize, optimization ) 所谓最优化,通俗地说就是在一定条件下,在所有可能的计划、设计、安排中找出最好的一个来。换句话说,也就是在一定的条件下,人们如何以最好的方式来做一件事情。(Optimization deals with how to do things in the best possible manner) 结论的唯一性是最优化的特点,即公认最好。(It is the best of all possibilities) 最优化的思想体现在自然科学、工程技术及社会活动的各个领域,最优化的方法在这些领域也得到了广泛地应用。(P1) 1-1-2 最优化方法 (Arithmetic ) 要从所有可能的方案中找出最优的一个,用“试”(try )的办法是不可行的,需要采用一定的数学手段。二十世纪五十年代以前,用于解决最优化问题的数学方法仅限于古典的微分和变分(differential and variation)。数学规划法在五十年代末被首次用于解决最优化问题,并成为现代优化方法的理论基础。线性规划和非线性规划是数学规划的主要内容,它还包括整数规划、动态规划、二次规划等等。(Linear programming or Nonlinear programming, Integer, Dynamic, Quadratic ) 数学规划法与电子计算机的密切结合,改变了最优化方法多有理论研究价值,而少有实际应用的局面,使得解决工程中的优化问题成为可能。因此,我们现在所说的最优化方法,实际上包括了最优化理论和计算机程序二方面的内容。(Optimization theory plus computer program) 1-1-3 优化设计 下面以一个简单的问题为例来说明传统设计与优化设计这二个不同的设计过程。 例1-1 设计一个体积为5cm 3的薄板包装箱,其中一边的长度不小于4m 。要求使薄板耗 材最少,试确定包装箱的尺寸参数,即长a ,宽b 和高h 。 分析 包装箱的表面积s 与它的长a ,宽b 和高h 尺寸有关。因此,耗板最少的问题可以转化为表面积最小问题,故取表面积s 为设计目标。 传统设计方法: 首先固定包装箱一边的长度如)(4m a =。要满足包装箱体积为3 5m 的设计要求,则有以下多种设计方案: 如果包装箱的长度a 再取)(4m a >的其他值,则包装箱的宽度和高度还会有很多其他结果… 。 最后,从上面众多的可行方案中选择出包装箱表面积最小的方案来,这就是相对最好的设计方案。但由于不可能列出所有可能的设计方案,最终方案就不一定是最优的。 机械产品的传统设计通常需要经过:提出课题、调查分析、技术设计、结构设计、绘图

