当前位置:文档之家› 1420铝锂合金铸锭加热过程中的组织变化

1420铝锂合金铸锭加热过程中的组织变化

1420铝锂合金铸锭加热过程中的组织变化
1420铝锂合金铸锭加热过程中的组织变化

热处理对7075铝合金组织和性能的影响

热处理对7075铝合金组织和性能的影响 摘要:对7075铝合金进行了固溶和单级时效处理,研究了单级时效对铝合金组织和性能的影响,结果表明铝合金经单级时效后纤维组织消失,在晶界处生成第二相粒子。铝合金显微硬度的峰值时效温度为120℃,时间为16h,硬度为220HV。120℃/24h时效后合金的峰值强度为680.5MPa。本研究中主要阐述热处理对7075铝合金组织和性能的影响。 关键词:热处理;7075铝合金;组织性能 引言 近些年来,铝合金的发展历程先后经历了由单一的追求高强度到追求高强耐腐蚀,再到追求高强高韧耐腐蚀性能,又到高强高韧耐腐蚀抗疲劳,最终到现在的追求高淬透性高综合性能五个发展阶段。然后发展方向却集中在以满足高强高韧铝合金的航空航天领域以及适用于各种使用条件的民用铝合金领域。当前对于铝合金强韧化以及耐蚀性的研究已经成为了重中之重,相信随着综合性能的提高,铝合金在国民经济发展中的运用将更加广泛。 1、7xxx系铝合金概述 7xxx铝合金是以Al-Zn-Mg和Al-Zn-Mg-Cu合金为主的一种超高强度铝合金,它是超高系列铝合金的最主要代表,Fe和Si是7xxx铝合金的主要有害杂质。较2xxx高强度铝合金在强度和硬度方面高出许多。属于热处理可强化的合金。该系铝合金具有强度高、密度小、易加工、焊接性能良好等优良特点,并且一般耐蚀性较好,因此在航空航天工业、车辆、建筑、桥梁、工兵装备及大型压力容器方面得到了广泛的应用。现阶段7xxx铝合金的研究主要集中在通过调节合金化元素和优化热处理工艺来得到高强高韧耐腐蚀的综合性能[1]。这也是本文的研究方向的出发点。该系代表合金如7005、7050、7075等。 2、试验材料与方法 试验材料为7075铝合金,将铝合金(尺寸为20mmX20mmX160mm)在盐浴中进行固溶处理,处理工艺为480℃/2h铝合金固溶处理后在试验箱中进行单级时效处理,时效温度分别为100,120,150℃,时效时间为0-48h。 将试样按国标GB/T228-2010用线切割加工成拉伸试样,用酒精超声清洗去除表面油污,在MT810万能试验机上进行拉伸强度测试,取5个试样的平均值;采用

铝锂合金本构模型研究及其ABAQUS二次开发

铝锂合金本构模型研究及其ABAQUS二次开发在实际的工程应用中,有限元方法(FEM)是模拟材料热塑性成型过程有力工具,而有限元仿真结果的精确程度与本构模型的准确性密切相关。为了在铝锂合金有限元分析过程中获得高质量的分析结果,需要根据铝锂合金的热变形行为构建更精确的本构模型。 本文在已有的2099铝锂合金的等温拉伸实验的基础上,分析2099铝锂合金在单一应变速率若=o.0003s-1时,在温度范围为120~160C°内的流动行为。在流动特性分析的结果上,选择并分别构建了五种较为常用的本构模型,分别是唯象的Johnson-Cook模型、Modified Johnson-Cook 模型,以及模型参数与KM模型有关的Voce方程、基于物理概念的Modified Zerilli-Armstrong 型和Kocks-Mecking模型。 并利用Voce方程的模型参数对2099铝锂合金进行Voce分析,根据分析结果初步判断该合金塑性变形时的微观机制。同时,对上述模型的拟合精度做误差分析,评价模型对材料流动行为的预测能力。 结果表明,Voce方程、MZA模型以及KM模型的对材料流动行为的预测能力较好,其中KM模型的预测准确性最高,但MZA模型更适用于本构模型二次开发计算;JC模型和MJC模型无法准确地预测该合金的流动行为。此外,Voce分析的结果表明,在2099铝锂合金的塑性变形过程中,长程应力场间相互作用在中低温度区起主导作用,滑移是主要变形机制,同时还存在其他的不可忽略,且与软化机制有关的微观机理。 根据2099铝锂合金本构关系的研究结论,利用ABAQUS的UMAT子程序对本构模型进行二次开发。在总结了隐式算法的基础上,初步编写JC本构模型与MZA

铝锂合金应用

新一代运载火箭箱体材料的选择 首都航天机械公司刘春飞(专稿无参考文献) 表1 Al - Mg、Al - Cu 与Al - Li 合金常温性能对比 前苏联在20 世纪80 年代研制出高强、可焊、适宜于低温下使用的1460 铝锂合金,并用作能源号火箭芯级(二级)直径8 m ,长度为40 m 和20 m 的液氢、液氧贮箱材料,获得了成功。麦道公司也使用这种合金制作了德尔它三角快帆DC - XA 单级入轨火箭的液氧贮箱,比用传统铝合金质量减轻10 %。美国用其研制的Weld alite 049 系列中的2195 铝锂合金制造了航天飞机外贮箱,比原来的贮箱质量减轻3 405 kg。1998年6 月装备了2195 合金贮箱的奋进号航天飞机飞行成功。上述事实表明Al - Li 合金替代2219 作为大型贮箱材料在国外已开始进入工业化生产和工程应用阶段。航天系统在Al - Li合金应用方面做了有益的探索,并在一些结构中采用了1420 铝锂合金。但是,在5 m 运载贮箱上采用铝锂合金必须研制像1460 或2195 这类可焊性能好的合金。 图1 2195铝锂合金应用于奋进号航天飞机的外贮燃 图2 1420能源号(ЭНЕРГИЯ) “能源号”是苏联的一种重型通用运载火箭,也是目前世界上起飞质量与推力最大的火箭。西方国家取的代号是SL—17。 以下内容来源于“国外Al-Li合金及其航天产品的制造技术”邱惠中 8090Al-Li合金——制造了大力神运载火箭有效载荷舱 1420 Al-Li合金——也用语某些中、远程导弹弹头壳体 21956 Al-Cu-Li合金——“发现号”航天飞机的外贮箱 2197合金——用语F-16战斗机的后隔框 210合金是在2094合金基础上添加0.5%Zn,人工时效前无冷加工σb=617MPa、δ=16%;固

铝锂合金应用的现状与前景

铝锂合金应用的现状与 前景 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

铝锂合金应用的现状与前景 刘玉海 铝-锂合金是在开发更轻的飞机结构材料过程中应运而生的,十几年前就已达到批量供应能力,但直到目前,还没有达到未来预期的那样应用规模,有待于作进一步的开拓工作,把它推上一新台阶。材料生产企业目前期待着大型客机生产公司能在新型飞机上使用这类合金,从而推动这种高技术合金向前发展。 70年代后期,材料科学工作者与航空部门的工程技术人员认为,在飞机用材中大量使用铝-锂合金可能大大减轻其重量,因此,除一些工业发达国家的官方研究院所外,还有一批大的铝工业公司也先后竞相投入了极大的精力与财力来开发实用的铝-锂合金及其批量生产工艺。 1993年,彼施涅公司在其研究试验中心建设了一套生产铝-锂合金的专用设备,年生产能力为450吨;美国铝业公司在其匹兹保的技术研究中心的中间试验厂内生产这类合金,生产能力为9100吨/年;而加拿大铝业公司在英国已建立起一个小型规模的铝-锂合金生产厂,生产能力为3000吨/年。 加拿大的霍默斯认为,铝-锂合金的性能很难一言以蔽之,因为它的各种性能既与合金化有关,又与热处理工艺密切相关;不过,一般地说,该合金的强度虽不如钛合金的,但可在保持其高强度性能的同时,可通过不同的工艺处理使它拥有不同的其他性能。 霍默斯说:“8090合金可以超塑成形,这是它的最可贵的性能之一,它在高温成形后,仍具有很高的强度性能”。通过超塑成形,可以制得形状复杂的部件,不但可以减少零件数量,而且可以免除把零件组装成多种联接工艺。超塑成形是一种特殊的成形工艺,因而成本高昂。 铝-锂合金与其他合金不同之处是,可在空气中淬火,可避免水淬时产生的唯一热应力变形。加拿大铝业公司批量生产的唯一铝-锂合金是英国国防部研制的8090合金,该公司从英国政府购得了专利。8090合