路径成本优化模型

第 3 章港口集卡路径成本优化模型 3.1 港口集卡作业模式分析 3.1.1面向“作业路”的传统集卡作业模式 目前,我国大部分港口采用龙门吊装卸工艺,其中岸桥、集卡、龙门吊是完成集装箱装卸的主要机械设备,岸桥负责对到港的船舶进行装卸作业,龙门吊对堆场的集装箱进行进出场作业,集卡衔接码头前沿岸桥和后方堆场龙门吊的之间工作,是港口集装箱进口、出口、转堆作业过程中的重要运输设备,其主要在岸桥与堆场之间及堆场各箱区之间作水平运输。这些集装箱装卸设备只有相互协调、相互配合才能够保证集装箱装卸作业的顺利进行,否则会出现装卸设备等待现象和拥堵现象,降低设备资源的利用率和港口的物流能力。 但大部分港口目前仍采用传统的集卡作业模式,即面向“作业路” 的集卡作业模式。该模式可描述为:港口工作人员根据装卸集装箱的业务量配置岸桥,且按照一定的比例为每台岸桥分配一定数量的集卡,从而形成由几辆集卡所组成的一组固定集卡为某一台特定的岸桥服务。在整个集装箱的装卸作业过程中,集卡在预先设定的固定路线上行驶,岸桥、集卡和龙门吊形成固定作业线路运载集装箱。在集装箱的进口作业中,首先由岸桥将船舶上需进口的集装箱放到等待卸船的空集卡上,然后装载进口集装箱的集卡沿固定路线行驶,并到指定的堆场箱区卸下集装箱,最后空车行驶到岸桥下等待下一个卸船作业。同样在装船作业中,首先龙门吊将堆场箱区内的出口集装箱放在空集卡上,然后由集卡运输出口集装箱行驶到岸桥下等待装船作业,装船结束后集卡再空载行驶到堆场箱区进行下一个装船作业[56, 70]。 一般面向“作业路”的集卡作业模式会根据岸桥的配置数量安排需要服务的集卡数量,通常一台岸桥需要配置5~6 辆集卡,则所需集卡的总数量为装船和卸船岸桥总数的5 倍或6 倍[82]。这种面向“作业路”的传统集卡作业模式下司机操作简单、便于管理、沿固定作业路线不易出错,但是随着信息技术的进步、港口物流业的发展,这一模式逐渐暴露出缺点,阻碍港口物流效率的提高。其存在的弊端表现在以下几个方面:首先,如果某条作业路上集卡对岸桥的配置量是个已知的固定值,若集卡配置量少可能会导致岸桥等待集卡的现象,降低码头前沿的作业效率;相反,若集卡配置量过多又会产生资源的浪费、资源利用率低下;此作业路下可能会出现集卡排队等待的现象,而此时其它作业路可能集卡缺少,造成整个港口集卡资源的不合理利用,影响港口的整体运作效率。其次,在面向“作业路”的作业模式下,集卡为某一特定的岸桥服务,当集卡

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小时, 汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组;给出这 种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线的 影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 四、模型建立

在这一节里,我们将提出若干个模型及其特点分析,不涉及对题目的求解。 最简树结构模型 在这个模型中我们依靠利用最短树的特殊结构所给出的准则,进行局部寻优,在一个不大的图里,我们较易得到较优解。 (a)分片 准则1利用最短树的长度可大致的估算出路程长,在具体操作中,各片中 的最短路程长度不宜相差太大。 准则 2 尽可能将最短树连成一个回路,这可保证局部上路程是较短的。 (b)片内调整 a2 a3 a4 a5 a6假设a3 a4有路相连 细准1对于右图的最短树结构,最好的走法是a 若a3 a4 进去重复走的话,它与上述的走法路程差w(a3, a2)+w(a2 ,a5)+w(a4, a5)—w(a3, a4)。由两点间最小原则上式是大于0的优劣可见 细准2若有如图所示结构,一般思想是:将中间树枝上的点串到两旁树枝,以便连成回路。 五、模型求解 问题一该问题完全可以用均衡模型表述 用算法模型 1 经过局部优化手工多次比较我们能够给出的最佳结果为第一组路径为 0—P—28—27—26—N—24—23—22-17—16—1—15—1—18—K—21—20—25— M--0 长191.1 经5 镇6 村 第二组路径为 0—2—5—6—L—19—J—11--G—13—14—H—12—F—10—F—9—E—8—E—7—6—5—2—0 长216.5 经6 镇11 村第三组路径为O—2—3—D—4—D—3—C—B—1—A—34—35—33—31—32—30—Q—29 —R 长192.3 经6 镇11 村总长S=599.9 公里 由算法2 给出的为 1组0—P—29—R—31—33—A—34—35—32—30—Q—28—27—26—N—24—33—22—23—N—2 6—P—0 5 乡13 村长215.2 公里 2组0—M—25—21—K—17—16—I—15—I—18—K—21—25—20—L—19—J—11—G—13—14 —O 5 乡11 村长256.2 公里 3组 O—2—5—6—7—E—9--F—12--H--—12—F—10—F—9—E-8—4—0—7—6—M—5-2—3—L —13—1—0 8 乡11 村长256.3 公里 总长727.7 公里