均匀化退火对6056铝合金组织与性能的影响

均匀化退火对6056铝合金组织与性能的影响 宁波科诺铝业有限责任公司,董培纯邱建平李博 摘要:采用热分析技术、扫描电子显微镜、拉伸试验研究均匀化退火处理对于6056铝合金微观组织和力学性能的影响。结果表明:6056铝合金铸态组织存在严重的枝晶偏析及明显的非平衡共晶组织,经过540℃×12 h 均匀化退火处理后,枝晶偏析和非平衡共晶组织明显消除,其强度降低、塑性大幅度提高。 关键词:均匀化退火;微观组织;力学性能 The effect of homogenizing annealing on microstructure and properties of 6056 aluminum alloy (Ningbo KENO Aluminum Co.,Ltd,Ningbo 315033,China) Abstract:The influence of homogenizing annealing on microstructure and properties of 6056 aluminum alloy is investigated by heat analysis technology,scan electrical microscope and tensile test. The results show that severe dendritic-segregation and unequilibrium phases exist in its as-cast structure,After 540℃×12h homogenizing annealing treatment,dendrite segregation and unequilibrium eutectic phases eliminate . The strength decrease and the ductility increase obviously. Keywords:Homogenization annealing;Microstructure;Mechanical properties 引言 6056铝合金是广泛应用于汽车和航空领域的一种Al-Mg-Si-Cu合金,其强度比6061铝合金高15%,可焊性、耐腐蚀性能和切削加工性能均优于7075和2024铝合金[1,2]。6056铝合金成分复杂,在半连续铸造过程中,铸锭组织会不同程度地偏离平衡状态,产生严重的枝晶偏析,形成大量的非平衡凝固共晶组织,因此,6056铝合金铸锭必须进行均匀化退火处理,以消除枝晶偏析,同时使合金中非平衡凝固共晶组织溶入基体,最大限度地减少基体中残留的结晶相,提高合金的塑性[3,4]。 均匀化退火处理是6056铝合金获得理想工艺性能和力学性能的关键环节之一。目前国内对于6065铝合金的均匀化退火处理的研究还不充分,本文通过研究均匀化退火对6065铝合金微观组织和性能的影响,为6056铝合金的生产提供试验指导。 试验材料与试验方法 按照表1所示的6056铝合金成分进行配料,使用中频感应炉熔炼,精炼后采用半连续铸造的方法铸成Φ85 mm的铸棒。在铸棒上取样,采用DSC进行热分析试验,得到铸棒中低熔点共晶组织的熔化温度,以确定均匀化退火温度,DSC试验的升温速率5 ℃/min,从室温加热到600 ℃。截取Φ85×100 mm的铸棒进行均匀化退火,均匀化退火温度为540 ℃,保温时间分别是6 h、12 h。从铸态和均匀化退火后的铸棒上切取金相试样,经机械研磨和抛光后,在2 ml HF、3 ml HCl、5 mlHNO3、250 mlH2O 腐蚀液中腐蚀10 s,用清水冲洗干净,然后用酒精擦净吹干,制得的试样采用扫描电子显微镜观察微观组织形貌。将铸态及均

铝锂合金

锂 1发现历史 第一块锂矿石,透锂长石(LiAlSi?O??)是由巴西人Jozé Bonifácio de Andralda e Silva 在名为Ut?的瑞典小岛上发现的,在18世纪90年代。当把它扔到火里时会发出浓烈的深红色火焰,1817年由瑞典科学家阿弗韦聪分析了它并推断它含有以前未知的金属,他把它称作锂。他意识到这是一种新的碱金属元素。然而,不同于钠的是,他没能用电解法分离它。1821年William Brande电解出了微量的锂,但这不足以做实验用。直到1855年德国化学家Robert Bunsen和英国化学家Augustus Matthiessen电解氯化锂获才得了大块的锂。锂在地壳中的含量比钾和钠少得多,它的化合物不多见,是它比钾和钠发现的晚的必然因素。 锂,原子序数3,原子量6.941,是最轻的碱金属元素。自然界中主要的锂矿物为锂辉石、锂云母、透锂长石和磷铝石等。在人和动物机体、土壤和矿泉水、可可粉、烟叶、海藻中都能找到锂。天然锂有两种同位素:锂6和锂7。 金属锂为一种银白色的轻金属;熔点为180.54°C,沸点1342°C,密度0.534克/厘米3,硬度0.6。金属锂可溶于液氨。 锂与其它碱金属不同,在室温下与水反应比较慢,但能与氮气反应生成黑色的一氮化三锂晶体。锂的弱酸盐都难溶于水。在碱金属氯化物中,只有氯化锂易溶于有机溶剂。锂的挥发性盐的火焰呈深红色,可用此来鉴定锂。 锂很容易与氧、氮、硫等化合,在冶金工业中可用做脱氧剂。锂也可以做铅基合金和铍、镁、铝等轻质合金的成分。锂在原子能工业中有重要用途。

2含量分布 在自然界中,主要以锂辉石、锂云母及磷铝石矿的形式存在。 锂在地壳中的自然储量为1100万吨,可开采储量410万吨。2004年,世界锂开采量为20200吨,其中,智利开采7990吨,澳大利亚3930吨,中国2630吨,俄罗斯2200吨,阿根廷1970吨。 锂号称“稀有金属”,其实它在地壳中的含量不算“稀有”,地壳中约有0.0065%的锂,其丰富度居第二十七位。已知含锂的矿物有150多种,其中主要有锂辉石、锂云母、透锂长石等。海水中锂的含量不算少,总储量达2600亿吨,可惜浓度太小,提炼实在困难。某些矿泉水和植物机体里,含有丰富的锂。如有些红色、黄色的海藻和烟草中,往往含有较多的锂化合物,可供开发利用。中国的锂矿资源丰富,以中国的锂盐产量计算,仅江西云母锂矿就可供开采上百年。 3物理性质 银白色金属。质较软,可用刀切割。是最轻的金属,比所有的油和液态烃都小,故应存放于液体石蜡、固体石蜡或或白凡士林中(在液体石蜡中锂也会浮起)。 锂的密度非常小,仅有0.534g/cm3,为非气态单质中最小的一个。 因为锂原子半径小,故其比起其他的碱金属,压缩性最小,硬度最大,熔点最高。 温度高于-117℃时,金属锂是典型的体心立方结构,但当温度降至-201℃时,开始转变为面心立方结构,温度越低,转变程度越大,但是转变不完全。在20℃时,锂的晶格常数为3.50?,电导约为银的五分之一。锂容易的与铁以外的任意一种金属熔合。锂的焰色反应为紫红色。 同位素 锂共有七个同位素,其中有两个是稳定的,分别是Li-6和Li-7,除了稳定的之外,半衰期最长的就是Li-8,它的半衰期有838毫秒,接下来是Li-9,有187.3毫秒,之后其他的同位素半衰期都在8.6毫秒以下。而Li-4是所有同位素里面半衰期最短的同位素,只有 7.58043×10-23秒。

铝锂合金总结

铝锂合金总结

————————————————————————————————作者: ————————————————————————————————日期:

铝-锂合金归纳总结 在铝合金中加入金属元素锂(L i) ,可在降低合金密度的同时提高合金的弹性模量。研究表明,在铝合金中每添加1%的L i, 可使合金密度降低3%,而弹性模量提高6% , 并可保证合金在淬火和人工时效后硬化效果良好。因此, 铝锂合金作为一种低密度、高弹性模量、高比强度和高比刚度的铝合金, 在航空航天领域显示出了广阔的应用前景。 铝锂合金的发展大体上可划分为三个阶段,相应出现的铝锂合金产品可以划分成三代。第一代铝锂合金产品的塑韧性水平太低,第二代铝锂合金本身仍存在以下问题:①合金的各向异性问题较普通铝合金严重; ②合金的塑韧性水平较低; ③热暴露后会严重损失韧性;④大部分合金不可焊,降低了减重效果, 铆接时往往表现出较强的缺口效应;⑤强度水平较低,难以与7000 系超高强铝合金竞争等。 第三代铝锂合金的成分及性能 表1和表2 给出了第三代主要铝锂合金产品的成分及性能。可见, 在合金成分设计上, 第三代铝锂合金降低了L i 含量,而增加了Cu含量, 并且往往添加一些新的合金化元素A g,M n, Zn 等; 在性能水平上, 第三代铝锂合金较以往铝锂合金都有了较大幅度的提高,其中尤以低各向异性铝锂合金和高强可焊铝锂合金最引人注目。

低各向异性铝锂合金的研制 铝锂合金比普通铝合金有着更为严重的各向异性问题。铝锂合金的各向异性与多种因素有关, 这些因素主要有: ①元素Li能促使合金的各向异性,即使Li 含量少于0.5% ,也会带来较大的织构密度②合金使用态多为扁平的未再结晶组织; ③合金在使用态下具有较强的晶体学织构;④析出相的形状、惯析面、变形特点等对各向异性也有一定的影响。 为控制铝锂合金的各向异性, 目前采用的主要方法有: ①降低L i 含量;②添加或减少合金化元素; ③采用合适的中间热处理和最终热处理工艺,以降低或改善合金中的织构。 这些严重的织构对合金的性能有着重大影响:①大部分铝锂合金的纵向性能与横向性能有较大差别, 通常在与轧制方向成45°—60°方向上拉伸强度降低15% 以上; ②在强 度高的位向上断裂韧性低; ③在强度低的位向上裂纹扩展速率高。铝锂合金由于塑韧性水平较低, 因此,有关铝锂合金断裂韧性的各向异性问题是更加突出的问题。一些铝锂合金在纵向(L )、L +45°、长横向(L—T)及短横向(S—T ) 上的断裂韧性值见表3。采用高温短时保温+ 快冷水淬的再时效工艺, 使8090-T 8771 板材获得的强度仅损失7% ,而短横向断裂韧性提高60%的效果, 从而降低了该合金的各向异性。