城市物流配送方案优化模型_数学建模

天津大学数学建模选拔赛 题目城市物流配送方案优化设计 摘要 所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程。本文就如何设计该城市的配送方案和增设新的配送网点并划分配送范围展开讨论。 第一问中,首先,在设计合理的配送方案时,我们要知道评价一个配送方案的优劣需考虑哪些指标。根据层次分析法所得各指标的权重及各因素之间关系可知:合理的配送方案需要优化货车的调度以及行驶路线。 然后,根据该城市的流配送网络路网信息以及客户位置及需求数据信息,用EXCEL 进行数据统计并用matlab绘制物流信息图,在图中可以清晰地看出客户位置密集和稀疏的区域。之后,我们运用雷达图分割法将城市分为20个统筹区(以及100个二级子区域)。 接着,我们针对一个二级子区域分析货车行驶的最佳路线。利用聚类分析和精确重心法在二级子区域N1中设置了7个卸货点,该目标区域内的用户都将在该区域的卸货点取货。我们利用图论中的Floyd算法和哈密尔顿圈模型求解往返最短路线问题,得知最短路线为1246753 配送中心配送中心,最短路程为 →→→→→→→→ 84.4332KM,最短运货用时为2.11小时。 最后,根据用户位置和需货量,计算出货车数量和车次,并给出了其中一种合理的针对整个城市的货车调度配送方案。 第二问中,我们建立了多韦伯模型,通过非线性0-1规划,确定了城市增加的5个

一.问题重述 配送是指在经济合理区域范围内,根据客户要求,对物品进行拣选、加工、包装、分割、组配等作业,并按时送达指定地点的物流活动,即按用户定货要求,在配送中心或其它物流结点进行货物配备,并以最合理方式送交用户。 配送是从用户利益出发、按用户要求进行的一种活动,因此,在观念上必须明确“用户第一”,把用户利益作为设计配送方案时首先要考虑的问题。城市的配送系统不但要考虑企业自身和用户的利益,也应从公众利益出发,尽量减少交通拥挤和废物排放。这无疑更增加了配送系统管理的难度,有效解决该问题对于改善城市出行环境和提高企业服务水平具有重要意义。 基于以上背景,为某企业设计其配送方案,建立数学模型分析如下问题: (1)假设该公司在整个城区仅有一个配送中心(107.972554615162,26.6060305362822)。附件1中给出了企业顾客位置和需求数据。附件2为配送网络路网信息。由于顾客需求为平均量,为克服需求高峰车辆不够的情况,实际中通常对每辆车的装载量进行限制,实际载货量为规定满载量的70%。司机工作时间为每天8小时。不考虑车辆数量限制,请为企业设计合理的配送方案。(每件产品规格:长:27.5CM,宽:9CM,厚:5CM)。配送用车请参考实际货车规格自己选定。 (2)适当增加配送中心数量,能降低配送成本,假设计划增设5个配送中心,请为各配送网点划分配送范围。 二、问题背景和问题分析 2.1问题背景 所谓物流配送就是按照用户的货物(商品)订货要求和物流配送计划,在物流配送节点(仓库、商店、货物站、物流配送中心等)进行存储、分拣、加工和配货等作业后,将配好的货物送交收货人的过程,城市物流配送是指在城市范围内进行的物流配送业务活动,城市物流配送系统的服务对象归类为:政府、工业、商业、农业、大众客户。城市物流配送已随客户需求变化从“少品种、大批量、少批次、长周期”向“多品种、小批量、多批次、短周期”转变。随着中国城市化进程的进一步加快,不管是从城市经济发展,还是从城市空间结构、城市交通运输布局及城市基础设施建设来考虑,每个城市都面临一个对原有的物流配送系统进行改造、建立新的物流配送系统的问题,这就是城市物流配送系统优化提出的原因。[1] 2.2问题分析 对于第一问,为了得到最优的配送方案,我们着重从货车的调度和货车的行走路线进行设计。首先我们需要对城市进行分区,并设计货车在所有区域内进行统筹调度的方法。然后,我们针对某一个小的区域,运用图论的知识,寻找货车运送完全部货物的最短路线,实现用户、社会和公司总体利益的最大化。 对于第二问,我们需要找到五个新增配送中心的位置并且划分各个配送网点的配送范围。这是一个典型的多韦伯问题。期间我们不但要注意使得配送中心到用户的距离之和最短。同时也要满足配送中心尽量偏重用户需求量大的地区的要求。