工艺参数对3003铝合金组织与 性能的影响

Material Sciences 材料科学, 2018, 8(5), 603-608 Published Online May 2018 in Hans. https://www.doczj.com/doc/7212321477.html,/journal/ms https://https://www.doczj.com/doc/7212321477.html,/10.12677/ms.2018.85071 Effect of Process Parameters on Microstructure and Properties of 3003 Aluminum Alloy Yitan Wang1, Qingsong Dai1,2, Ping Fu1, Mingwei Zhao1 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2School of Materials Science and Engineering, Central South University, Changsha Hunan Received: May 4th, 2018; accepted: May 20th, 2018; published: May 29th, 2018 Abstract Taking 3003 aluminum alloy as the research object, the effects of cold rolling rate and annealing temperature on the microstructure and properties of the sheet were studied. The results show that the work hardening of 3003 alloy sheet is significant. With the increasing of cold rolling de-formation, the tensile strength and yield strength of alloy plates increase gradually, while the elongation decreases. And during the annealing of the finished product, recovery and recrystalli-zation occur within the alloy. As the annealing temperature increases, the tensile strength and yield strength gradually decrease, and the elongation gradually increases. Keywords 3003 Aluminum Alloy, Cold Rolling Deformation, Annealing Temperature, Microstructure and Properties 工艺参数对3003铝合金组织与 性能的影响 王绎潭1,戴青松1,2,付平1,赵明伟1 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学材料科学与工程学院,湖南长沙 收稿日期:2018年5月4日;录用日期:2018年5月20日;发布日期:2018年5月29日

铝锂合金的发展及应用

铝锂合金的发展及应用 摘要:回顾了铝锂合金的发展历史,按时间顺序和性能特点将铝锂合金分成了三代,并重点介绍了第三代铝锂合金的优点和发展情况;分析研究了铝锂合金的性能特点与优势,指出提高铝锂合金性能的主要途径:微合金化、形变热处理、再结晶、在不同方向上拉伸或冷轧、减小变形量、改变弥散类型等;介绍了铝锂合金在国外先进飞机上的应用情况,为铝锂合金的应用提供参考;针对民用飞机,提出了铝锂合金的结构设计要求及方法。 关键词:铝锂合金;飞机;性能;应用 0 引言 锂(Li)是元素周期表中最轻的金属元素,密度只有5360kg/m。。在铝中每加入1% (质量比)的锂,可使合金密度降低3%,并增加弹性模量约6%。由于铝锂合金具有低密度、高比强度、高比刚度、优良的低温性能、良好的耐腐蚀性能和卓越的超塑成形性能,用其取代常规铝合金,可使构件质量减轻10%~15%,刚度提高15%~20%(1)。在现代先进飞行器上,铝锂合金的用量在逐渐提高,以达到减轻结构重量的目的。 1 铝锂合金发展历史 铝锂合金的发展大体上可划分为3个阶段,相应出现的铝锂合金产品也划分为3代(2-5)。1.1初步发展阶段 第一阶段为初步发展阶段,该阶段的时间跨度大约为20世纪50年代至6O年代初。虽然早在1924年德国的材料专家就开发出了第一个含Li的铝合金Scleron,但是,直到1957年美国Alcoa公司研究成功2020合金,1961年前苏联开发出BA~23合金,铝锂合金才真正引起人们的注意。美国将2020合金应用于海军RA25C军用预警飞机的机翼蒙皮和尾翼水平安定面上,获得了6%的减重效果但由于这些第一代铝锂合金产品的塑韧性水平太低,不能满足新航空设计标准的要求,因此并未取得进一步的应用。Alcoa公司于1969年停止了2020合金的生产。此后,铝锂合金的研究和应用在欧美等国进入了一个相对停滞的时期。 1.2繁荣阶段 2O世纪7O年代爆发的能源危机给航空工业带来了巨大的压力,所以,迫切要求飞机轻量化,复合材料的兴起也给传统铝工业造成潜在的威胁,这些都推动了人们对铝锂合金的重新重视,铝锂合金也因此进入了新的发展阶段,即第二阶段,该阶段的时间跨度为20世纪70年代至80年代后期。在这一时期,铝锂合金得到了迅猛发展,共召开了六次国际铝锂合金专题会议,对铝锂合金进行了全面研究。在此阶段,研制成功了低密度型、中强耐损伤型和高强型等一系列较为成熟的铝锂合金产品,其中具有代表性的合金有:前苏联研制成功的1420合金,美国Alcoa公司研制出的2090合金,英国Alcan公司的8090和8091合金,法国Pechiney 公司开发出的2091合金等。这些铝锂合金具有密度低、弹性模量高等优点,其主要目标是直接替代航空航天飞行器中采用的传统铝合金2024,7075等,它们都得到了一定的应用:1420合金是目前应用最为成熟的铝锂合金,俄罗斯在Mig29、Su227、Su235等战斗机及一些中、远程导弹弹头壳体上都采用了1420合金构件;美国对2090合金在C217运输机及ATF高级教练机上进行了装机试验;英国研制的8090合金在欧洲的EFA2000战斗机、EH101直升机以及A330

铝锂合金先进制造技术及其发展趋势

铝锂合金先进制造技术及其发展趋势 铝锂合金材料是近年来航空航天材料中发展最为迅速的一种先进轻量化结构材料,具有密度低、弹性模量高、比强度和比刚度高、疲劳性能好、耐腐蚀及焊接性能好等诸多优异的综合性能。用其代替常规的高强度铝合金可使结构质量减轻10%~20%,刚度提高15%~20%,因此,在航空航天领域显示出了广阔的应用前景[1-4]。然而,由于其成本比普通铝合金高、室温塑性差、屈强比高、各向异性明显、冷加工容易开裂等,导致其成形难度大,目前只能成形较简单的零件,难以制造复杂的零部件,从而限制了其在结构部件方面的应用[5-11]。近年来,国外铝锂合金的研制和成形技术日渐成熟,不仅在军用飞机和航天器上大量应用;而且民用飞机铝锂合金的用量也呈增加态势,如“奋进号”航天飞机的外贮箱、空客 A330/340/380等系列飞机。在我国,由于铝锂合金熔铸工艺,板料轧制挤压技术不成熟,新型铝锂合金的开发研制相对落后,目前只在某些型号的航天器中有少量应用。本文系统总结了铝锂合金近年来的发展状况以及国内外先进成形技术在铝锂合金中的应用现状及其发展趋势,分析了铝锂合金研制和成形技术在我国的应用现状及与国际先进水平的差距,并指出铝锂合金在我国航空航天领域的应用前景。 先进铝锂合金发展现状 按照铝锂合金研制的历史进程和成分特点,可以将其划分成3个阶段,如表1所示[7]。 第一阶段为初步发展阶段,该阶段的时间跨度大约为20世纪50年代至60年代初。其主要代表为1957年美国Alcoa公司研究成功的2020合金,并将其应用于海军RA-5C军用预警飞机的机翼蒙皮和尾翼水平安定面上,获得了6%的减重效果[5-7]。前苏联在60年代成功研制了BAд23合金。但这两款合金延展性低,缺口敏感性高、加工生产困难等,无法满足航空生产及性能要求,未取得进一步的应用。 20世纪60年代中期,迫于能源危机的压力,铝锂合金被重新重视,并进入了快速发展阶段,即第二阶段。在这一时期,铝锂合金得到了迅猛发展和全面研究,其中具有代表性的合金有:前苏联研制的1420合金,美国Alcoa公司的2090合金,英国Alcan公司的8090