动态路径优化算法及相关技术

》本文对在GIS(地理信息系统)环境下求解动态路径优化算法及相关技术 进行了研究。最短路径问题是网络分析中的基本的问题,它作为许多领域中选择 最优值的一个基本却又是一个十分重要的问题。特别是在交通诱导系统中占有重 要地位。本文分析了GIS环境下动态路径优化算法的特点,对GIS环境下城市 路网的最优路径选择问题的关键技术进行了研究和验证。 》考虑现实世界中随着城市路网规模的日益增大和复杂程度不断增加的情况,充分利用GIS 的特点,探讨了通过限制搜索区域求解最短路径的策略,大大减少了搜索的时间。 》另一方面,计算机技术的进步,地理信息系统(GIS)得到了飞速的发展。地理信息系统是采集、存储、管理、检索、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统。它是一种能把图形管理系统和数据管理系统有机地结合起来的信息技术,既管理对象的位置又管理对象的其它属性,而且位置和其它属性是自动关联的。它最基本的功能是将分散收集到的各种空间、非空间信息输入到计算机中,建立起有相互联系的数据库。当外界情况发生变化时,只要更改局部的数据,就可维持数据库的有效性和现实性[3][4],GIS为动态路径优化问题的研究提供了良好的环境。目前GIS带动的产业急剧膨胀,已经应用到各个方面。网络分析作为地理信息系统最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用[5]。文献[6][7]说明了GIS 在城市道路网中的应用情况。而路网分析中基本问题之一是动态路径优化问题。所谓动态路径,不仅仅指一般地理意义上的距离最短,还可以应用到其他的参数,如时间、费用、流量等。相应的,动态路径问题就成为最快路径问题、最低费用问题等。 》GIS因为其强大的数据分析功能、空间分析功能,已被广泛应用于各种系统中与空间信息有密切关系的各个方面.各种在实际中的系统如电力系统,光缆系统涉及到最佳、最短抢修等问题都可以折合到交通网络中来进行分析,故而交通网络中最短路径算法就可以广泛的应用于其它很多的最佳、最短抢修或者报警系统中去[5]。最短路径问题是GIS网络分析功能的应用。最短路径问题可分为单源最短路径问题及所有节点间最短路径问题,其中单源最短路径更具有普遍意义[9]。 》2.1地理信息系统的概念 地理信息系统(Geographical Information System,简称GIS)是一种将空间位置信息和属性数据结合在一起的系统,是一种为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统(1998年,美国国家地理信息与分析中心定义)[4]。这里的空间定位数据是指采用不同方式的遥感和非遥感手段所获得的数据,它有多种数据类型,包括地图、遥感、统计数据等,它们的共同特点都有确定的空间位置。地理信息系统的处理对象是空间实体,其处理过程正是依据空间实体的空间位置和空间关系进行的[25]。地理信息系统的外在表现为计算机软硬件系统,其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。当具有一定地理学知识的用户使用地理空间分析非空间分析等处理工具输入输出GIS数据库信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据。用户可以按照应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能上进行模拟,信息流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。地理学家可以在地理信息系统支持下提取地理系统各个不同侧面、不同层次的空间和时间特征,也可以快速地模拟自然过程演变成思维过程的结果,取得地理预测或“实验”的结果,选择优化方案,用于管理与决策[26]。 一个完整的GIS主要有四个部分构成,即计算机硬件系统、计算机软件系统、地理数据(或空间数据)和系统管理操作人员。其核心部分是计算机系统(硬件和软件),地理数据反映