快速凝固铝合金的组织与性能

快速凝固铝合金的组织与性能摘要:速凝固技术;过去对凝固过程的模拟只考虑在熔融状态下的热传导和凝固过程中潜热的释放,很少考虑金属熔体在型腔内必然存在的流动以及金属熔 体在凝固过程中存在的流动,目前,快速凝固技术作为一种研制新型合金材料的 技术一开始研究合金在凝固时的各种组织形态的变化以及如何控制才能到符合 实际生活,生产要求的合金着重研究高的温度梯度和快的凝固速度的快速凝固技术正在走向逐步完善阶段。 快速凝固原理及凝固组织:快速凝固是指通过对合金熔体的快速冷却(≥104-106k/s)或非均质形核备遏制,是合金在很大过冷度下,发生高生长速率(≥1-100cm/s)凝固。由于凝固过程的快冷,起始形核过冷度大,生长速率高是古冶界面偏离平衡,因而呈现出一系列于常规合金不同的组织和结构特征,加快冷却速度和凝固速率所应起的组织及结构特征可以近似用表来表示。 本实验利用真空系统下的金属熔液快速凝固装置,获得高真空后,充入一定压力的惰性气体,熔炼铝合金在熔融状态下以细直径金属液柱方式喷射到铜模具中,液流发生横向铺展并在纯铜模具中快速凝固。由于整个过程的浇注时间在很大程度上被分散、延迟,热耗散可以快速、充分进行,从而可获得层状铝合金。关键词:铜模具;射流沉积;亚稳块体材料;层状复合材料 The Study on the Aluminum Alloy by Rapid Solidification Based on Reciprocate Motion Cooling Model Abstract:Rapid solidification is the way to get the non-steady state metal by the rapid cooling much more fast than the cooling rate for the equilibrium materials, and amorphous, nano-crystalline and some limiting structural or functional materials can be obtained. In this work, jet solidification in the cooling model with the computer controlled reciprocating motion protected under vacuum or inert gas was used to obtain the layer Al alloys. After the Al alloy was molten in a quartz tube, the alloy liquid was jet out of

A356铝合金的组织与性能研究

A356铝合金的组织与性能研究 目录 摘要 (2) Abstract (2) 1 绪论 (1) 1.1 引言 (1) 1.2 铝及其合金概述 (1) 1.3 热处理工艺 (2) 1.4 A356铝合金研究现状 (3) 1.5 主要内容 (4) 2 实验方法及过程 (4) 2.1 合金成分 (4) 2.2 试样制备和热处理方法 (4) 2.2.1 试样切割 (4) 2.2.2 热处理 (5) 2.3 金相观察 (6) 2.3.1 金相试样的制备 (6) 2.3.2 金相观察 (7) 2.4 力学性能的测试 (7) 2.4.1 硬度测试 (7) 2.4.2 拉伸性能测试 (7) 3 实验结果及分析 (8) 3.1 金相组织观察结果 (8) 3.1.1 热处理前的微观组织 (8) 3.1.2 热处理后的微观组织 (10) 3.2 力学性能分析 (11) 3.2.1 表面硬度 (11) 3.2.2 拉伸性能 (14) 4 结论 (15) 致谢 (16) 参考文献 (17) 百色学院本科毕业论文(设计)诚信保证书 (19)

{TC “摘要”l 1 }摘要:对A356铝合金分别进行金相观察和力学试验,研究其微观组织及性能,同时探讨热处理方式对A356铝合金组织与性能的影响,结果发现枝状晶比较粗大,分布松散,表面硬度、抗拉强度和屈服强度都较低,塑性较好。经一定热处理后,粗大共晶硅熔断形成分布均匀、趋于球化的细小颗粒,除了塑性有所降低外,其他力学性能都有了显著提高。最佳热处理工艺为(560℃+6h)固溶+(180℃+4h)人工时效。 关键词:A356铝合金;固溶处理;时效处理;力学性能;微观组织 Research on Microstructure and Properties of A356 Aluminum Alloy {TC “Abstract”l 1 }Abstract:The microstructures and properties of A356 aluminum alloy were investigated by means of optical metallography and tensile test. Meanwhile, the effects of heat treatment on microstructure were analyzed. The results show that the more coarse dendrites are evenly distributed, the lower hardness, tensile strength, yield strength and the greater plastic are obtained. The coarse dendrites are broken off, uniform distribution and granular after heat treatment. The mechanical properties have significantly improved except for ductility. The optimized solution treatment for 6 hours at 560℃ and aging treatment for 4 hours at 180℃ are recommended. Key words:A356 aluminum alloy; Solid solution treatment; Aging treatment; Mechanical properties; microstructure