最优化理论与算法 fibonacci法

function [a,b,n,x]=fibonacci(fname,a,b,d,L) % fname函数句柄,d辨别常数,L最终区间长度a(1)=a; b(1)=b; F=zeros(1,10); %选择fibonacci数列k值为10,可任意更改 F(1)=1; F(2)=2; for k=2:10 %k取到10,生成fibonacci数列 F(k+1)=F(k)+F(k-1); F(k); end Fn=(b(1)-a(1))/L; Fk=[F Fn]; N=sort(Fk); n=find(Fn==N); %查找计算函数值的次数n t(1)=a(1)+F(n-2)*(b(1)-a(1))/F(n); %计算试探点t(1),u(1) u(1)=a(1)+F(n-1)*(b(1)-a(1))/F(n); for k=1:n-2 ft=feval(fname,t(k)); fu=feval(fname,u(k)); if ft>fu a(k+1)=t(k); b(k+1)=b(k); t(k+1)=u(k); u(k+1)=a(k+1)+F(n-k-1)*(b(k+1)-a(k+1))/F(n-k); while k==n-2 t(n)=t(n-1); u(n)=t(n-1)+d; ft=feval(fname,t(n)); fu=feval(fname,u(n)); if ft>fu a(n)=t(n); b(n)=b(n-1); else a(n)=a(n-1); b(n)=t(n); end end else a(k+1)=a(k); b(k+1)=u(k); u(k+1)=t(k); if k~=n-2 t(k+1)=a(k+1)+F(n-k-2)*(b(k+1)-a(k+1))/F(n-k); ft=feval(fname,t(k));

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

路径优化的算法

摘要 供货小车的路径优化是企业降低成本,提高经济效益的有效手段,供货小车路径优化问题可以看成是一类车辆路径优化问题。 本文对供货小车路径优化问题进行研究,提出了一种解决带单行道约束的车辆路径优化问题的方法。首先,建立了供货小车路径优化问题的数学模型,介绍了图论中最短路径的算法—Floyd算法,并考虑单行道的约束,利用该算法求得任意两点间最短距离以及到达路径,从而将问题转化为TSP问题,利用遗传算法得到带单行道约束下的优化送货路线,并且以柳州市某区域道路为实验,然后仿真,结果表明该方法能得到较好的优化效果。最后对基本遗传算法采用优先策略进行改进,再对同一个供货小车路径网进行实验仿真,分析仿真结果,表明改进遗传算法比基本遗传算法能比较快地得到令人满意的优化效果。 关键字:路径优化遗传算法 Floyd算法

Abstract The Path Optimization of Goods Supply Car is the effective way to reduce business costs and enhance economic efficiency.The problem of the Path Optimization of Goods Supply Car can be seen as Vehicle routing proble. This paper presents a solution to Vehicle routing proble with Single direction road by Researching the Way of Path Optimization of Goods Supply Car. First, This paper Establish the mathematics model of Vehicle routing proble and introduced the shortest path algorithm-Floyd algorithm, then taking the Single direction road into account at the same time. Seeking the shortest distance between any two points and landing path by this algorithm,then turn this problem in to TSP. Solving this problem can get the Optimize delivery routes which with Single direction road by GA,then take some district in the state City of LiuZhou road as an example start experiment.The Imitate the true result showed that this method can be better optimize results. Finally improving the basic GA with a priority strategy,then proceed to imitate the true experiment to the same Path diagram. The result expresses the improvement the heredity calculate way ratio the basic heredity calculate way can get quickly give satisfaction of excellent turn the result. Keyword: Path Optimization genetic algorithm Floyd algorithm

物流管理数学建模

物流管理数学建模公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

物流园区绩效评价与空间布局优化研究 摘要 物流园区是现代物流一体化、集约化发展的产物,同时也是适应经济、物流、环境等发展的需要。系统而科学规划和建设我国物流园区是时代的呼唤,也是我国经济快速和可持续发展的要求,是提升物流企业的竞争水平和降低社会物流成本的触发器。本文在分析甘肃省物流园区建设布局与评价等方面的基础上,通过分析物流园区的形成机理,建立了物流园区空间布局优化模型和物流园区绩效评价指标体系,并且对于如何优化、提高提出了一些建议。 关键词:物流园区;绩效评价;模糊综合评价

一、问题的提出 要实现物流园区的绩效优化管理,首先就要完成物流园的绩效评价。要对一个物流园进行科学的绩效评价,除了一些一般的共性评价指标外,还必须根据物流园区特殊的地域和功能特点的个性评价指标。甘肃物流园区除了众所周知的地域和居高不下的成本特征外,还具有鲜明的组合功能特征,承担着包括西北应急物流中心、西藏供应中转站以及维护边疆稳定在内的诸多非经济功能。所以以甘肃物流园区为研究样本建立绩效评价的指标体系,从而建立物流区绩效评价与空间布局的优化模型,并运用所建立的模型对甘肃物流园区的绩效水平及布局合理性作出总体评价就显得迫切需要。 二、问题的分析 物流园区绩效评价指标体系具有一般评价体系的整体性、层次性、动态性等特征,由于物流园区自身的特点,其绩效评价指标体系也有其自身的特征。 甘肃省的经济总量扩张、基础设施不断完善、城市化步伐加快,这样就为甘肃省物流业的发展带来了新的机遇。十二五期间,甘肃省将重点建设“一个物流核心圈、四大物流通道、六大物流枢纽城市、六大物流聚集区”,建设一批特色物流中心,最终形成主干线贯通、支线流畅、覆盖全省、服务西部、面向中亚西亚的多层次、全方位、多功能并与区域经济联动发展的物流产业新格局。

最优化理论与算法

最优化理论与算法笔记 在老师的指导下,我学习了最优化理论与算法这门课程。最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多方案中什么样的方案最优以及怎样找出最优方案。 由于生产和科学研究突飞猛进的发展,特别是计算机的广泛应用,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此迅速发展起来形成一个新的学科。至今已出现了线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。 整个学习安排如下,首先介绍线性与非线性规划问题,凸集和凸函数等基本知识及线性规划的基本性质;然后再这个基础上学习各种算法,包括单纯形法、两阶段法、大M 法、最速下降法、牛顿法、共轭梯度法等,以及各种算法相关的定理和结论;最后了解各种算法的实际应用。 主要学习的基础知识: 1、一般线性规划问题的标准形式 1min n j j j c x =∑ 1 .., 1,...,, 0, 1,...,. n ij j i j j s t a x b i m x j n ===≥=∑ 学会引入松弛变量将一般问题化为标准问题;同时掌握基本可行解的存在问题,通过学习容易发现线性规划问题的求解,可归结为求最优基本可行解的问题。 2、熟练掌握单纯形法、两阶段法和大M 法的概念及其计算步骤。 单纯形法是一种是用方便、行之有效的重要算法,它已成为线性规划的中心内容。其计算步骤如下: 1)解,B Bx b =求得1B x B b b -==,令0,N x =计算目标函数值B B f c x =;