铝锂合金

Al-Li 合金概述及实验:航空用Al- Li合金阳极氧化对粘接性能的影响

Al-Li 合金 一、什么是Al-Li合金? 定义:Al-Li合金是指以锂为主要合金元素的新型铝合金。 锂(Li)是元素周期表中最轻的金属元素,密度只有5360kg/m3。在铝中每加入1%(质量比)的锂,可使合金密度降低3%,并增加弹性模量约6%。构件质量减轻,刚度提高。 二、 Al-Li合金的特点 优点: 1、低密度、高比强度、高比刚度; 2、优良的低温性能; 3、良好的耐腐蚀性能; 4、卓越的超塑成形性能; 5、用其取代常规铝合金,可使构件质量减轻10%-15%,刚度提高15%-20%; 6、成形、维修等都较复合材料方便, 成本也远远低于复合材料。 缺点: 1、铝锂合金韧性、塑性较常规铝合金低; 2、各向异性较大; 3、热稳定性差等。 三、Al-Li合金的发展 1.第一个阶段: 初步发展阶段,时间跨度为20世纪50年代至60年代初。这一阶段研究成果是以1957年美国Alcoa公司研究成功的2020合金为代表。 2.第二个阶段: 繁荣发展阶段,时间跨度为20世纪70年代至80年代后期。在这一时期,对Al-Li合金进行了全面研究,Al-Li合金得到了迅猛发展。 在繁荣发展阶段,研制成功了低密度型、中强耐损伤型和高强型等一系列较为成熟的Al-Li合金产品。如前苏联研制成功的1420合金、美国Alcoa公司研制出的2090合金、英国Alcoa公司的8090和8091合金、法国Pechiney公司开发出的2091 合金等。 3.第三阶段: 新型Al-Li合金发展阶段。进入90年代以后,人们针对Al-Li合金存在诸如各向异性、不可焊、塑韧性及强度水平较低等缺点开发出了具有一定特殊优势的Al-Li合金。 目前,已开发出的新型Al-Li合金,主要有高强可焊的1460和Weldalite 系列合金;低各向异性AF/ C489 、AF/ C458合金;高韧性的2097 、2197合金;高抗疲劳裂纹的C2155合金,以及经特殊真空处理的XT系列合金等。

铝锂合金总结

铝-锂合金归纳总结 在铝合金中加入金属元素锂(L i) , 可在降低合金密度的同时提高合金的弹性模量。研究表明, 在铝合金中每添加1% 的L i, 可使合金密度降低3% , 而弹性模量提高6% , 并可保证合金在淬火和人工时效后硬化效果良好。因此, 铝锂合金作为一种低密度、高弹性模量、高比强度和高比刚度的铝合金, 在航空航天领域显示出了广阔的应用前景。 铝锂合金的发展大体上可划分为三个阶段, 相应出现的铝锂合金产品可以划分成三代。第一代铝锂合金产品的塑韧性水平太低,第二代铝锂合金本身仍存在以下问题: ①合金的各向异性问题较普通铝合金严重; ②合金的塑韧性水平较低; ③热暴露后会严重损失韧性; ④大部分合金不可焊, 降低了减重效果, 铆接时往往表现出较强的缺口效应;⑤强度水平较低, 难以与7000 系超高强铝合金竞争等。 第三代铝锂合金的成分及性能 表1 和表2 给出了第三代主要铝锂合金产品的成分及性能。可见, 在合金成分设计上, 第三代铝锂合金降低了L i 含量, 而增加了Cu 含量, 并且往往添加一些新的合金化元素A g, M n, Zn 等; 在性能水平上, 第三代铝锂合金较以往铝锂合金都有了较大幅度的提高, 其中尤以低各向异性铝锂合金和高强可焊铝锂合金最引人注目。

低各向异性铝锂合金的研制 铝锂合金比普通铝合金有着更为严重的各向异性问题。铝锂合金的各向异性与多种因素有关, 这些因素主要有: ①元素L i 能促使合金的各向异性, 即使L i 含量少于0.5% , 也会带来较大的织构密度②合金使用态多为扁平的未再结晶组织; ③合金在使用态下具有较强的晶体学织构; ④析出相的形状、惯析面、变形特点等对各向异性也有一定的影响。 为控制铝锂合金的各向异性, 目前采用的主要方法有: ①降低L i 含量; ②添加或减少合金化元素; ③采用合适的中间热处理和最终热处理工艺, 以降低或改善合金中的织构。 这些严重的织构对合金的性能有着重大影响:①大部分铝锂合金的纵向性能与横向性能有较大差别, 通常在与轧制方向成45°—60°方向上拉伸强度降低15% 以上; ②在强度高的位向上断裂韧性低; ③在强度低的位向上裂纹扩展速率高。铝锂合金由于塑韧性水平较低, 因此, 有关铝锂合金断裂韧性的各向异性问题是更加突出的问题。一些铝锂合金在纵向(L )、L + 45°、长横向(L —T ) 及短横向(S—T ) 上的断裂韧性值见表3。采用高温短时保温+ 快冷水淬的再时效工艺, 使8090-T 8771 板材获得的强度仅损失7% , 而短横向断裂韧性提高60% 的效果, 从而降低了该合金的各向异性。

相关主题
文本预览
相关文档 最新文档