2)求单纯形乘子ω,解B B c ω= ,得到1B c B ω-=; 3)解k k By p =,若0k y ≤,即k y 的每个分量均非正数,则停止计算,问 题不存在有限最优解,否则,进行步骤(4); 4)确定下标r ,使min{0}r r rk rk rk b b y y y =>,得到新的基矩阵B ,返回第一 步。 两阶段法:第一阶段是用单纯形法消去人工变量,即把人工变量都变换成非基变量,求出原来问题的一个基本可行解;第二阶段是从得到的基本可行解出发,用单纯形法求线性规划的最优解。 大M 法:在约束中增加人工变量a x ,同时修改目标函数,加上罚项T a Me x ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于M 的存在,将迫使人工变量离基。 3、掌握最速下降法的概念及其算法,并且能够讨论最速下降算法的收敛性。掌握牛顿法,能够熟练运用牛顿迭代公式:(1) ()2()()()()k k k k x x f x x x +=-?- ,掌 握共轭梯度法及其相关结论,以及其收敛性的讨论,掌握最小二乘法及其基本步骤。 最速下降法:迭代公式为(1) ()()k k k k x x d λ+=-。 计算步骤:1)给定点(1)n x R ∈,允许误差0,ε>臵1k =; 2)计算搜索方向() ()()k k d f x =-?; 3)若() k d ε≤,则停止计算,否则,从()k x 出发,沿()k d 进行一维搜索,求k λ,使()()()() ()min ()k k k k k f x d f x d λλλ≥+=+; 4)令(1) ()()k k k k x x d λ+=-,臵:1k k =+,转步骤(2)。

多目标物流配送模型的优化研究_图文(精)

物流平台 多目标物流配送模型的优化研究 黄金铝王喜成桂林电子科技大学管理学院 [摘要]在物流网络配送运输中,涉及到多种目标的规划,采用多目标规划法对物流网络配送系统进行建模优化;其中,针对目标规划中目标优先级确定的困难,提出判断矩阵法对目标进行排序,为优先级划分提供关键依据;根据线形规划和序贯式算法原理,文中采用LINDO软件对模型进行分步求解,最终得出一个满意方案,为决策者提供决策参考。 [关键词]多目标目标规划物流配送判断矩阵 引言 物流网络配送是现代物流管理系统中至关重要的部分,直接涉及到企业的生存和发展。而现代物流网络配送,不仅仅要考虑企业物流配送的成本,还要考虑到客户关系的特殊性,如一般客户和伙伴客户的区别服务;同时,还应考虑与物流中心的战略配合,考虑到交通运输系统的局限性等一系列有利于整个供应链优化的因素。我们面对的是多个目标的规划,而不是对单一方面的追求最优,必须有效地对所有目标进行合理规划,让整个供应链趋于优化。

之前,有许多学者对这方面也做过研究,如石琴、陈朝阳等提出了一种获得Pareto最优解集的简单算法,解决了配送费用和最大单程费用最小的双目标数学模型,避免了传统多目标问题转化成单目标时的目标间量纲不统一及目标权重确定的问题,但忽略了当所考虑目标较多时,集合求解的复杂性,以及决策者对目标规划参与重要性。对此,我们在传统多目标规划中的目标规划法基础上,采用判断矩阵法对决策者制定的目标群进行排序,并划分优先级,进而进行求解。通过检验,证明了该模型的科学性和合理性。 一、问题描述 1.一般物流网络配送问题描述 设生产企业、物流中心和商品需求城市的位置及各部分的营运费用已知,生产企业Ai到物流中心Ck的单位运费为dik;物流中心Ck到商品需求点Bj的单位运费为dkj;单位货物在物流中心Ck的操作费为dk;在某周期内商品需求点Bj对生产企业Ai产品需求量为bij,如图所示。如何调配,才能实现目标Gr,r=1,2,…,p。 2.一般目标规划模型描述 设xj(j=1,2,…,n)是目标规划的决策变量,共有m个约束是刚性约束,它们可能是等式约束,也可能是不等式约束。设有L个柔性目标约束,其目标规划约束的偏差为di+,di-(i=1,2,…,l),di-为负偏差变量,表示未达到目标值的数;di+为正偏差变量,表示超过目标值的数。设有q个优先级别,分别为P1,P2,…,P3,在同一个优先级Pk中,有不同的权重,分别记为w+kj,w-kj(j=1,2,…,l),因此目标规划模型的一般数学表达式为: (1) ②计算一致性比例。表2。

相关主题
文本预览
相关文档 最新文档